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Abstract The integration of optimization methodolo-
gies with computational analyses/simulations has a pro-
found impact on the product design. Such integration,
however, faces multiple challenges. The most emi-
nent challenges arise from high-dimensionality of prob-
lems, computationally-expensive analysis/simulation, and
unknown function properties (i.e., black-box functions).
The merger of these three challenges severely aggravates
the difficulty and becomes a major hurdle for design opti-
mization. This paper provides a survey on related mod-
eling and optimization strategies that may help to solve
High-dimensional, Expensive (computationally), Black-
box (HEB) problems. The survey screens out 207 ref-
erences including multiple historical reviews on relevant
subjects from more than 1,000 papers in a variety of dis-
ciplines. This survey has been performed in three areas:
strategies tackling high-dimensionality of problems, model
approximation techniques, and direct optimization strate-
gies for computationally-expensive black-box functions and
promising ideas behind non-gradient optimization algo-
rithms. Major contributions in each area are discussed and
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presented in an organized manner. The survey exposes that
direct modeling and optimization strategies to address HEB
problems are scarce and sporadic, partially due to the dif-
ficulty of the problem itself. Moreover, it is revealed that
current modeling research tends to focus on sampling and
modeling techniques themselves and neglect studying and
taking the advantages of characteristics of the underly-
ing expensive functions. Based on the survey results, two
promising approaches are identified to solve HEB problems.
Directions for future research are also discussed.
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1 Introduction

Engineering problems often appear with various features
such as being low or high dimensional, computationally
cheap or expensive, and with explicit or black-box functions
(a black-box function is an unknown function that given a
list of inputs, corresponding outputs can be obtained without
knowing its expression or internal structure). These features
characterize a problem from different perspectives. Com-
binations of these features lead to different computational
costs for problem solution. For example, the computational
cost for optimizing a cheap black-box function is largely
from the optimization process, while for computationally-
expensive functions the computational cost is mainly from
the function evaluation rather than optimization. There-
fore, solution methodologies need to be custom developed
for problems of different combinations of these features.
This review focuses on design problems that are comprised
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of high-dimensional, expensive (computationally), and
black-box (HEB) functions.

HEB problems widely exist in science and engineering
practices (Bates et al. 1996; Booker et al. 1999; Koch et al.
1999; Shorter et al. 1999; Srivastava et al. 2004; Tu and
Jones 2003). For example, the wing configuration design
of a high speed civil transport (HSCT) aircraft (Koch et al.
1999) includes 26 variables, four objectives (two technical
and two economic objectives), and four technical con-
straints. The NASA synthesis tool FLOPS/ENGGEN was
used to size the aircraft and propulsion system. The NASA
aircraft economic analysis code ALCCA was applied to per-
form economic uncertainty analysis of the system. These
computer codes often are regarded as black-box functions.
Each execution of FLOPS/ENGGEN and ALCCA requires
approximate 5 min on an IBM RISC6000 7012 model 320
Planar workstation. If a two-factor full-factorial analysis is
taken, 67,108,864 analyses are required, which would take
over 600 years to complete. In automotive industry, the
crashworthiness analysis takes on average 98 h for one eval-
uation (Gu 2001). Assuming ten variables with a two-factor
full-factorial design, it needs 1,024 analyses and takes close
to 12 years to complete.

The high dimensionality of input and output variables
presents an exponential difficulty (i.e., the effort grows
exponentially with dimensions) for both problem model-
ing and optimization (Koch et al. 1999; Li et al. 2001b;
Shorter et al. 1999). Assuming sampling s points in each
of the n input variables and performing the computer sim-
ulation or experiments, this sampling calls for ∼ sn exper-
imental or computer runs to build a model, which would
obviously be unrealistic for modeling of computationally-
expensive functions (e.g., if s = 10 and n = 10, then
the number of sample points is 1010). Modern analy-
sis models are often built in commercial software tools,
such as Finite Element Analysis (FEA) and Computational
Fluid Dynamics (CFD) tools. Besides being computation-
ally intensive, these models (functions) are implicit and
unknown to the designer, i.e., black-box functions. The
function implicity is a significant obstacle to design opti-
mization (Alexandrov et al. 2002). As the number of
variables in design problems increases, the computational
demand also increases exponentially (Michelena et al. 1995;
Michelena and Papalambros 1995b, 1997; Papalambros
1995; Papalambros and Michelena 1997, 2000). This kind
of difficulty brought by the dimensionality of problems is
known as the “curse-of-dimensionality.” Mistree’s research
group referred to this difficulty as the “size of problem” in
robust design (Chen et al. 1996; Koch et al. 1997) and mul-
tidisciplinary design optimization (Koch et al. 1999). The
“curse-of-dimensionality” challenges computational analy-
sis technologies and optimization methodologies that are
used today in science and engineering disciplines.

It is observed that in the area of engineering design there
are limited publications that directly address HEB prob-
lems. In general, both modeling techniques and optimiza-
tion methods for computationally-expensive or black-box
function are limited to problems of low dimensionality.
Problems with high dimensionality are more demanding.
This paper provides a survey of the modeling and optimiza-
tion strategies that may help solving HEB problems in order
to guide future research on this important topic. The sur-
vey has been performed along three routes: (1) strategies
tackling high-dimensionality in disciplines including math-
ematics, statistics, chemistry, physics, computer science,
and various engineering disciplines, (2) model approxima-
tion techniques, which are strategies for computationally-
expensive black-box functions, and (3) direct optimization
strategies for computationally-expensive black-box prob-
lems, and promising ideas behind commonly used non-
gradient optimization algorithms that may be helpful to
solve HEB problems.

2 Strategies tackling high-dimensionality

A spectrum of strategies tackling high-dimensionality
appears in many different disciplines since the high dimen-
sionality challenge is rather universal in science and engi-
neering fields. These strategies include parallel computing,
increasing computer power, reducing design space, screen-
ing significant variables, decomposing design problems into
sub-problems, mapping, and visualizing the variable/design
space. These strategies tackle from different angles the dif-
ficulties caused by the high-dimensionality. Some of them
may overlap and are thus not completely independent. In
view of the space limit and the fact that some of strate-
gies are studied in special areas (e.g., parallel computing
and increasing computer power), this section only reviews
some of them that directly deal with high-dimensionality.

2.1 Decomposition

Decomposition is to reformulate an original problem into a
set of independent or coordinated sub-problems of smaller
scale. Decomposition methodology has been well studied
and widely applied to complex engineering problems (Altus
et al. 1996; Chen et al. 2005b; Kusiak and Wang 1993;
Michelena et al. 1995; Michelena and Papalambros 1995b).
Some reviews pertaining to the decomposition can be found
in the literature (Browning 2001; Li 2009; Papalambros
1995; Papalambros and Michelena 1997, 2000). A technical
map of decomposition methodology is provided in Fig. 1.
The review is organized according to this map.
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In engineering, decomposition reported in the litera-
ture can be categorized into product decomposition, pro-
cess decomposition, and problem decomposition (Kusiak
and Larson 1995). The product decomposition partitions a
product into physical components. The application exam-
ples of product decomposition are given in Kusiak and
Larson (1995). Such decomposition allows standardization,
inter-changeability, or a capture of the product structure.
Its drawback is that drawing “boundaries” around physical
components is subjective. Secondly, the process decom-
position applies to problems involving the flow of ele-
ments or information, such as electrical networks or the
design process itself. Applications are found in Kusiak
and Wang (1993), Michelena et al. (1995). Thirdly, the
problem decomposition divides a complex problem into dif-
ferent sub-problems. Such decomposition is the basis of
multidisciplinary design optimization and decomposition-
based design optimization. Intensive research has been done
on the multidisciplinary design optimization (Kodiyalam
and Sobieszczanski-Sobieski 2000; Simpson et al. 2004)
and applied in industry (Sobieszczanski-Sobieski and
Haftka 1997). Decomposition-based design optimization
(Michelena and Papalambros 1995b, 1997) advances the use
of nonlinear optimization techniques in solving design prob-
lems. Such design optimization (e.g. model-based decom-
position) allows the identification of weakly connected
model substructures and obtains robust solutions.

Matrix is often exploited to reflect relationship in prob-
lems, which is called relationship matrix. Thus by means
of partitioning the relationship matrix a problem is decom-
posed. Although various terms are utilized in the literature
such as dependency structure matrix, interaction matrix,
incidence matrix, function dependent table, and precedence

matrix, there are two basic relationship matrices: design
structure matrix (DSM) and function dependent matrix
(FDM). DSM is a square matrix that has identical row
and column listings to represent a single set of objects
(Browning 2001; Li 2009). A matrix entry indicates whether
(or how or to what degree that) the i-th object (row)
relates to the j-th object (column). DSM captures symmet-
ric or non-symmetric, directional or undirected relationships
between any two objects of the same type. On the other
hand, FDM has different row and column listings to rep-
resent two sets of objects, respectively. A matrix element
indicates whether (or how or to what degree that) the
i-th row object relates to the j-th column object and vice
versa. FDM captures dependency relationships between
two types of objects such as function dependent tables in
Krishnamachari and Papalambros (1997a, b), Wagner and
Papalambros (1993).

Matrix partitioning is often formed by means of math-
ematical tools such as graph partitioning, clustering anal-
ysis, and optimization. Thus, algorithms for matrix
partitioning or decomposition are dispersed. Normally these
algorithms depend on how the decomposition is modeled.
They fall into three major types. The first type of algo-
rithms models decomposition as a hyper-graph (Michelena
and Papalambros 1997), network reliability (Michelena and
Papalambros 1995a), or an integer programming prob-
lem (Krishnamachari and Papalambros 1997b). The sec-
ond type of algorithms is heuristic approaches such as
(Wagner and Papalambros 1993). The third type of algo-
rithms is clustering approaches such as Chen et al. (2005a).
For DSM, Browning (2001) found that mostly cluster-
ing and sequencing algorithms are used. The clustering
algorithms are to reveal the architecture relationship; the
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sequencing algorithms are to expose the information flow
relationship. For FDM, clustering algorithms are useful
for design optimization and group technology. In the con-
text of group technology, machine-part groups are formed
to increase production efficiency. In the context of design
optimization, function-variable groups are formed to dis-
solve the complexity of problems. Their common goal is to
reveal independent groups (or sub-problems) in a complex
problem.

Decomposition patterns exist in two types (Chen et al.
2005a): ideal and coordination-based decomposition. The
ideal decomposition diagonalizes a relationship matrix into
several completely independent blocks without any inter-
actions between the blocks (i.e. no variable belongs to
two blocks). If a design strictly follows the axiomatic
design theory (Suh 2001), the ideal decomposition can
be obtained. The coordination-based decomposition is
a more realistic decomposition pattern with interactions
between the blocks. In terms of matrix format, there are
column-based, row-based, and hybrid structured matri-
ces (Chen et al. 2005a). Accordingly, some of column
variables, row variables, or both column and row vari-
ables are taken as coordination variables. From the nature
of coordination, decomposition patterns are categorized
as hierarchical or non-hierarchical (Chen and Liu 1999;
Krishnamachari and Papalambros 1997a; Michelena et al.
1999; Michelena and Papalambros 1997; Papalambros
1995; Papalambros and Michelena 1997; Wagner and
Papalambros 1993). Coordination processes are to coordi-
nate linking variables (connecting sub-problems and master
problems or sub-problems and sub-problems) in order to
find the optimal solution. Hierarchical decomposition is
characterized by a tree structure (Renaud and Gabriele
1991) whereas non-hierarchical decomposition is charac-
terized by a network structure (Renaud 1993; Renaud and
Gabriele 1991). In hierarchical decomposition, the intrin-
sic hierarchical structure can be used by many optimiza-
tion algorithms and thus each sub-problem can be of a
smaller scale. Hierarchical decomposition schemes, how-
ever, are hard to use when lateral couplings exist between
sub-problems of the hierarchy since the lateral couplings
interfere with the hierarchical solution process. In non-
hierarchical decomposition, likely more couplings appear
because of the lack of hierarchy. Complex couplings bring
a great challenge to optimization algorithms as decoupling
is needed. A hybrid method combing hierarchical decompo-
sition in the entire system and non-hierarchical decomposi-
tion in the local area (subsystems with lateral couplings) is
likely useful for problems with lateral couplings.

Decomposition was recognized as a powerful tool for
analysis of large and complex problems (Krishnamachari
and Papalambros 1997b; Kusiak and Wang 1993). For rig-
orous mathematical programming, decomposing an overall

model into smaller sub-models was considered as necessary
by Papalambros (1995). Complexity of design problems in
the context of decomposition is analyzed in Chen and Li
(2005). The idea of decomposition penetrates in concep-
tual design (Kusiak and Szczerbicki 1992), optimal system
design (Kim et al. 2003), concurrent design, complex prob-
lem modeling, etc. Decomposition often accompanies with
parallel approaches to enhance the efficiency. Koch et al.
(2000) proposed an approach to build partitioned, multi-
level response surfaces for modeling complex systems.
This approach partitions a response surface model to two
quadratic surrogates; one surrogate is constructed first and
becomes a term in the other surrogate to form a two-level
metamodeling process. Kokkolaras et al. (2006) presented
a methodology for design optimization of hierarchically
decomposed multilevel systems under uncertainty. Chan
et al. (2000) designed and implemented a new class of fast
and highly scalable placement algorithms that directly han-
dled complex constraints and achieved the optimum through
the use of multilevel methods for hierarchical computation.
Lu and Tcheng (1991) proposed a layered-model approach.
The references (Pérez et al. 2002a; Wang and Ersoy 2005;
Ye and Kalyanaraman 2003) applied parallelization in their
optimization algorithms. Eldred et al. (2004, 2000) com-
bined a multilevel idea with parallelization to implement
optimization. These methods decompose a complex opti-
mization problem and form cascading schemes that can be
implemented by multilevel or parallel approaches. Decom-
position brings many advantages: improved coordination
and communication between sub-problems, allowing for
conceptual simplification of the problems, different solu-
tion techniques for individual sub-problems, reduced sub-
problem dimensionality, reduced programming/debugging
effort, modularity in parametric studies, multi-criteria anal-
ysis with single/multiple decision makers, and enhanc-
ing the reliability and robustness of optimization solutions
(Michelena and Papalambros 1995b, 1997).

As concluding remarks, the decomposition methodology
is an effective strategy for solving complex design opti-
mization problems. Decomposition concepts are expected to
advance for modeling and optimization of HEB problems.

2.2 Screening

Screening identifies and retains important input variables
and interaction terms, whereas removes less important ones
or noises in the problems of interest so that the complexity
or dimensionality of the problems is reduced to save compu-
tational cost. Screening is often implemented via sampling
and analysis of sampling results. Screening approaches are
grouped as two categories as shown in Fig. 2. One cate-
gory deals with a single response and the other deals with
multiple responses.
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Fig. 2 Screening approaches
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Screening for a single response is to select the most
important variables or interaction terms of variables as to
the response. The importance of variables or their inter-
action terms is judged by means of sensitivity analysis,
analysis of variances (ANOVA), principle component anal-
ysis (PCA), optimization approaches, and group screening
after experiments. Some of these approaches are corre-
lated, for example, sensitivity analysis is implemented by
ANOVA. Sensitivity analysis studies how the variability of
a function’s output responds to changes of its inputs. It
includes local and global sensitivity analyses. The local
sensitivity indicates the local variability of the output with
respect to input variable changes at a given point, which
are partial derivatives. It restricts to infinitesimal changes
in input variables. The global sensitivity, however, explains
the global variability of the output over the entire ranges
of the input variables, which provides an overall view of
the impact of input variables on the output. It considers
more substantial changes in input variables. If a proba-
bilistic setting is considered with both inputs and outputs,
sensitivity analysis is referred as probabilistic sensitivity
analysis (Oakley and O’Hagan 2004). Sensitivity analy-
sis has been widely studied (Morris 1991; Sobol 1993; Jin
et al. 2004; Kaya et al. 2004). Griensven et al. (2006)
and Queipo et al. (2005) introduced different techniques in
sensitivity analysis. Harada et al. (2006) screened parame-
ters of pulmonary and cardiovascular integrated model with
sensitivity analysis. Iman and Conover (1980) utilized the
sensitivity analysis approach in the modeling with appli-
cation to risk assessment. Wagner (2007) applied global
sensitivity analysis of predictor models in software engi-
neering. Sobieszczanski-Sobieski (1990) discusses sensitiv-
ity analysis for aircraft design. Hamby (1994) reviewed the
techniques for sensitivity analysis of environmental mod-
els. By means of analysis of variance (ANOVA; Myers and
Montgomery 1995), the main effect of a single variable
or correlated effect of multiple variables can be identified.

Schonlau and Welch (2006) introduced the ANOVA decom-
position (functional ANOVA) theory and developed the
steps for identifying and visualizing the important estimated
effects. Principal Component Analysis (PCA) transforms
data to a new coordinate system by data projection so that
variables with greatest variances in the projection come to
the principal coordinates. The selection of dimensions using
PCA through singular value decomposition is a popular
approach for numerical variables (Ding et al. 2002). Welch
et al. (1992) proposed a sequential optimization algorithm
for screening. Watson (1961) proposed a group screening
method. Morris (1991) designed factorial sampling plans
for preliminary experiments. Tu and Jones (2003) proposed
a cross-validated moving least squares (CVMLS) method,
which integrated the variable screening into a metamodel-
ing process. It screens input variables by two ways: a main
effects estimate procedure using one-dimensional CVMLS
analysis to eliminate insignificant inputs; and a backwards-
screening procedure for calculating cross-validation error
sensitivities of input variables. Shen et al. (2006) devel-
oped an adaptive multi-level Mahalanobis-based dimension-
ality reduction (MMDR) algorithm for high-dimensional
indexing. The MMDR algorithm uses the Mahalanobis dis-
tance and consists of two major steps: ellipsoid generation
and dimensionality optimization. Brand (2003) proposed
a dimensionality reduction method by kernel eigenmaps.
Ding et al. (2002) proposed an adaptive dimension reduction
approach by clustering high dimensional data.

Screening strategies for multiple responses are differ-
ent from that for a single response since the importance of
variables or interaction terms varies for different responses.
Strategies for a single response, however, may be used for
the case of multiple responses. One method for multiple
responses is to screen each response separately and select
important variables or terms for each response, which is
called the split method. The split method bears two dis-
advantages: the screening process time increases as the
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number of the responses increases and the approximation
response may not be consistent when some variables are
fixed for another response. The average method exploits the
average effects of variables across all of the responses and
selects the variables or terms which have average efforts
on all responses. Such a method possibly eliminates vari-
ables that are extremely important for one response. Chen
et al. (1996) employed this approach to reduce the prob-
lem size. An inverse screening approach (Koch et al. 1999)
identifies variables that are not important for any of the
responses. This approach is accomplished by combining
sets of important variables for each response and observ-
ing which variables are not included in the combined set.
A two-level fractional factorial experiment is designed for
screening and Pareto analysis is used to analyze the exper-
imental results to rank the importance of variables for each
response. Like screening for a single response, the prob-
lems exist on deciding a cutoff criterion and the possible loss
of accuracy. Since the cutoff point of importance is subjec-
tive, it is hard to make the trade-off between the acceptable
accuracy and completeness in problem formulation.

In general, screening likely pays a price of losing mod-
eling accuracy of problems because of removed dimen-
sionalities. As the number of variables increases, the
dimensionality of the remaining problem after screening
may still be high for some existing models. Screening over
multiple responses inherently may not allow many vari-
ables to be removed from problems. A design with fewer
runs, or with fewer levels of each input variable, may well
have missed the important regions (Schonlau and Welch
2006). Advantages of screening include noises reduction,
removal of unimportant variables or terms, and retaining of
important variables in problems of interest, which decreases
complexities and reduces dimensionality. The use of screen-
ing depends on the purposes and type of experiments. It is
identified to be a good strategy for filtering noises in the
physical experiments and supporting modeling. It can guide
modeling and simplify the computer model. For the purpose
of optimization, although it simplifies the problem, it pays
the price of accuracy. The screening strategies therefore
should be employed with care.

2.3 Mapping

Mapping has a broad sense including projection, non-linear
mapping, parameter space transformation, and so on. In
this section, mapping techniques are categorized into two
groups: mapping aiming at dimensionality reduction and
mapping aiming at optimization.

Mapping aiming at dimensionality reduction transforms
a set of correlated variables into a smaller set of new uncor-
related variables that retain most of the original information.

This includes non-linear mapping and projection. Projec-
tion has multiple algorithms such as projections by principal
component analysis (PCA; Dunteman 1989; Penha and
Hines 2001; Shlens 2005), analysis of variance (ANOVA),
and relative distance plane (RDP) mapping (Somorjai et al.
2004). RDP maps high-dimensional data onto a special
two-dimensional coordinate system, the relative distance
plane. This mapping preserves exactly the original distance
between two points with respect to any two reference pat-
terns in RDP. Besides dimensionality reduction, projection
approaches are used for data classification, data cluster-
ing, and visualization of high-dimensional problems as well.
Non-linear mapping is a commonly used method for eas-
ing problem complexity. Artificial Neural Network (ANN)
embodies non-linear mapping techniques. Rassokhin et al.
(2000) employed fuzzy clustering and neural networks for
nonlinear mapping of massive data sets. Sammon (1969)
proposed an algorithm of nonlinear mapping for data struc-
ture analysis. This algorithm was based on point mapping
of a higher-dimensional space to a lower-dimensional space
such that the inherent data “structure” was approximately
preserved. Saha et al. (1993) applied linear transforma-
tion inducing intrinsic dimension reduction. Kaski (1998)
reduced dimensionality by random mapping. All above
mapping techniques successfully implemented the dimen-
sionality reduction.

Bandler et al. (1994) proposed a space-mapping (SM)
technique aiming at optimization. This space-mapping tech-
nique made use of two models for the same system:
a “coarse” model, and a “fine” model. The “coarse”
model could be an empirical equation, simplified theoreti-
cal model or finite element model. These “coarse” models
were less accurate and computationally inexpensive. The
“fine” model could be a high precision component model
or fine finite element model. These “fine” models were
more accurate and computationally expensive. A mathe-
matical mapping between the spaces of parameters of two
different models was established, which maps the fine
model parameter space to the coarse model parameter space
such that the responses of the coarse model adjust for the
responses of the fine model within some local modeling
region around the optimal coarse model solution. In con-
junction with the accuracy of the “fine” model and the cheap
computation of the “coarse” model, an optimization algo-
rithm was implemented. In the context of this space map-
ping technique, the parameter extraction (obtaining the
parameters of the coarse model whose responses match the
fine model responses) was crucial since the non-uniqueness
of the extracted parameters may cause the technique to
diverge. Some algorithms such as Aggressive Space Map-
ping (ASM; Bandler et al. 1995a, b; Bakr et al. 1999a),
Trust Region Aggressive Space Mapping (TRASM; Bakr
et al. 1998), Hybrid Aggressive Space Mapping (HASM;
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Bakr et al. 1999b) methods were developed to obtain better
parameter extraction by the same research group of the orig-
inal space mapping technique. This space-mapping was then
applied to optimization of microwave circuits (Bakr et al.
2000a) by the same researchers. Leary et al. (2001) devel-
oped a constraint mapping to structural optimization. Bakr
et al. (2000b) reviewed these space mapping techniques and
discussed developments in Space Mapping-based Modeling
(SMM) including Space Derivative Mapping (SDM), Gen-
eralized Space Mapping (GSM), and Space Mapping-based
Neuromodeling (SMN). Bandler et al. (2004) reviewed the
state of the art of the space-mapping techniques.

The first group of mapping approaches relaxes the
“curse-of-dimensionality” of problems for modeling, and
the second eases the complexity of optimization problems.
But it seems that no one has examined the possibility of
mapping optimization problems from an original higher-
dimensional space to a new lower-dimensional space while
preserving the optimum. If this is doable, both the prob-
lem size and the optimization complexity can be reduced
simultaneously. The challenge is how to ensure the optimum
obtained in the lower-dimensional space is the true optimum
for the higher-dimensional space.

2.4 Space reduction

In modeling and optimizing a practical problem, ranges
of design variables need to be determined. Combination
of variable ranges defines the design space. In this paper,
space reduction is limited to the reduction of ranges of
design variables excluding the reduction of the number
of variables (discussed in screening and mapping). Space
reduction means shrinking a design space so that model-
ing is more accurate in the modeling range or optimization
effort is reduced in the optimization domain. A common
space reduction approach starts with sampling a limited
number of points and evaluating function values at these
points. Then the design space is reduced based on feed-
back information from modeling on these sample points.
The revised design space is again segmented using smaller
increments, and the objective function is determined for
new points. In this way, the focus of modeling can be
in a more attractive region, which leads to more effective
models. Approximated or inexpensive constraints are often
employed to eliminate some portions of the design space. In
the optimization formulation phase, the design space can be
explored to obtain a deeper insight into the design problem,
and thus the optimization focus can be made on the most
interested sub-spaces that contain the optimum with high
probability in the design space. Wang et al. (2001) devel-
oped a number of methods such as the adaptive response
surface method (ARSM), and the fuzzy clustering based
approach (Wang and Simpson 2004), in which the design

space is iteratively reduced. Shan and Wang then proposed
a rough set based method which could systematically iden-
tify attractive regions (sub-spaces) from the original design
space for both single and multiple objectives (Shan and
Wang 2004; Wang and Shan 2004). Engineers could pick
satisfying design solutions from these regions or continue to
search in those regions. In the optimization processes, there
are some strategies to contract the design space. Shin and
Grandhi (2001) reduced the space using the interval method.
This method began with a box in which the global optimum
was sought; it first divided the box and found the interval
of the objective function and each constraint in each sub-
box, and deleted the sub-boxes which could not contain the
optimum. This process continued until the box size became
sufficiently small. Marin and Gonzalez (2003) solved the
path synthesis optimization problems using design space
reduction. The design space reduction was implemented in
two ways: one eliminating redundant design points by defin-
ing some prerequisites and the other eliminating poor design
points. Yoshimura and Izui (1998) implemented mecha-
nism optimization via expansion and contraction of design
spaces. Ahn and Chung (2002) utilized joint space reduc-
tion and expansion to redundant manipulator optimization.
The space reduction and expansion is commonly employed
as a strategy of optimization and done by moving limits of
design variables. Move-limit optimization strategies (Fadel
and Cimtalay 1993; Fadel et al. 1990; Grignon and Fadel
1994; Wujek and Renaud 1998a, b) applied the conjunction
of approximation with move limit concepts to optimization
problems. Trust region based algorithms (Byrd et al. 1987;
Celis et al. 1984; Rodríguez et al. 1998) made use of the idea
of changing spaces. These approaches varied the bounds of
design variables in optimization iterations and differed from
each other in bound adjustment strategies. Space reduction
strategies can be used in optimization problem formulation
phases, optimization processes, and modeling processes.

2.5 Visualization

The idea of visualization is to present a problem in a visual
form, allowing users to get insight into the problems, find
key trends and relationships among variables in a problem,
and make decisions by interacting with the data. There are
various techniques for multidimensional data visualization
including graph morphing, panel matrix displays, iconic
displays, parallel coordinates, dense pixel displays, and
stacked displays. Stump et al. (2002) listed advantages and
disadvantages of scatter matrix/brushing and data-driven
placement of Glyphs and developed an interface incorporat-
ing visualization techniques. Winer and Bloebaum (2002a,
b) developed a Visual Design Steering (VDS) method as an
aid in multidisciplinary design optimization. VDS allows a
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designer to make decisions before, during, or after an anal-
ysis or optimization via a visual environment to effectively
steer the solution process. Many companies are utilizing
the power of visualization tools and techniques to enhance
product development and support optimization (Simpson
2004). Visualization is helpful when little is known about
the data and the exploration goals are implicit since users
are able to directly participate in the exploration processes,
shift and adjust the exploration goals if necessary. The visu-
alization can aid in black-box function modeling. VDS for
high-dimensional optimization problems, however, need to
be developed.

2.6 Summary remarks

Five main strategies tackling high-dimensionality are
reviewed. Their pros and cons are summarized in Table 1.
Among these methods, decomposition methodology is iden-
tified as the most promising tool for high dimensional prob-
lems, given its general applicability. Screening and mapping
approaches can be very useful in suitable context, especially
when there is prior knowledge of the underlying black-box
function. Mapping strategies for high dimensional problem
modeling and optimization are limited and need to be fur-
ther developed. Space reduction is a common strategy used

in detailed optimization algorithms. It may best suit for
search strategies such as in trust region methods. Its use in
the global scale, however, is to be cautioned as it is risky of
missing important subspaces. Visualization techniques are
very attractive for human interactive decision making. They
can be used to design an interface between the fundamental
analytical approaches (such as modeling and optimization)
and design engineers, in support of real design practice.

3 Model approximation techniques

Computationally-expensive problems and black-box prob-
lems are often found in science and engineering disciplines.
For example, simulation and analysis processes are expen-
sive to run and often considered black-box functions. The
widely used strategies dealing with computational intensity,
unknown function expressions, and both are model approx-
imation techniques. These model approximations support
engineering design optimization as well (Haftka et al. 1998;
Wang and Shan 2007). This section first surveys the exist-
ing model approximation techniques, and then introduces
a type of additive high-dimensional model representation
potentially supporting the solution of HEB problems. We

Table 1 Summary of strategies tacking problems of high-dimensionality

Strategy Advantages Disadvantages Application

Decomposition Reduced sub-problem dimensionality; reduced Limited by decomposability Modeling and optimization

programming/debugging effort; simpler and for high-dimensional or

more efficient computational procedures (such large scale problems

as parallel/distributed computation, concurrency,

modularity); improved coordination and

communication between the decomposed

sub-problems; enabling different solution

techniques to individual sub-problems; support

of multi-criteria analysis with single/multiple

decision makers; enhanced reliability and

robustness of optimization solutions

Screening Removal of noises and insignificant variables and May sacrifice accuracy; limited Problem investigation

terms; identification of interactions in problems by nature of problems and modeling

Mapping Removal of correlated variables; reduced Non-uniqueness of the extracted Modeling and optimization

dimensionality; reduction of computational parameters; few techniques for

burden for optimization high dimensional problems

Space reduction Reduction of the effort on modeling May miss the global optima Often used at the start

and optimization or important sub-space of optimization

Visualization Supporting design space exploration Difficult for high-dimensional Interactive decision

and optimization problems making; exploration
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will then elucidate the relationship between modeling tech-
niques and nature of underling functions to expose the
oversight/flaws in current methods and indicate the direction
for new model development.

3.1 Existing modeling techniques

Model approximation techniques involve two fields: com-
puter design of experiments and modeling. These two fields
work together to serve for model approximation. In typi-
cal model approximation techniques, there are four basic
tasks: (1) to decide on a sampling method (i.e. experimental
design); (2) to select a model to fit sampling points; (3) to
choose a fitting method (e.g. least square regression); and
(4) to validate the fitting model. These tasks often corre-
late with each other. A critical issue in model approximation
is to construct a sufficiently accurate approximation model
with least effort based on available information.

The research on computer design of experiments (Sacks
et al. 1989a, b; Steinberg and Hunter 1984) has been a few
decades. The reviews on computer design of experiments
can be found in the references (Chen et al. 2003, 2006; Crary
2002; John and Draper 1975; Steinberg and Hunter 1984).
Multiple computer design of experiments schemes are com-
pared by researchers. For example, McKay et al. (1979)
compared three sampling methods (random sampling, strat-
ified sampling and Latin hypercube sampling). Simpson
et al. (2001a) compared and contrasted five types of exper-
imental design and four types of approximation model. Jin
et al. (2002) compared sequential sampling with one stage
sampling. Chan et al. (1983) analyzed the sample variance
algorithms and made recommendations. Ford et al. (1989)
summarized work in optimal experimental design in nonlin-
ear problems. Wang and Shan (2007) listed various design

of experiments approaches. Chen et al. (2006) summarized
some of the experimental designs’ pros and cons.

The design of computer experiments can be grouped into
three categories: the first category of designs is constructed
by combinatorial, geometrical, or algebraic methodology,
such as factorial design, fractional factorial design (Myers
and Montgomery 1995), orthogonal arrays (Bose and Bush
1952; Hedayat et al. 1999; Owen 1992a), Latin hypercube
designs (Owen 1992b; Tang 1993; Ye 1998), etc. These
designs have desirable structural properties, and some of
them have good projective property in low-dimensional sub-
spaces. The second category of designs is constructed by
optimality approaches, such as D, A, E, G, Iλ Optimal-
ity (Chen et al. 2003; John and Draper 1975; Steinberg
and Hunter 1984), minimax and maximin distance designs
(Johnson et al. 1990), and Bayesian approaches (Chaloner
and Verdinelli 1995; Currin et al. 1988, 1991; Mitchell and
Morris 1992; Morris et al. 1993). In Bayesian based sam-
pling, the mean serves as a prediction, and the standard
deviation serves as a measure of uncertainty of the pre-
diction. Measures of information based on the predictive
process are used to establish design criteria, and optimiza-
tion can be used to choose good designs. The second
category of methods usually yield sample points of com-
paratively good space-filling proprieties, however, obtaining
these designs can be either difficult or computationally
intractable, and they may not have good projective prop-
erties in low-dimensional subspaces. The third category of
methods (e.g. Jin et al. 2005; Morris and Mitchell 1995)
combine the optimality approaches with the first category
approaches (e.g. Latin hypercube sampling) to improve
projective property as well as space-filling property. For
evaluating the experimental design, Simpson et al. (2001b)
and Chen et al. (2003, 2006) discussed some metrics of
merits. Those metrics of merits are summarized in Table 2.

Table 2 Metrics for evaluating
experimental design Metric Description

Orthogonality A design is orthogonal if, for every pair of factors xi and x j , the sum of the

cross-products of N design points
N∑

u=1
xiu x ju is zero, which implies that the

design points are uncorrelated

Rotatability A design is rotatable if N • V ar
[

f̂ (x)
]
/σ 2 has the same value at any two

locations that are of the same distance from the design center, which

maintains the same structure after rotation; where f̂ (x) is approximation of

the underlying function

Robustness Robustness measures how well the design performs when there are violations

of the assumptions upon which the design was derived

Minimum variance and Estimation having minimum variance and minimum bias

minimum bias



228 S. Shan, G.G. Wang

Table 3 Cost of some
experimental designs Experimental design Condition (number of variables, n = 30) Cost

Full factorial Two level design 230 = 1.0737e9

Fraction factorial Half fraction 1
2 × 230 = 536, 870, 912

Central composite A central composite design is a two level 2n 527,189 for 20 factors

factorial design, augmented by n0 center (generated by MatlabTM

points and two ‘star’ points positioned function “ccdesign(20)”;

at ±α for each factor “ccdesign(30)” failed)

For computer design of experiments, the “curse-of-
dimensionality” presents a major hurdle as the amount of
required sampling points for modeling grows with the num-
ber of design variables (Pérez et al. 2002b). Since a full
factorial design is the most basic design, taking the full
factorial design as a basis, Table 3 lists the cost of some
experimental designs to illustrate the challenges when the
number of dimension (n = 30) is relatively high. The
research on construction of designs for high-dimensional
spaces has not been extensive (Currin et al. 1991). Another
issue worthy of notice is the interactions within experi-
mental designs. Morris and Mitchell (1983) discussed the
presence of interactions.

In the modeling field, approximation models can be
grouped into two categories: parametric models and non-
parametric models as shown in Fig. 3. Based on these two
categories of models, semi-parametric models are devel-
oped. Parametric models have a pre-selected form of the
original variables for the underlying function, and so can
be parameterized in terms of any basis functions, for exam-
ple, polynomial models (linear, quadratic or higher; Hill and
Hunter 1966). Simple parametric models require a few data
points to obtain a meaningful result and can be rapidly com-
puted. However, parametric models have limited flexibility,

and are likely to produce accurate approximations only
when the true form of the underlying functions is close to
the pre-specified parametric one (Denison 1997; Friedman
1991). They are preferred when there is prior knowledge of
the underlying function.

In nonparametric modeling, the functional form is not
known and so cannot be parameterized in terms of any
basis functions, for instance, smoothing splines and kernel
regression. Nonparametric approaches try to fit a function
through the use of sampling data to derive the form of the
model instead of “enforcing or imposing” them into a par-
ticular class of models (e.g. polynomial model). So the
model can alter from the sampling data, which reflects the
nature of the underlying function. Nonparametric methods
have two main classes: one models a d-dimensional regres-
sion function with a d-dimensional estimate and the other
models the underlying function with lower dimensional
functions. The first class includes three types of meth-
ods: piecewise parametric, local parametric, and roughness
penalty. These techniques can work well for low dimen-
sional problems, but become unreliable when there are
many variables (Denison 1997). The second class takes the
underlying function as a combination of low dimensional
functions and sums them together, which circumvents the

Nonparametric
approximation

Full dimensional models 
(Modeling a d-

dimensional function 
with a d-dimensional

estimate)

Lower-dimensional
models (modeling the 

d-dimensional
function with low 

dimensional functions) 

Piecewise parametric (e.g. 
spline-based methods) 

Local parametric (e.g. Kriging) 

Roughness penalty 

Additive models 

Projection
pursuit

Classification
and regression 

trees

Parametric
approximation

(e.g. polynomial 
response surface) 

Adaptive
computation

Fig. 3 Approximation models
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Table 4 Commonly used
performance criteria for
approximation models

Criterion Description

Accuracy The capability of predicting underlying functions over a design space.

It can be measured by RMSE, R square, RAAE, RMAE, and so on

(see Table 5)

Interpretability or Transparency The ability of proving the information and interactions

(the underlying structure) among variables. It can be seen via function

nonlinearity, interaction of the factors and factor contributions

Flexibility or Robustness The capability to provide accurate fits for different problems. It can be

measured by variance of accuracy metrics

Dimensionality The amount of data required to avoid an unacceptably large variance

that increases rapidly with increasing dimensionality

Computability or Efficiency The computational effort required for constructing the model and for

predicting the response for a set of new points by the model. The

computational effort required for constructing the model can be

measured by the number of function evaluations and the number of

iterations or time

Simplicity The ease of implementation

Smoothness The derivative ability of the model function

“curse-of-dimensionality”. This class includes two main
strategies: additive models (Andrews and Whang 1990;
Friedman and Silverman 1989; Stone 1985) and adaptive
computation. Adaptive computation includes projection
pursuit regression (Friedman and Stuetzle 1981), and recur-
sive partitioning regression (Friedman 1991). Next subsec-
tion will describe one additive model. Chen (1991, 1993)
proposed interaction spline models to retain the advan-
tages of additive models with more flexibility. Some of the
above modeling techniques have been extended by Bayesian
approaches (Barry 1986; Denison 1997, 1998; Leoni and
Amon 2000; Otto et al. 1997). Apley et al. (2006) modeled
approximation model uncertainty by Bayesian approach.
Wang and Shan (2007) listed popular models, such as
kriging models (Joseph et al. 2006; Martin and Simpson
2005), radial basis functions (RBF) models (Fang and
Horstemeyer 2006; Regis and Shoemaker 2007a, b),
response surface models (Hill and Hunter 1966; Kaufman
et al. 1996), support vector machine (Collobert and Bengio
2001), etc. Owen and his group (An and Owen 2001;
Jiang and Owen 2002, 2003) developed quasi-regression
methods for model approximation. Chen et al. (1999)
presented an OA/MARS (orthogonal array and multivari-
ate adaptive regression splines) method. Jin et al. (2001)
compared four models (polynomial regression, multivariate
adaptive regression splines, radial basis functions, and Krig-
ing model), and Wang et al. (2006) compared meta-models
(multivariate adaptive regression splines, radial basis func-
tions, adaptive weighted least squares, Gaussian process
and quadratic response surface regression) under practical

industry settings. Simpson et al. (1998) compared response
surface and Kriging models for multidisciplinary design
optimization. Chen et al. (2006) described the pros and
cons of some models. Meckesheimer et al. (2002) inves-
tigated assessment methods for model validation based on
leave-k-out cross validation. Kennedy and O’Hagan (2001)
developed a Bayesian approach for calibration of computer
models. Calibration is the process of fitting a model to the
observed data by adjusting parameters. Some researchers
studied the structures and natures of the underlying func-
tion. For example, Hooker (2004) discovered an additive
structure; Chen (1991, 1993) made use of interactions;
Owen (2000, 1998) discussed linearity in high dimensions.
Here commonly used performance criteria for approxima-
tion models and commonly used model validation metrics
are listed in Tables 4 and 5, respectively. To the authors’
knowledge, there is no specially designed validation method
for HEB problems, especially when the total number of
validation points is limited due to high computational cost.

3.2 High-dimensional model representation

Among the additive models, a high-dimensional model rep-
resentation (HDMR), which was developed from science
disciplines, has only drawn limited attention in engineering.
The HDMR, given its direct relevance, potential applica-
tion for high-dimensional design, and limited exposure to
engineering researchers, is thus described in more detail as
follows.
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Table 5 Commonly used model validation metrics

Metrics Features

Residual The difference between the predicted and true values at sampled points.

Mean square error (MSE): MSE =
m∑

i=1
(yi −ŷi )

2

m Measure the average of the “error”. The “error” is the difference between the

predicted and true values. MSE does not have the same unit as the output, y

Root mean square error (RMSE): RMSE =

√
m∑

i=1
(yi −ŷi )

2

m A better measure of “error” than MSE. RMSE has the same unit as the output

Relative average absolute error: RAAE =
m∑

i=1
|yi −ŷi |

m×ST D Usually correlated with MSE. A global error measurement

R Square: R2 = 1 −
m∑

i=1
(yi −ŷi )

2

m∑

i=1
(yi −ȳ)2

Usually correlated with MSE. A global error measurement

Predicted R-squares: R2 = 1 −
m∑

i=1
(yi −ŷi )

2

m∑

i=1
(yi −ȳ)2

The formula is the same as the R square. But the calculation process is similar

to cross-validation. It is calculated by systematically removing each point

from modeling points, constructing a new model on remaining points, and

predicting function value at the removed point

Maximum absolute error: MAX = max |yi − ŷi |, An absolute error measurement in a local region. Not necessarily

i = 1, · · · , m correlated with MSE

Relative maximum absolute error: RMAE = MAX
STD A relative error measurement in a local region. Not necessarily

correlated with MSE

Cross-validation Partitioning sampled points into multiple subsets and then iteratively

employing one subset as testing set and other subsets as training set

(modeling) to test the accuracy of the model. It includes

leave-one-out and k-fold cross-validation

Where m—the number of validation points; yi —observed value; ŷi —predicted value; ȳ—the mean of the observed values; STD—standard

deviation STD =

√
m∑

i=1
(yi −ȳi )

2

m

A HDMR represents the mapping between the input vari-
ables x = [x1, x2, . . . , xn]T defined on the design space
Rn and the output f (x). A general form of HDMR (Li
et al. 2001a; Rabitz and Alis 1999; Sobol 1993) is shown
as follows:

f (x) = f0 +
n∑

i=1

fi (xi ) +
∑

1≤i< j≤n

fi j
(
xi , x j

)

+
∑

1≤i< j<k≤n

fi jk
(
xi , x j , xk

) + ...

+
∑

1≤i1<...<il≤n

fi1i2...il

(
xi1, xi2 , ..., xil

) + ...

+ f12...n (x1, x2, ..., xn) (1)

Where the component f0 is a constant representing the
zero-th order effect to f (x); the component function fi (xi )

gives the effect of the variable xi acting independently
upon the output f (x) (the first order effect), and can have

an arbitrary dependence (linear or non-linear) on xi . The
component function fi j (xi , x j ) describes the interacting
contribution of the variables xi and x j upon the output
(the second order effect), and subsequent terms reflect the
interacting effects of an increasing number of interacting
variables acting together upon the output f (x). The last term
f12···n(x1, x2, · · · , xn) represents any residual dependence
of all the variables locked together correlatively to influence
the output f (x). The HDMR expansion has a finite num-
ber of terms and is always exact. The HDMR expands a
d-dimensional function into summands of different func-
tions of less than d-dimensions. The HDMR is a generaliza-
tion of additive models (Andrews and Whang 1990; Chen
1991, 1993; Friedman and Silverman 1989; Stone 1985)
mentioned in the previous section. The highest dimensional-
ity of HDMR depends on the nature of interaction variables
of the function. For most well-defined systems, high-order
correlated behavior of the input variables is expected to
be weak and a HDMR can capture this effect (Rabitz
and Alis 1999). Broad evidence supporting this statement
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comes from the multivariate statistical analysis of many
systems where significant highly correlated input variable
covariance rarely appears. Owen (2000) observed that high
dimensional functions appearing in the documented success
stories did not have full d-dimensional complexity.

HDMR discloses the hierarchy of correlations among
input variables. Each of the component functions in HDMR
reveals a unique contribution of the variables separately or
correlatively to influence the output f (x). At each new level
of HDMR, higher-order correlated effects of input variables
are introduced. While there is no interaction between input
variables, only the constant component f0 and the function
terms fi (xi ) will exist in the HDMR model. These compo-
nent functions are thus hierarchically tailored to f (x) over
the entire design Rn . A hierarchy of identified interaction
functions reveals the structure of f (x).

There is a family of HDMRs that have been developed by
the use of different choices of projection operators. Rabitz
and his research group (Rabitz and Alis 1999; Rabitz et al.
1999) illustrated ANOVA-HDMR and cut-HDMR. Wang
et al. (2003) and Li et al. (2006) presented random sampling
HDMR. Mp-cut-HDMRs (Li et al. 2001b; monomial based
preconditioned HDMR) were developed to improve features
of Cut-HDMR. The choice of a particular HDMR is sug-
gested by what is desired to be known about the output and
is also dictated by the amount and type of available informa-
tion. If the additive nature dominates in a problem, a HDMR
or GHDMR (generalized HDMR) can efficiently partition
the multivariate problem into low-dimensional component
functions. When the multiplicative nature is predominant in
a problem, a factorized high dimensional model representa-
tion (FHDMR; Tunga and Demiralp 2005) can be used. If
the problem has a hybrid nature (neither additive nor mul-
tiplicative), HHDMR (Tunga and Demiralp 2006; hybrid
HDMR) has been developed. HDMR applications can be
seen from references (Banerjee and Ierapetritou 2002; Jin
et al. 2004; Kaya et al. 2004; Shorter et al. 1999; Taskin et al.
2002). Although HDMR has demonstrated good properties,
the model at its current stage only offers a check-up table
or need integration, lacks of a method to render a complete
model, and there is no accompanying sampling method to
support the development of HDMR model.

Since the purpose for introducing the HDMR is to model
HEB problems, both cost and accuracy are of concern.
From this perspective, a Cut-HDMR (Li et al. 2001a) is
more attractive than other HDMR variations. Cut-HDMR
expresses f (x) by a superposition of its values on lines,
planes and hyper-planes (called cuts) passing through the
“cut” center x0 which is a point in the input variable space.
The Cut-HDMR expansion is an exact representation of the
output f (x) along the cuts passing through the “cut” center.
The Cut-HDMR exploration of the output surface f (x) may
be global and the value of x0 is irrelevant if the expansion is

taken out to convergence. The component functions of the
Cut-HDMR are listed as follows:

f0 = f (x0) (2)

fi (xi ) = f
(
xi , xi

0

) − f0 (3)

fi j (xi , x j ) = f
(

xi , x j , xij
0

)
− fi (xi ) − f j (x j ) − f0 (4)

fi jk(xi , x j , xk) = f
(

xi , x j , xk, xijk
0

)
− fi j (xi , x j )

− fik(xi , xk) − f jk(x j , xk)

− fi (xi ) − f j (x j ) − fk(xk) − f0 (5)

· · ·

f12...n (x1, ..., xn) = f (x) − f0 −
∑

i

fi (xi )

−
∑

i j

f i j
(
xi , x j

) − ... (6)

Where xi
0, xij

0 and xijk
0 are, respectively, x0 without elements

xi ; xi , x j ; and xi , x j , xk . f (x0) is the value of f (x) at x0;
f (xi , xi

0) is the model output with all variables evaluated
at x0 except for the xi component. It is easy to prove that
f0 = f (x0) is the constant term of the Taylor series (Li
et al. 2001b); the first order function fi (xi ) is the sum of
all the Taylor series terms which only contain variables xi ,
while the second order function fi j (xi , x j ) is the sum of all
the Taylor series terms which only contain variables xi and
x j , and so on. To sum up, each distinct component function
of the Cut-HDMR is composed of an infinite sub-class of
the full multi-dimensional Taylor series, and the sub-classes
do not overlap one another.

The computational cost of generating Cut-HDMR up to
the i−th level, when it is used for interpolation purposes, is
given by Rabitz and Alis (1999)

c =
l∑

i=0

n!
(n − i)!i ! (s − 1)i (7)

Where s is the number of sample points taken along each
x axis. This computational cost can be derived from sum-
ming each term’s computational cost in (1). If convergence
of the Cut-HDMR expansion occurs at L ≤ n, then the sum
above is dominated by the L−th order term. Considering
s ≥ 1, a full space resolution is obtained at the computa-
tional cost of ∼(ns)L /L!, which is approximated from (7).
This result is in strong contrast with the conventional view
of exponential scaling of ∼ sn . It can be seen from (7) that
the higher order terms in the Cut-HDMR demand a polyno-
mially increasing number of sampling points. One approach
to relieve this issue is to represent a high order Cut-HDMR
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component function as a sum of preconditioned low order
Cut-HDMR component functions (Li et al. 2001b).

3.3 Relationship among factors for approximation

In the previous subsections, computer design of experi-
ments and modeling techniques have been reviewed. These
two techniques work together in metamodeling techniques.
The goodness of the generated approximation models is
not only related to sampling points (computer design of
experiments) and the model, but also to the nature of the
underlying problems. This work identifies four basic fea-
tures to capture complexities of an underlying problem,
i.e., dimensionality, nonlinearity, interactions among vari-
ables, and importance of terms, i.e., individual variables or
a subset of interrelated variables. The relationship between
features of the underlying problems and model approx-
imation techniques is depicted in Fig. 4. In Fig. 4, an
underlying function (high fidelity model) is approximated
by a constructed model; both the underlying function and
constructed model include the same input variables; the
goodness of the constructed model fitting the underlying
function is verified and validated by validation criteria. The
complexities of an underlying function are expressed by its
dimensionality, nonlinearity, interaction among variables,
and importance of terms. Factors influencing the model
quality include modeling strategy (sampling method, model
type, model fitting method and sample size), as well as
the nature (the dimensionality, nonlinearity, interaction, and
term importance) of the underlying functions. From this
survey, it is observed that computer design of experiments
and modeling techniques have been widely studied at the
right side of Fig. 4 including sampling methods, models,
model fitting, and sample size reduction. These techniques
have been successfully applied to various disciplines for low
dimensional problems. As the dimensionality of the prob-
lems increases, it is increasingly difficult to construct most

of such models for problems of a large number of vari-
ables. Although high dimensionality is the major problem in
metamodeling, limited publications exist in the literature to
address this issue. High dimensional models therefore need
to be developed. It is observed that there are few papers that
studied the entire structure of the underlying function (the
left side of Fig. 4). We propose the use of dimensionality,
nonlinearity, interaction among variables, and importance
of terms, as four characteristics of an underlying/black-
box function. In order to overcome the high dimensional
issue, high dimensional models need to lighten both sides
of Fig. 4 (i.e. nature of the underlying function and approx-
imation techniques). The models should be adaptive and
can automatically explore and make use of the nature of
the underlying function (dimensionality, interaction, non-
linearity, and importance of terms). These adaptive models
require new methods of computer experimental designs,
which should have good projective and space filling proper-
ties. Generally, there exists a tension between space filling
property and small sample size. Resolution of this ten-
sion should be expected by means of exploring and using
the nature of the underlying function, as well as strategies
such as decomposition, additive modeling, mapping, etc.
The HDMR model is designed for modeling high dimen-
sional problems, which bears great potential for further
development.

4 Optimization strategies as related to HEB problems

Optimization problems with computationally expensive/
black-box models exist commonly in many disciplines.
Optimization processes inherently require iterative eval-
uations of objective functions. Therefore, the cost of
optimization often becomes unacceptable. Especially high
dimensional, computationally-expensive, and black-box
(HEB) problems pose more demanding requirements.
This section reviews current optimization strategies for
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computationally-expensive black-box functions, and non-
gradient optimization methods that are normally developed
for cheap black-box functions. Given the broad scope of
optimization, this review focuses mostly on non-gradient
methods, and selects optimization methods that are consid-
ered inspiring (inevitably with bias) for the development of
new optimization methods for HEB problems.

4.1 Optimization strategies for computationally-expensive
black-box functions

It can be seen from literature that implementation of opti-
mization of computationally expensive black-box functions
often uses a cheap or approximate model as a surrogate of
the expensive model (e.g. Jones et al. 1998; Schonlau et al.
1998). The optimization strategies for computationally-
expensive black-box functions fall into two classes as shown
in Fig. 5: model approximation based techniques, and
coarse-to-fine model based techniques.

Model approximation based optimization techniques uti-
lize a cheap model to approximate an expensive model and
then optimize the cheap model or use information obtained
from the cheap model to guide optimization. This kind of
technique is also termed metamodel-based design optimiza-
tion (MBDO) strategy. There are three different types of
strategies in the literature, as illustrated in Fig. 6 (Wang
and Shan 2007). Most of the MBDO approaches fall into
the first two strategies. The third strategy is rather new and
demonstrates good robustness, efficiency, and effectiveness.
The first strategy, though being the most straightforward one
among the three, can be practical in industry when sam-
ple points are already available and budget or time does
not allow for iterative sampling. When iterations of sam-
pling are allowed, the latter two strategies in general should
lead to a less total number of function evaluations. All of
the MBDO methods, however, are limited by the difficulty

Coarse-to-fine model based 
 optimization strategies  

Model approximation based 
 optimization strategies 

Mapping

ce ffd −=
 

c

e

f

f
r =  

Sequential approach 

Adaptive approach 

Direct sampling approach 

Model fusion 

Fig. 5 Optimization strategies for computationally expensive
problems

of approximating high dimensional problems with a small
number of points.

The coarse-to-fine model based techniques combine the
high accuracy of a fine model (high fidelity model) with low
cost of a coarse model (or low fidelity model). The coarse
model is exploited to obtain the information of optimization
functions including rapid exploration of different starting
points, local minima, sensitivities and other design charac-
teristics within a suitable time frame while the fine model
is used to verify the design obtained by the coarse model
or evaluated in important regions to improve the accuracy.
There are several methods in this technique, as shown in
Fig. 5, such as mapping, difference modeling, ratio model-
ing (Leary et al. 2003) and model fusion (Xiong et al. 2008).
Mapping (Bakr et al. 1999a, b, 1998; Bandler et al. 1994,
1995a, b; Leary et al. 2001) aims to establish a relation-
ship between the input space of the coarse model and that of
the fine model such that the coarse model with the mapped
parameter accurately mirrors the behavior of the fine model.
This mapping approach is reviewed in Section 2.3. Differ-
ence modeling considers differences between two models
d = fe − fc where fe represents the expensive model and
fc the cheap model). Watson and Gupta (1996) modeled
the differences between the two models by a neural net-
work and applied it to the microwave circuit design. Ratio
modeling is to model the ratio of fine and coarse models
(r = f f

fc
where f f is the fine model; fc is the coarse model).

Haftka (1991) calculated the ratio and derivatives at one
point in order to provide a linear approximation to the ratio
at other points in the design space. Nain and Deb (2002)
proposed a concept of combining genetic algorithm with
coarse-to-fine grain modeling. Xiong et al. (2008) proposed
a variable fidelity optimization framework based on model
fusion. The coarse-to-fine model based techniques need a
given (or easy-to-obtain) coarse model. They are suitable
for problems with some prior knowledge.

4.2 Non-gradient optimization algorithms

There are many well known optimization algorithms such
as quasi-Newton methods (Arora et al. 1995), interior point
algorithms (Rao and Mulkay 2000), generic algorithms
(GA; Holland 1975), simulated annealing (SA; Kirkpatrick
et al. 1983), trust region (Celis et al. 1984), and DIRECT
(Jones et al. 1993). There are also various classifica-
tion methods for algorithms. Multiple papers on algorithm
review and comparison have been published. For exam-
ple, Weise (2008) and Arora et al. (1995) reviewed and
classified optimization algorithms. Ratschek and Rokne
(1987) discussed the efficiency of a global optimization
algorithm. Vanderplaats (1999) reviewed structural design
optimization status. One can draw conclusions from these
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surveys: (1) there is no generally applicable optimization
algorithm for all problems; (2) there is no analytical conclu-
sion on which optimization algorithm is the most efficient;
(3) no algorithm is found in open literature that is directly
applicable to HEB problems.

In view of the enormous amount of literature on opti-
mization algorithms, this section aims only to extract some
interesting and promising ideas behind algorithms that may
potentially be integrated with aforementioned various tech-
nologies (e.g., decomposition) to solve HEB problems.
This review is not intended to repeat previous works on
reviewing, classifying, and comparing various optimiza-
tion algorithms. Considering the gradients either usually not
available, or the costs needed to find gradients for black-box
functions falling victim to the “curse,” this paper is lim-
ited to non-gradient, or derivative-free, algorithms and only
presents some of the often-used algorithms in engineering
design.

DIRECT (dividing rectangles): this algorithm was devel-
oped by Jones’s group (1993). It is a modification of the
Lipschitzian approach that eliminates the need to spec-
ify a Lipschitz constant. DIRECT iteratively subdivides
the design space into hyper-rectangles and selects the set
of hyper-cubes that are most likely to produce the lowest
objective function value. Björkman and Holmström (1999)
implemented the DIRECT algorithm in MatlabTM. DIRECT
is found to be more reliable than competing techniques
for an aircraft routing problems (Bartholomew-Biggs et al.
2003) and have attractive results for benchmark problems
(Björkman and Holmström 1999; Jones et al. 1993).
DIRECT meets increasing difficulty with an increasing
number of variables and is normally applied to low dimen-
sional problems. Siah et al. (2004) combined DIRECT with
Kriging model and solved several optimization problems of
three or four variables in the electromagnetic field. Their
approaches fall into the ones as shown in Fig. 6a, b.

Pattern Search: pattern search, originated in 1950s (Box
1957), is a direct search algorithm which searches for a

set of points around the current point, looking for one at
which the value of the objective function is lower than the
value at the current point. The set of points is decided
by a prefixed or random pattern. This approach does not
require gradient information of the objective function and
can solve optimization problems with discontinuous objec-
tive functions, highly nonlinear constraints, and unreliable
derivative information. This algorithm is applied to uncon-
strained, constrained, and black-box function optimization
(Audet and Dennis 2004). Its advantages are being sim-
ple, robust and flexible. But they are easy to trap into local
optima, and the number of evaluations is high. It is suitable
for low-dimensional optimization problems.

Genetic algorithm (GA): Genetic algorithms (Holland
1975; Goldberg 1989) come from the idea of natural selec-
tion. Generic algorithms generate a population of points
at each iteration. The population approaches an optimal
solution and selects the next population by computations
that involve random choices. GA is a robust stochastic
global-optimization algorithm. Since many evaluations are
commonly required, its efficiency is generally low. In
addition, parameters (population size, crossover, mutation
operators, etc.) need tuning for each problem. Yoshimura
and Izui (2004) successfully partitioned large-scale, yet
computationally-inexpensive, problems into sub-problems
and solved the sub-problems by the use of parallel GAs.

Simulated annealing (SA): simulated annealing
(Kirkpatrick et al. 1983) was inspired by the annealing
process in metallurgy. The objective function is analogous
to temperature (energy). In order to get the optimal solu-
tion, the temperature changes from high to low and cooling
should be sufficiently slow. SA suffers from the same
drawbacks as GA in that the convergence is slow. The per-
formance of SA depends on proper initialization of program
parameters used within SA.

Trust region algorithms (Celis et al. 1984) dynamically
control a region in the search space (so-called trust region)
to pursue the optimum, which can be proved for global
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convergence. In MatlabTM optimization toolbox, all the
large-scale algorithms, except for linear programming, are
based on trust-region methods.

Mode-pursuing sampling method (MPS): MPS (Sharif
et al. 2008; Wang et al. 2004) is a recently developed
method, which uses a variation of the objective function
to act as a probability density function (PDF) so that more
points are generated in areas leading to lower objective
function values and fewer points in other areas. It is thus
in essence a discriminative sampling method. The perfor-
mance of MPS on high-dimensional problems is not yet
examined.

Many other metaheuristics non-gradient methods have
been developed such as Ant Colony (Dorigo et al. 1996),
Particle Swarm (Kennedy and Eberhart 1995), Differential
Evolution (Storn and Price 1995), Fictitious Play (Lambert
et al. 2005), and so on. Although each algorithm brings spe-
cial characteristics, there are some commonalities among
the aforementioned optimization algorithms. First, most of
these approaches use a set, or population, of search points
such as in DIRECT, Pattern Search, GA, SA, and MPS.
This will not only help explore the entire search space,
it also makes the algorithm amenable to parallel comput-
ing. Second, the algorithms differentiate search regions. For
example, DIRECT, Pattern Search, and Trust Region meth-
ods directly search for more attractive regions for further
exploration. By using discriminative sampling, MPS inher-
ently focuses on more attractive regions. GA and SA also
indirectly move to more attractive search regions as defined
by the current population. Third, most of these methods
include a mechanism on where and how to sample/generate
a new set of points, or a new population.

5 Challenges and future research

Challenges of HEB problems come from three aspects:
(1) unknown function properties, which almost implies that
sampling or stochastic methods have to be used to explore
the function, (2) high computational expense for function
evaluation, which means that the number of function calls
should be minimized, and (3) based on the above two
challenges the high dimension problem becomes extremely
difficult and prominent due to the potentially exponen-
tially increasing expenses. Seeing from this survey, model
approximation techniques have been successfully applied to
low dimensional expensive black-box problems. In other
words, progresses have been made on the first two chal-
lenges; however, further study is worthy and needed for
high dimensional problems. Currently there are only spo-
radic researches in dealing with aspects of HEB problems;
more work therefore needs to be done. The authors believe
that among current methods, two methods—mapping

and decomposition—are most promising for solving HEB
problems.

In specific, the mapping approach is to transform opti-
mization problems from an original higher-dimensional
space to a new lower-dimensional space while preserving
the optimum of the original function. That is to say, via
optimization on the new function in the lower-dimensional
space, the obtained optimum may be inversely transformed
to the optimum of the original problem. A few of questions
regarding this transformation needs to be addressed: (1) how
to preserve the original problems’ optimum or how to prove
the property of such preservation, and (2) how to define a
reversible transformation and how to guarantee its mapping
uniqueness?

The decomposition methodology has been widely used
for explicit complex functions. It refers to decomposition
methods, decomposed models, adaptive sampling methods,
modeling validation, and optimization algorithms for these
decomposed models.

Following possible research directions are suggested to
stimulate more in-depth discussions.

1. New models for high-dimensional problems

Currently widely used models such as Kriging, RBF, and
polynomials are not ideal for high-dimensional problems.
It is felt that a different model type is needed specifically
for HEB problems. Such a model type may be rooted on
some sound mathematical assumptions about a high dimen-
sional space and exploited to explore natures of underlying
problems.

2. Deeper understanding of a high dimensional space

To develop a model for a high dimensional space, a deeper
understanding of a high dimensional space is felt needed.
It is very difficult to imagine an n > 3 space, given our
limited visualization capability. Such a limit hinders the
development of intuitive sampling approaches, and also hin-
ders our understanding of such a vast space. Although high
dimensionality of problems logically supports that the num-
ber of sampling points can grow exponentially with the
number of input variables, broad evidence from statistics
supports that significant high dimensional variable covari-
ance rarely arises (Li et al. 2001a, b). This indicates that
high dimensional correlation relationships rapidly disappear
under more general physical conditions in high dimen-
sional space. In addition, some researchers believe that most
engineering problems have a limited number of feasible
solutions located at comparatively very small regions in a
high dimensional space. In other words, only very small
regions in a vast space are of interest to us. The problem
is how to validate such a proposition? If this proposition
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is true, how to design sampling and modeling techniques
to take advantage of such a property? Besides the above
mentioned evidence and propositions, are there other prop-
erties and/or knowledge about a high dimensional space?
A more in-depth theoretical study of characteristics of high
dimensional problems can help.

3. Need for new sampling schemes

The cost of modeling high-dimensional problems, in gen-
eral, arises from the increase of dimensionality and the
increase of the number of sample points along each dimen-
sion. Associated with a new model type for high dimen-
sional problems, a new sampling method may be needed.
Such a sampling method should (1) support the particular
model type and modeling method, (2) take advantage of
problem characteristics (e.g. nonlinearity and interaction)
to have some degree of “intelligence,” (3) support adap-
tive sampling and sequential sampling, and (4) be efficient
and effective in capturing the essence of the function—
global trends and local details of interesting areas. Sampling
methods with both good space filling properties (refining
accuracy of interesting areas) and projective properties (cap-
ture the trends of the underlying functions) should work
together with high dimensional models.

4. Decomposition for optimization problems

Decomposition of a high dimensional problem is deemed
an important and necessary step. The issue is how to
decompose a problem according to the inherent relation-
ships among variables and functions, and yet amenable to
modeling, sampling, and optimization. How to integrate
the decomposition with sampling, modeling, and opti-
mization to achieve overall efficiency and effectiveness?
Decomposition-based modeling and/or decomposition-
based optimization strategies with exploring capabilities
need to be developed for high dimensional problems.

6 Conclusion

This survey has reviewed from a variety of disciplines
strategies that can potentially be used to solve high-
dimensional, computationally-expensive, and black-box
(HEB) problems. In closing, some comments are listed as
follows:

• As the use of computer-based simulation and analysis
tools becomes more popular in engineering practice,
HEB problems become more common.

• There are few publications which directly address HEB
problems. Optimization methods for computationally-
expensive black-box functions are limited to lower
dimensional problems.

• Specially designed sampling methods, model types,
and modeling approaches that take advantage of
the natures of underlying functions (dimensionality,
linearity/nonlinearity, interaction, and importance of
terms) are needed for HEB problems.

• Two promising ways—mapping and decomposition—
are recommended for solving HEB problems. Decom-
position-based modeling and decomposition-based
optimization may be necessary.
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