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On the Performance of the 
Pareto Set Pursuing (PSP) 
Method for Mixed-Variable 
Multi-Objective Design 
Optimization 
 
 
Practical design optimization problems require use of computationally expensive “black-
box” functions. The Pareto Set Pursuing Method (PSP for solving multi-objective 
optimization problems with expensive black-box functions was developed originally for 
continuous variables. In this paper, modifications are made to allow solution of problems 
with mixed continuous-discrete variables. A performance comparison strategy for non-
gradient-based multi-objective algorithms is discussed based on algorithm efficiency, 
robustness and closeness to the true Pareto front with a limited number of function 
evaluations. Results using several methods, along with the modified PSP, are given for a 
suite of benchmark problems and two engineering design ones. The modified PSP is 
found to be competitive when the total number of function evaluations is limited, but 
faces an increased computational challenge when the number of design variables 
increases. 

 
 
1 Introduction 

 
Modern design problems often have to make trade-offs 

between conflicting objectives; these problems are known as 
multiobjective optimization (MOO) problems. The methods used 
for solving such MOO problems can be broadly categorized into 
two main classes. The first class of methods involves converting 
the multiple objectives into a single objective by use of implicit or 
explicit weights, preferences, utilities, or targets. As these 
methods require a priori selection of weights, preferences, or 
utilities [1, 2], finding a rigorous method for such a selection is a 
challenging task.  Such a selection might not be able to adequately 
capture the decision makers’ preferences. Also this class of 
methods is not able to find the Pareto points in non-convex 
regions in the performance space [3]. Physical programming and 
its extension to interactive multiobjective design are some more 
recent work in this class of methods [4-7]. 

The second class of methods is based on finding a set of 
discrete points as an approximation of the Pareto frontier. The 
most successful and widely used approaches in this category seem 
to be evolutionary algorithms [8-15]. Evolutionary algorithms 
(EAs) do not use the information about function and slope 
continuity and can be easily applied to optimization problems with 
mixed variables. Since these methods are essentially population 
based, they require evaluation of numerous solutions before 
converging to the best set of solutions. This fact prohibits using 
these methods for multi-objective optimization problems 
involving computationally expensive analysis [16]. A detailed 
survey of MOO methods can be found in Ref. [2]. 

Many MOO problems in design involve expensive analysis 
and simulation processes such as finite element analysis (FEA) 
and computational fluid dynamics (CFD). The increasingly wide 
use of these tools brings new challenges to optimization. FEA and 
CFD simulations involve a large number of simultaneous 
equations and therefore are considered computationally expensive 
[17]. These processes are often treated as “black-box” functions. 
Only inputs and outputs are known for these functions, so 
traditional optimization methods cannot be applied to a black-box 
function. Although computers advance at a very high pace 
nowadays, these expensive processes also become more complex 
for greater accuracy [18].  

In recent methods to solve MOO with black-box functions, 
each objective function is approximated or the Pareto front is 
approximated directly [7, 19-21]. A major issue with this 
approach is that the accuracy of the Pareto frontier obtained is 
dependent on the accuracy of the approximate models. Some 
methods have been proposed to combine EAs with approximation 
techniques so as to reduce the number of function evaluations [22, 
23]. Such algorithms provide cost saving in terms of expensive 
function evaluations but still suffer the difficulty in finding the 
Pareto frontier points near the extreme points, which is inherited 
from EAs.  

A new algorithm known as the Pareto set pursuing method 
(PSP) has been proposed in [17], which was specifically designed 
for expensive black box functions. It is expected that when there is 
no limit on the number of function evaluations, PSP will not be 
able to compete with other algorithms.  This is because that PSP is 
specifically designed for expensive black box functions and 
requires extra computational time in fitting the metamodels. This 
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computational time can easily be justified for expensive functions 
but may not be feasible for cheap multi-objective design 
problems. PSP method has been developed for continuous 
variables and hence will be referred as C-PSP. In this work an 
extension of this algorithm has been developed for solving mixed 
variable multiobjective design problems and will be referred as 
MV-PSP. It is to be noted that MV-PSP includes C-PSP and all 
the advantages of C-PSP are inherited in MV-PSP. Also a 
comprehensive comparison has been carried out between the state-
of-the-art non-gradient based MOO algorithms and the MV-PSP.  
The authors tried to find mature metamodel-based algorithms for 
expensive black-box MOO problems to compare with MV-PSP, 
but our efforts did not avail.  Before introducing the MV-PSP, an 
overview of C-PSP is provided in the next section. The 
modification for handling mixed variables is described in Section 
3. Section 4 describes some of the performance metrics that are 
used to compare different methods. Section 5 introduces a suite of 
benchmark problems and presents the optimization results for 
these problems. Two engineering design examples are presented 
in Section 6 while Section 7 draws conclusions and provides 
future work. 
 
 
2 Overview of Pareto set pursuing method for 
continuous variables (C-PSP) 

 
The basic methodology followed for the C-PSP is based on 

direct sampling in order to approximate the Pareto frontier. The 
basic idea is to start from random samples in performance space 
and then to iteratively draw samples closer to the true Pareto 
frontier. If this sampling trend is continued, we can sample points 
right on or very close to the true Pareto frontier. The steps 
involved in C-PSP are shown in Figure 1. 

 
2.1. Steps of C-PSP algorithm 
 
2.1.1 Step 1. Initial Random Sampling and Expensive 

Function Evaluations. First some initial points are sampled to 
build an approximation model for each objective function. Both 
quadratic polynomial fitting (QPF) and linear radial basis function 
(RBF) are employed in PSP. These two methods are automatically 
alternated during the sampling procedure as described in [17]. For 
both QPF and RBF models, the number of initial random sample 
points is (n+1)(n+2)/2, where n denotes the number of variables. 
This is the minimum number of samples required to build a full 
quadratic approximation model. After random sampling, 
expensive black-box functions are called to evaluate these sample 
points. The number of the so-far evaluated sample points np at the 
end of the first step thus equals to (n+1)(n+2)/2. 

 
2.1.2 Step 2. Fitness Computation and Current Frontier 

Points Identification. The fitness value of a given set of design 
points is defined as [8].  
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Where, i and j are two designs in a given set, iG  denotes the 

fitness value of the ith design; i
skf  is the scaled kth objective 

function value of the ith design, k = 1,…, m; and l is called the 
frontier exponent and is taken as a constant 1. The max operator in 
Eq. (1) is over all other designs ij ≠  in the set and the min is 

over all the objectives.  The objectives i
skf  and j

skf  in Eq. (1) are 
scaled to a range [0, 1]. Using this fitness function the fitness 

value of each evaluated initial sample is calculated; and based on 
this fitness value current non-dominated set of points are 
identified. The mean fitness value of the currently identified 
points is also calculated for checking the convergence criterion. 
These currently identified frontier points are updated as the 
procedure progresses. 

 
2.1.3 Step 3. Objective Functions’ Fitting and Sampling on 

Single Objective Functions. In this step a large number of “cheap” 
points are generated independently from approximation models of 
each objective function individually. First the np evaluated 
function values from Step 1 are used to build the QPF or RBF 
model for the objective function. Both random and discriminative 
sampling, using sampling guidance function, can now be used to 
get the desired large number of “cheap” points. A sampling 
guidance function for the ith objective function can be constructed 

as, )(ˆ xzi = c0 - )(ˆ xfi , c0 ≥ )(ˆ xf , where )(ˆ xzi is the sampling 

guidance function, c0 is a constant and )(ˆ xf is an approximation 
model of the original expensive function. This sampling guidance 
function has the tendency to generate more sample points in the 
region where the value of fi  is minimum [24]. An equal number of 
sample points are drawn independently according to each 
objective function’s sampling guidance function. If the point 
leading to min fi is identified, this point will be at one of the 
vertices of the Pareto frontier in the performance space and is 
usually called an extreme point. This can overcome the difficulties 
of GA-based algorithms in identifying extreme points. 

 
2.1.4 Step 4. Combining the Sample Points From Last Step 

With Current Frontier Points; Frontier Points Identification From 
the Combined Point Set. In this step preparation for sampling new 
frontier points is carried out. First the current frontier points, 
which are the expensive points, are combined with sample points 
from step 3, which are cheap points, and the fitness value is 
recalculated for all the points in the combined set. For the current 
frontier points, their real function values are used in the fitness 
computation and for the sample points drawn from step 3 their 

respective )(ˆ xfi  function values are used instead. Sample points 
drawn from Step 3 enrich the information for the construction of a 
sampling guidance function for the next step, though their 
function values are only a prediction from the approximation 
model. After computing the fitness values for the combined set, 
points having value larger than 1 will be used for sampling in the 
next step. Other points are likely non-frontier points and are 
discarded. 

 
2.1.5 Step 5. Sampling Frontier Points. The frontier points 

obtained in Step 4 are the “best” points among all of the existing 
points in terms of the possibility of becoming Pareto set points. 
For the frontier points obtained in Step 4 whose fitness value is 
larger than or equal to 1, another sampling guidance function is 
defined as ,,,(min(max1[1)(ˆ 2211 Lj
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which has higher fitness value and thus represents our goal of 
sampling towards the Pareto frontier. A sample guided by the 
above function is drawn from the points obtained from Step 4. 
The number of samples drawn depends on the ratio of obtained 
sample points to the number of current frontier points in the last 
iteration. If there is a sample point that has already been evaluated 
then it is discarded to avoid re-evaluation.



 
Figure 1. Flowchart of the C-PSP approach 

 
2.1.6 Step 6. Function Evaluation for New Sample Points. In 

this step, the points in the new sample set obtained from Step 5 
are evaluated by calling expensive black-box functions. 

 
2.1.7 Step 7. Combining New Sample Points with Expensive 

Frontier Points from the Last Iteration and Identification of the 
New Frontier Set. At this step, the newly evaluated sample points 
are combined with previously evaluated expensive frontier points. 
Fitness values of this combined point set are then calculated and 
the frontier points are identified as the final frontier points of this 
iteration. 

 
2.1.8 Step 8. Checking Convergence. If the convergence 

criteria are met, the procedure terminates; otherwise, back to Step 
3. Two convergence criteria are applied here. The first one 
measures the progress of the iteration so that the difference 
between frontier points after two consecutive iterations is 
sufficiently small. The first criterion is met if 95% of the frontier 
points are the same as the previous iteration. The second criterion 
measures the closeness and distribution of frontier points on the 
Pareto frontier. If they are closely distributed then the fitness 
value will be very close to 1. 

The C-PSP has been tested with a limited number of 
functions and has demonstrated high efficiency. It is however 
limited only to continuous variables and its performance needs to 
be benchmarked against other available multiobjective 
optimization methods for practical use. 

 
 

3  Mixed Variable Version of Pareto Set Pursuing 
Method (MV-PSP) 

 
Most of the real world design problems contain variables that 

are discrete or integers. The discrete variables mostly result from 

limited and standardized commercially available raw materials or 
off-the-shelf components, such as the thickness of a structural 
member or the size of a screw.  Other discrete variables include, 
for example, the number of holes in a structure, number of turns in 
a coil, number of teeth in a gear, the type of material, and so on.  
Hence, a practical MOO method should be able to handle mixed 
variables.  

The issue with C-PSP method with discrete variables arises 
in the random sampling stage as the samples generated may not 
belong to the desired set of values.  This work extends C-PSP to 
MV-PSP for MOO problems of expensive black-box functions, 
involving all continuous variables, all discrete variables, or a 
mixture of both continuous and discrete variables. 

In MV-PSP, each design variable can be defined as either 
discrete or continuous. Continuous design variables are specified 
within their upper and lower bounds: 
 u

rrc
l
r xxx ≤≤ ,   (2) 

Whereas discrete design variables are a finite set of values: 
 },...,,{ ,,,, 21 mrDrDrDrD xxxx =  (3) 

Where m is the number of elements within the design 
variable set, nr ,...,2,1=  is the indicator of variable and n is the 
total number of design variables. 

Feasible design space is defined as the set of all design points 
that satisfies the constraints. Obviously the feasible design space 
for continuous variables cannot be enumerated as there exists an 
infinite number of values for each continuous design variable. On 
the other hand, for discrete variables, the feasible design space is a 
finite set and can be enumerated.  For instance, for the discrete 
variables and inequality constraint described below, the squares in 
Figure 2(a) represent the feasible design points and circles are 
points that do not satisfy the inequality constraint. 
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Feasible design space for the cases where both discrete and 
continuous design variables are present cannot be enumerated. 
Assuming the second design variable of the above example is 
considered a continuous variable in the range of [0, 2] and the first 
design variable and the inequality constraint are left unchanged 
from the above example, the design space are the lines in Figure 
2(b) with the lines above the curve become the feasible yet 
discontinuous design space. Given a discrete design space, the 
corresponding performance space and the Pareto frontier are also 
discrete points.  

 
(a) 

 
(b) 

Figure 2. Design space with all discrete variables (a), and 
mixed variables (b). 
 

In C-PSP, the first step is initial sampling and expensive 
function evaluation. In this step the minimum number of points 
necessary to construct a full quadratic metamodel of each 
objective function is (n+1)(n+2)/2. A problem arises with discrete 
variables where random sampling would most likely generate 
points that are not on the set. In order to overcome this problem, 
random integers in the range of each discrete variable's vector 
length (number of elements) are generated and the element 
corresponding to the random integer is picked as a random 
sample.  For example for the following design variable, there exist 
five elements in the set. 
 }2,3,7,5,2,1{},...,,{

521 ,,,, == rDrDrDrD xxxx   (5) 

If we want to randomly pick three of the elements in the set, 
we first need to generate three random index numbers that are 
within the range of 1 and 5 (design variable vector length) and 
then pick elements according to these random indices. For the set 

in Eq. (5), if three indices are generated as 2, 3, and 5, then 
correspondingly x = [2, 5, 32] are chosen as the discrete sample 
points. The sampled points are evaluated using the objective 
black-box functions. Fitness values are computed and the initial 
frontier points are identified as elaborated earlier. 

After the initialization step, C-PSP then model the objective 
functions using the acquired sample points and then drawing a 
large number of "cheap" sample points from the metamodel. 
These points are called "cheap" because they are not evaluated by 
the expensive black-box function and are not computationally 
considered expensive or time-consuming.  Using the same 
technique as described above, one can draw cheap points from the 
feasible design space that contains discrete design variables. 

With some minor modifications, C-PSP is revised to take 
mixed variables for multiobjective optimization problems.  The 
performance of the new MV-PSP is then tested for MOO 
problems with expensive black-box functions. 

 
 

4  Quality Indicators for Performance Comparison 
 
MOO performance measurement is completely different from 

single objective optimization (SOO). Unlike SOO that has a single 
optimal solution, MOO optimum solution is a set of solutions 
which makes it difficult to compare the results of two different 
methods. The quality of the solution obtained depends on a 
number of factors which includes the closeness of the points 
obtained to the Pareto frontier, the number of points obtained, and 
how well the points are distributed on the Pareto frontier. Refs. 
[25-29] gave a few quality metrics that are utilized in this work. 

4.1 Spread. It is desired that the Pareto set be well spread. 
To quantify the spread, Euclidean distance between any two 
neighbor solutions in non-dominated solution set is calculated and 
then the average of these distances is obtained. Then the extreme 
points of the true Pareto frontier are found and Euclidean distance 
between these points and the boundary solutions of the obtained 
Pareto solution is calculated and is called as df and dl . The non-
uniformity in the distribution, Δ, is calculated using the equation 
below [26]. 
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The parameter d  is the average of all distances di , which are 
dis(i,Lj) in crowding distance calculation, i=1,2,…(N-1). With N 
solutions, di’s are consecutive distances. Figure 3 indicates how 
this metric is calculated. A lower value of Δ indicates a better 
spread of Pareto optimal solution. 
 

4.2 Generational Distance. This quality indicator is used for 
measuring distance between the elements in the obtained non-
dominated points and the True Pareto frontier (TPF) (known a 
prior). It is defined as  
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where k is the number of vectors in the set of non-dominated 
solutions found so far and ri is the Euclidean distance (measured 
in the objective space) between each of these solutions and the 
nearest member of the TPF. These distances are shown by solid 
lines between obtained solution and chosen points in Figure 4. A 
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value of GD=0 indicates that all the generated elements are in the 
TPF [27]. 

 
Figure 3. Illustration of variables used in calculating spread 
[26] 
 

4.3 Inverted Generational Distance. This quality indicator 
is for measuring how far the elements are in the TPF from those in 
the obtained set of non-dominated points. 
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where k is the number of vectors in the TPF set and qi is the 
Euclidean distance between each of these vectors and the nearest 
member of the set of the obtained non-dominated points. These 
distances include the solid as well as dotted lines between 
obtained solution and chosen points shown in Figure 4. IGD=0 
indicates that all of the generated elements are in the TPF and all 
the extension of the Pareto frontier are covered. Non-dominated 
sets should be normalized before calculating the distance 
measures [27]. 

It is to be noted that although Eqs. (7) and (8) have the same 
form, GD measures the distances from the obtained frontier to 
TPF, while IGD measures the distance from TPF to the obtained 
frontier.  Assume two obtained frontiers of a given problem: one 
only has two points, and the other has the two points in the first 
frontier and many other non-dominated points.  It is clear that 
from the multi-objective perspective that the second frontier is 
preferable to the first one. However, GD cannot differentiate the 
two frontiers because it only measure the distances from the 
obtained frontier to TPF. Meanwhile IGD can tell that the second 
one is better because the distances are measured from TPF to the 
obtained frontier. 

 
Figure 4. Illustration of Euclidean distance for calculating 
generational distance and inverted generational distance [26] 

 

4.4 Hypervolume. This quality indicator calculates the 
volume, in the objective space, covered by members of the non-
dominated set of solutions. In other words, for each solution i, a 
hypercube vi is constructed such that the solution i and a reference 
point W are its diagonal corners of the hypercube. The reference 
point can be simply constructed by finding a vector of worst 
objective function values. Then union of all such hypercubes are 
found and the hypervolume (HV) is calculated 
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Algorithms that have larger values of HV are more desirable. 
Here also the normalized objective values should be used in 
calculation. This measure does not need TPF and focuses mostly 
on the “goodness” of the solutions rather than spread. 

 
Figure 5. Illustration of calculation of vi [28] 

 
4.5 Generalized Spread. The previously presented metric, 

spread, calculates the distance between two consecutive solutions, 
which only works for 2-objective problems. A generalized metric 
was introduced in [29], which calculates the distance from a point 
to its nearest neighbor from Equation (10a)  
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where PF is the current optimal Pareto frontier, TPF is the 
true Pareto frontier and {e1,…,em} are m extreme solutions in TPF, 
and, 

 
∑
∈

≠∈

=

−=

TPFX

XYPFY

PFXd
TPF

d

YFXFSXd

),(1

,)()(min),( 2

,
 (10b) 

 
4.6 Percentage of Frontier Points. When comparing 

expensive objective functions, it is desirable that the Pareto 
frontier solution converges to the true Pareto frontier with 
minimum number of function evaluations so that we can save 
computational time. The percentage of Pareto frontier points in 
the total number of function evaluation should be maximized for a 
computationally expensive objective function. 
 



Table I. Test bed functions 
Problem n Variable bounds Objective function Characteristics 
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5   Performance Comparison using Benchmark 
Problems 

 
In order to calculate the performance measurements 

described above, it is desirable to have test problems for which the 
TPF is known. There have been numerous studies in defining test 
problems for comparison of multiobjective optimization 
algorithms. We will consider five test problems for our 
comparison, each with different characteristics. These are SCH, 
KUR, FON, ZDT6 & DTLZ1 (See Table I). The comparison of 
the PSP method is carried out with six different EAs, namely 
Abyss [35], CellDE [36], FastPGA [37], NSGAII [26], OMOPSO 
[38] & SPEA2 [39]. In order to compare the multiobjective 
optimization algorithms, each algorithm is allowed to run for the 
test problems for a constant number of function evaluations. The 
quality indicators are calculated for each algorithm run. This 
procedure is repeated for thirty runs and the average and standard 
deviation of the quality indicators are recorded for each algorithm. 
The codes for the different algorithms and calculation of quality 
indicators are available in jmetal [28]. The default values of 
crossover and mutation probabilities are used, which is 0.9 for 
crossover probability and 1/n for mutation probability, where n is 
the number of variables in the test problem. Some of the 
parameters like the initial population size and archive size had to 
be changed in order for the algorithms to work with a maximum 
of 50 function evaluations. For the PSP algorithm the convergence 
criterion had to be bypassed to allow it to run for a constant 
number of function evaluations.  

 
5.1. SCH (n=1). Since SCH is a low dimensional problem, 

each algorithm is allowed to run first for 50 function evaluations 
then for 100 and finally for 200.  Then this process is repeated for 
30 independent runs. Appendix Table 1 shows the average and 
standard deviation of different quality indicators of 30 runs for 
SCH test problem for different algorithms and 50 function 
evaluations. Abyss was not able to produce any Pareto points and 

therefore is not included in the table. Figure 6 shows the Pareto 
points obtained with reference to the true Pareto frontier 
graphically, for 50 function evaluations using results from one of 
the 30 runs. For 50 function evaluations, none of the other 
algorithms apart from PSP was able to produce any Pareto points 
close to the TPF. The points obtained from other algorithms were 
so far apart from TPF that they are not visible in Figure 6. For 200 
function evaluations every algorithm was able to generate Pareto 
points right on TPF but the performance of PSP was much better, 
generating more than 97% Pareto points from the total number of 
function evaluations. 

 
5.2. FON (n=3). Appendix Table 2 summarize the results for 

30 simulations for different algorithms with 100 function 
evaluations.  Figure 7 provides a graphical visualization of the 
Pareto points obtained for 200 function evaluations. As one can 
see from the Table II, PSP outperforms the others with 50 
function evaluations. When the allowed number of function 
evaluations increases, other algorithms gradually catch up, which 
leaves PSP a ranking of 3 and 5 respectively for 100 and 200 
function evaluation cases.  

 
5.3. KUR (n=3). To show the performance of MV-PSP with 

mixed variables, first two variables of the KUR problem were 
discretized with a step size of 0.1. Other evolutionary algorithms 
do not have built in capability to handle mixed variables and so 
for comparisons the decision variables were discretized after 
running the optimization algorithms and function values were 
calculated for the new decision variables. Appendix Table 3 lists 
the results for the KUR test problem for 100 function evaluations, 
for which the graphical representation is shown in Figure 8. The 
performance of PSP in this case is also far better than the other 
evolutionary algorithms. It was seen that PSP generates points 
near all the three segments of the TPF, where many of the other 
algorithms were not able to do so. 
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Figure 6. Pareto frontier of all algorithms on SCH for 50 
function evaluations 
 

 
Figure 7. Pareto frontier of all algorithms on FON for 200 
function evaluations 

 

 
Figure 8. Pareto frontier of all algorithms on KUR for 100 
function evaluations 
 

5.4. ZDT6 (n=10). Since ZDT6 has 10 variables, we use 200, 
500, and 1000 function evaluations as the stopping criteria to 
allow more computation. 

From Figure 9, it is clear that none of the algorithms were 
able to capture the TPF, mostly due to the vast search space 
caused by the high dimension and the limited number of function 
evaluations.  From Table II, PSP ranks 4, 2, 4, respectively for the 
three cases. 

 
5.5. DTLZ1 (n=7). Since this problem has relative high 

number of variables, the algorithms for this problem are also run 
for 200, 500 and 1000 function evaluations.  The test results for 

500 function evaluations are listed in Appendix Table 5. As the 
number of function evaluations increases, each algorithm 
progresses towards the Pareto frontier. PSP ranks number 1 for all 
three cases.  The graphical illustration is in Figure 10. 

 
Figure 9. Pareto frontier of all algorithms on ZDT6 for 200 
function evaluations 
 

 
Figure 10. Pareto frontier of all algorithms on DTLZ1 for 500 
function evaluations 

 
Table II. Ranking of PSP in relation to other six state-of-the-art 
MOO algorithms for the test suite 

Problem 

200 func. 
eval. for 

ZDT6 and 
DTLZ1; 50 
for others 

500 func. 
eval. for 

ZDT6 and 
DTLZ1; 100 

for others 

1000 func. 
eval. for 

ZDT6 and 
DTLZ1; 200 

for others 
SCH (n=1) 1 1 1
FON (n=3) 1 3 5
KUR (n=3) 1 1 1

ZDT6 (n=10) 4 2 4
DTLZ1 (n=7) 1 1 1

 
From the test results in Appendix and the summary in Table 

II, with the limited number of function evaluations (in relation to 
the number of variables), PSP yields overall better solutions than 
other algorithms for the test problem suite, which has a range of 
different characteristics such as segmented frontier, non-convex 
regions, multimodal, and so on. The performance of all algorithms 
deteriorates for high dimensional problems (n=10) in this case, or 
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the total number of function evaluations is too few to yield 
meaningful results. The advantages of PSP on the high 
dimensional problem, ZDT6, are also questionable. PSP, does, 
however outperforms others on DTLZ1, an n=7 problem with 
clear advantages. Depending on the performance space 
characteristics, the number of objective functions, and the number 
of variables, it is, however, difficult to draw a conclusion on with 
how many function evaluations PSP will outperform the others.  It 
is relatively safe to say for problems of lower dimensionality with 
2 to 3 objective functions, PSP is more efficient than other 
algorithms with a few dozens or hundreds of function evaluations. 

 
 

6. Application Examples 
 
To test the performance of PSP on engineering problems 

with mixed variables, two problems are chosen from the literature. 
 
6.1. Welded Beam Design Problem. The welded beam 

design problem is a four variable problem, x = (h, l, t, b), with 
four non-linear constraints. It has two objectives, one is to 
minimize the cost of fabrication and the other is to minimize the 
end deflection of the welded beam [40]: 
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The stress and buckling terms are non-linear function of 
design variables and are given below. 

3

2

22

22

22
22

 )  0282346.01(022.746,64)(

,000,504)(

,
)})(25.012/(707.0{2

))((25.0)5.014(000,6

,
2
000,6

,
))((25.0

)()()(

tbtxP
bt

x

thlhl

thll

hl

thl

lx

c −=

=

++

+++
=′′

=′

++

′′′
+′′+′=

r

r

r

σ

τ

τ

τττττ

 (12) 

 
Though all the variables are dimensions and thus continuous, 

we discretized all the variables with step of 0.1, and applied MV-
PSP to solve the problem. We also solved the problem using other 
evolutionary algorithms for comparison. As these algorithms 
cannot handle discrete variables, we discretized the design 
variables after running the optimization algorithms and used the 
new values to recalculate the objective functions. We performed 
30 independent runs and obtain the average numbers and recorded 
them in Table III. 

Because the true Pareto frontier for the problem is not 
available, we cannot examine the accuracy of this method by 
means of the quality indicator indices that we used for the test 

suite. We can observe the solutions graphically as depicted in 
Figure 11. All the algorithms produced results very close to each 
other with MV-PSP producing slightly worse results than the 
other in terms of optimum design but the advantage of using MV-
PSP is apparent from Table III which shows that it only takes an 
average of 228 function evaluations while other algorithms require 
more than 25000 function evaluations. 

 
Figure 11. Pareto points obtained for the welded beam design 
problem 
 
Table III. Optimization Results for Welded Beam Design 
Problem with 30 independent runs, 1st column specifies 
average while 2nd column specifies standard deviation. 

Algorithm 
Number of 
Function 

Evaluations 

Number of 
Pareto Points 

Percentage of 
Pareto Points 

PSP 227.97 95.5 19.97 2.78 10.68 5.51
Abyss 25018.1 13.28 55.47 6.24 0.22 0.02
CellDE 25000.0 0.00 45.57 0.90 0.18 0.00
FastPGA 25000.0 0.00 49.90 4.40 0.20 0.02
NSGAII 25000.0 0.00 47.90 3.08 0.19 0.01
OMOPSO 25100.0 0.00 47.90 1.97 0.19 0.01
SPEA2 25000.0 0.00 45.50 1.01 0.18 0.00

 
6.2. Spring Design Problem. The second engineering 

problem is the spring design problem consisting of two discrete 
variables and one continuous variable. The Pareto optimal frontier 
has a discrete set of solutions as a result of the discrete nature of 
the problem. The objectives are to minimize the volume of spring 
and minimize the stress developed by applying a load. Variables 
are diameter of the wire (d), diameter of the spring (D) and the 
number of turns (N). Denoting the variable vector x = (x1, x2, x3) = 
(N, d, D), formulation of this problem with two objective and 
eight constraints is as follows [40]: 
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x1 is an integer; x2 is a discrete variable; x3 is a continuous 
variable. 
 
The parameters used are as follows: 
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The 42 discrete values of d are given below: 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0.50.43750.3940.3620.3310.3070.283
0.2630.2440.2250.2070.1920.1770.162
0.1480.1350.120.1050.0920.080.072
0.0630.0540.0470.0410.0350.0320.028
0.0250.0230.020.0180.01730.01620.015
0.0140.01320.01280.01180.01040.00950.009

 

The obtained Pareto frontier is plotted in Figure 12, which 
shows that all algorithms generated solutions quite close to each 
other. Table IV summarizes the average results for 30 runs.  One 
can see that with a modest total number of function evaluations, 
PSP generates a large percentage of points on the Pareto frontier, 
which present many alternative designs.  

 
Figure 12. Pareto points obtained for the spring design 
problem 

 
Table IV. Optimization Results for Spring Design Problem with 
30 independent runs, 1st column specifies average while 2nd 
column specifies standard deviation. 

Algorithm 
Average number 

of Function 
Evaluations 

Average 
number of 

Pareto Points 

Average 
Percentage of 
Pareto Points 

PSP 147.10 43.80 49.13 5.42 35.21 7.16
Abyss 25016.7 12.07 90.30 3.24 0.36 0.01
CellDE 25000.0 0.00 98.37 1.25 0.39 0.00
FastPGA 25000.0 0.00 82.50 3.44 0.33 0.01
NSGAII 25000.0 0.00 78.97 3.69 0.32 0.01
OMOPSO 25100.0 0.00 101.0 0.00 0.40 0.00
SPEA2 25000.0 0.00 94.07 2.05 0.38 0.01

 

7. Conclusions 
 
In this work, we have modified the continuous variable 

version of Pareto set pursuing (PSP) algorithm to handle mixed 
variables. Then the performance of PSP was thoroughly tested 
using a set of quality indicators with a well-selected benchmark 
test suite.  Its performance was compared with the state-of-the-art 
multiobjective optimization algorithms. With limited function 
evaluations, PSP outperforms all the others for lower dimensional 
problems (n<8) with 2-3 objective functions. PSP offers no 
apparent advantage when the dimensionality increases to 10 or 
more.   

In summary, for design problems with expensive function 
evaluations (the time for one function evaluation is at least one 
order of magnitude larger than the time for metamodeling), when 
the dimensionality is low (n≤10) with 2-3 objective functions, PSP 
is recommended for multiobjective optimization with limited 
budget.  Future work will replace the metamodeling technique in 
PSP to accommodate larger dimensions. 
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Appendix: Tabulated Test Results for 30 runs of each algorithm on each test problem 
 
Table 1. SCH test problem for 50 function evaluations, for each major cell the first column indicates the average of thirty runs, the 
second column indicates the standard deviation and the third column indicates the rank 

SCH 50 Spread Generalized Spread Generational Distance Inverted Generational 
Distance Hyper Volume Percentage of 

Pareto Points 

Sum 
of 

ranks 

Over
all 

Rank 
PSP 0.618 0.056 1 0.647 0.055 1 0.0006 0.0005 1 0.0018 0.0005 1 0.8227 0.0009 1 91.1 2.47 1 6 1 

CellDE 1.000 0.000 6 1.000 0.000 6 974.09 1591.8 6 68.729 112.28 6 0.0000 0.0000 6 2.00 0.00 6 36 6 
FastPGA 0.965 0.102 4 0.941 0.172 4 116.86 430.18 5 8.2785 30.338 5 0.0989 0.1723 2 2.27 0.69 4 24 4 
NSGAII 0.931 0.142 3 0.890 0.218 3 20.123 22.742 3 1.5323 1.7348 3 0.0525 0.1606 5 2.47 0.86 3 20 3

OMOPSO 0.903 0.176 2 0.860 0.247 2 12.251 19.887 2 0.9172 1.4073 2 0.0872 0.2026 3 2.80 1.63 2 13 2 

SPEA2 0.993 0.036 5 0.988 0.064 5 46.523 80.173 4 3.3259 5.6456 4 0.0683 0.1788 4 2.07 0.37 5 27 5 

 
Table 2. FON test problem for 100 function evaluations, for each major cell the first column indicates the average of thirty runs, 
the second column indicates the standard deviation and the third column indicates the rank 

FON 100 Spread Generalized Spread Generational Distance Inverted Generational 
Distance Hyper Volume Percentage of 

Pareto Points 

Sum 
of 

ranks 

Final 
Rank 

PSP 0.718 0.141 2 0.729 0.175 3 0.0737 0.0492 3 0.0149 0.0059 4 0.1098 0.0470 4 6.02 2.83 5 17 3 

CellDE 0.765 0.145 6 0.741 0.191 4 0.1547 0.0702 7 0.0216 0.0073 7 0.0336 0.0383 7 3.67 1.69 7 31 6 
Abyss 0.868 0.128 7 0.864 0.173 7 0.1178 0.0751 6 0.0210 0.0088 6 0.0634 0.0680 6 5.28 2.46 6 32 7 

FastPGA 0.754 0.173 5 0.715 0.195 2 0.0772 0.0577 4 0.0149 0.0080 3 0.1004 0.0616 5 7.40 2.79 4 18 4 
NSGAII 0.751 0.160 4 0.746 0.186 5 0.0457 0.0286 2 0.0115 0.0047 2 0.1360 0.0641 2 9.07 1.76 2 15 2 

OMOPSO 0.550 0.155 1 0.574 0.159 1 0.0272 0.0151 1 0.0076 0.0045 1 0.1803 0.0468 1 9.40 1.22 1 5 1 
SPEA2 0.748 0.192 3 0.770 0.210 6 0.0812 0.0741 5 0.0152 0.0080 5 0.1105 0.0799 3 7.67 2.75 3 22 5 

 
Table 3. KUR test problem for 100 function evaluations, for each major cell the first column indicates the average of thirty runs, 
the second column indicates the standard deviation and the third column indicates the rank 

KUR 100 Spread Generalized Spread Generational Distance Inverted Generational 
Distance Hyper Volume Percentage of 

Pareto Points 

Sum 
of 

ranks 

Final 
Rank 

PSP 0.654 0.130 1 0.669 0.143 2 0.0216 0.0151 1 0.0033 0.0013 1 0.6530 0.0813 1 8.02 2.74 1 7 1 
CellDE 0.792 0.144 6 0.829 0.187 6 0.0981 0.0607 6 0.0091 0.0030 6 0.3929 0.1155 6 5.63 1.96 6 36 7 
Abyss 0.710 0.123 2 0.665 0.169 1 0.1309 0.0586 7 0.0093 0.0024 7 0.3881 0.1101 7 4.07 1.20 7 31 5 

FastPGA 0.779 0.141 5 0.789 0.174 5 0.0553 0.0309 4 0.0064 0.0027 4 0.5087 0.1351 3 7.27 1.80 5 26 4 
NSGAII 0.741 0.121 4 0.762 0.151 3 0.0459 0.0272 2 0.0059 0.0022 2 0.5231 0.1193 2 7.50 2.06 2 15 2 

OMOPSO 0.735 0.103 3 0.788 0.132 4 0.0480 0.0362 3 0.0062 0.0024 3 0.5015 0.1173 5 7.40 2.06 4 22 3 
SPEA2 0.796 0.115 7 0.835 0.135 7 0.0647 0.0578 5 0.0065 0.0024 5 0.5024 0.1230 4 7.47 2.19 3 31 5

 
Table 4. ZDT6 test problem for 1000 function evaluations, for each major cell the first column indicates the average of thirty runs, 
the second column indicates the standard deviation and the third column indicates the rank 

ZDT6 
1000 Spread Generalized Spread Generational Distance Inverted Generational 

Distance Hyper Volume Percentage of 
Pareto Points 

Sum 
of 

ranks 

Final 
Rank 

PSP 0.948 0.036 3 0.949 0.044 4 2.5791 0.4629 5 0.2172 0.0067 7 0.0000 0.0000 2 0.81 0.27 2 23 4 
CellDE 0.927 0.033 1 0.921 0.051 1 2.7466 0.7098 7 0.1935 0.0195 4 0.0000 0.0000 2 0.63 0.24 6 21 3 
Abyss 0.965 0.043 6 0.942 0.080 3 2.7421 0.9406 6 0.1540 0.0203 2 0.0000 0.0000 2 0.31 0.24 7 26 6 

FastPGA 0.974 0.033 7 0.970 0.039 7 2.2004 0.5807 2 0.1821 0.0186 3 0.0000 0.0000 2 0.66 0.25 5 26 7 
NSGAII 0.949 0.027 4 0.951 0.038 5 2.2715 0.4127 3 0.1941 0.0093 5 0.0000 0.0000 2 0.76 0.24 4 23 5 

OMOPSO 0.962 0.130 5 0.958 0.229 6 1.2942 0.4523 1 0.0311 0.0489 1 0.0725 0.1207 1 1.29 0.51 1 15 1 
SPEA2 0.942 0.028 2 0.940 0.054 2 2.3790 0.5212 4 0.2018 0.0090 6 0.0000 0.0000 2 0.80 0.28 3 19 2 

 
Table 5. DTLZ1 test problem for 500 function evaluations, for each major cell the first column indicates the average of thirty runs, 
the second column indicates the standard deviation and the third column indicates the rank 

DTLZ1 
500 Spread Generalized Spread Generational Distance Inverted Generational 

Distance Hyper Volume Percentage of 
Pareto Points 

Sum 
of 

ranks 

Final 
Rank 

PSP 0.687 0.067 3 0.647 0.077 2 50.786 6.3621 5 0.5482 0.1233 3 0.0000 0.0000 - 7.64 1.65 1 14 1 

CellDE 0.662 0.111 1 0.593 0.134 1 42.929 10.831 4 0.6194 0.1170 4 0.0000 0.0000 - 3.67 0.98 6 16 2 
Abyss 0.862 0.130 7 0.883 0.184 7 30.240 12.584 2 0.4281 0.1875 1 0.0000 0.0000 - 4.48 1.34 5 22 5 

FastPGA 0.809 0.088 6 0.757 0.123 6 42.668 9.4050 3 0.4735 0.1438 2 0.0000 0.0000 - 5.87 1.54 4 21 4 
NSGAII 0.730 0.102 4 0.685 0.112 4 51.582 7.6057 6 0.6666 0.2400 6 0.0000 0.0000 - 7.11 1.70 2 22 6 

OMOPSO 0.664 0.096 2 0.670 0.086 3 28.876 3.7628 1 0.6657 0.1529 5 0.0000 0.0000 - 2.84 0.70 7 18 3 
SPEA2 0.730 0.073 5 0.689 0.097 5 58.040 9.9989 7 0.7074 0.2274 7 0.0000 0.0000 - 6.19 1.59 3 27 7 

 
 

 


