
 1

Zeeshan Omer Khokhar
MENRVA Research Group

zok@sfu.ca

Hengameh Vahabzadeh
Product Design and Optimization Lab

hva1@sfu.ca

Amirreza Ziai
MENRVA Research Group

amirreza_ziai@sfu.ca

G. Gary Wang1
Product Design and Optimization Lab

gary_wang@sfu.ca

Carlo Menon1
MENRVA Research Group

cmenon@sfu.ca

School of Engineering Science
Simon Fraser University

8888 University Drive
Burnaby, BC, V5A 1S6, Canada

On the Performance of the
Pareto Set Pursuing (PSP)
Method for Mixed-Variable
Multi-Objective Design
Optimization

Practical design optimization problems require use of computationally expensive “black-
box” functions. The Pareto Set Pursuing Method (PSP for solving multi-objective
optimization problems with expensive black-box functions was developed originally for
continuous variables. In this paper, modifications are made to allow solution of problems
with mixed continuous-discrete variables. A performance comparison strategy for non-
gradient-based multi-objective algorithms is discussed based on algorithm efficiency,
robustness and closeness to the true Pareto front with a limited number of function
evaluations. Results using several methods, along with the modified PSP, are given for a
suite of benchmark problems and two engineering design ones. The modified PSP is
found to be competitive when the total number of function evaluations is limited, but
faces an increased computational challenge when the number of design variables
increases.

1 Introduction

Modern design problems often have to make trade-offs

between conflicting objectives; these problems are known as
multiobjective optimization (MOO) problems. The methods used
for solving such MOO problems can be broadly categorized into
two main classes. The first class of methods involves converting
the multiple objectives into a single objective by use of implicit or
explicit weights, preferences, utilities, or targets. As these
methods require a priori selection of weights, preferences, or
utilities [1, 2], finding a rigorous method for such a selection is a
challenging task. Such a selection might not be able to adequately
capture the decision makers’ preferences. Also this class of
methods is not able to find the Pareto points in non-convex
regions in the performance space [3]. Physical programming and
its extension to interactive multiobjective design are some more
recent work in this class of methods [4-7].

The second class of methods is based on finding a set of
discrete points as an approximation of the Pareto frontier. The
most successful and widely used approaches in this category seem
to be evolutionary algorithms [8-15]. Evolutionary algorithms
(EAs) do not use the information about function and slope
continuity and can be easily applied to optimization problems with
mixed variables. Since these methods are essentially population
based, they require evaluation of numerous solutions before
converging to the best set of solutions. This fact prohibits using
these methods for multi-objective optimization problems
involving computationally expensive analysis [16]. A detailed
survey of MOO methods can be found in Ref. [2].

Many MOO problems in design involve expensive analysis
and simulation processes such as finite element analysis (FEA)
and computational fluid dynamics (CFD). The increasingly wide
use of these tools brings new challenges to optimization. FEA and
CFD simulations involve a large number of simultaneous
equations and therefore are considered computationally expensive
[17]. These processes are often treated as “black-box” functions.
Only inputs and outputs are known for these functions, so
traditional optimization methods cannot be applied to a black-box
function. Although computers advance at a very high pace
nowadays, these expensive processes also become more complex
for greater accuracy [18].

In recent methods to solve MOO with black-box functions,
each objective function is approximated or the Pareto front is
approximated directly [7, 19-21]. A major issue with this
approach is that the accuracy of the Pareto frontier obtained is
dependent on the accuracy of the approximate models. Some
methods have been proposed to combine EAs with approximation
techniques so as to reduce the number of function evaluations [22,
23]. Such algorithms provide cost saving in terms of expensive
function evaluations but still suffer the difficulty in finding the
Pareto frontier points near the extreme points, which is inherited
from EAs.

A new algorithm known as the Pareto set pursuing method
(PSP) has been proposed in [17], which was specifically designed
for expensive black box functions. It is expected that when there is
no limit on the number of function evaluations, PSP will not be
able to compete with other algorithms. This is because that PSP is
specifically designed for expensive black box functions and
requires extra computational time in fitting the metamodels. This

1Corresponding authors

 2

computational time can easily be justified for expensive functions
but may not be feasible for cheap multi-objective design
problems. PSP method has been developed for continuous
variables and hence will be referred as C-PSP. In this work an
extension of this algorithm has been developed for solving mixed
variable multiobjective design problems and will be referred as
MV-PSP. It is to be noted that MV-PSP includes C-PSP and all
the advantages of C-PSP are inherited in MV-PSP. Also a
comprehensive comparison has been carried out between the state-
of-the-art non-gradient based MOO algorithms and the MV-PSP.
The authors tried to find mature metamodel-based algorithms for
expensive black-box MOO problems to compare with MV-PSP,
but our efforts did not avail. Before introducing the MV-PSP, an
overview of C-PSP is provided in the next section. The
modification for handling mixed variables is described in Section
3. Section 4 describes some of the performance metrics that are
used to compare different methods. Section 5 introduces a suite of
benchmark problems and presents the optimization results for
these problems. Two engineering design examples are presented
in Section 6 while Section 7 draws conclusions and provides
future work.

2 Overview of Pareto set pursuing method for
continuous variables (C-PSP)

The basic methodology followed for the C-PSP is based on

direct sampling in order to approximate the Pareto frontier. The
basic idea is to start from random samples in performance space
and then to iteratively draw samples closer to the true Pareto
frontier. If this sampling trend is continued, we can sample points
right on or very close to the true Pareto frontier. The steps
involved in C-PSP are shown in Figure 1.

2.1. Steps of C-PSP algorithm

2.1.1 Step 1. Initial Random Sampling and Expensive

Function Evaluations. First some initial points are sampled to
build an approximation model for each objective function. Both
quadratic polynomial fitting (QPF) and linear radial basis function
(RBF) are employed in PSP. These two methods are automatically
alternated during the sampling procedure as described in [17]. For
both QPF and RBF models, the number of initial random sample
points is (n+1)(n+2)/2, where n denotes the number of variables.
This is the minimum number of samples required to build a full
quadratic approximation model. After random sampling,
expensive black-box functions are called to evaluate these sample
points. The number of the so-far evaluated sample points np at the
end of the first step thus equals to (n+1)(n+2)/2.

2.1.2 Step 2. Fitness Computation and Current Frontier

Points Identification. The fitness value of a given set of design
points is defined as [8].

lj
sm

i
sm

j
s

i
s

j
s

i
siji ffffffG))],,,(min(max1[2211 −−−−= ≠ L (1)

Where, i and j are two designs in a given set, iG denotes the

fitness value of the ith design; i
skf is the scaled kth objective

function value of the ith design, k = 1,…, m; and l is called the
frontier exponent and is taken as a constant 1. The max operator in
Eq. (1) is over all other designs ij ≠ in the set and the min is

over all the objectives. The objectives i
skf and j

skf in Eq. (1) are
scaled to a range [0, 1]. Using this fitness function the fitness

value of each evaluated initial sample is calculated; and based on
this fitness value current non-dominated set of points are
identified. The mean fitness value of the currently identified
points is also calculated for checking the convergence criterion.
These currently identified frontier points are updated as the
procedure progresses.

2.1.3 Step 3. Objective Functions’ Fitting and Sampling on

Single Objective Functions. In this step a large number of “cheap”
points are generated independently from approximation models of
each objective function individually. First the np evaluated
function values from Step 1 are used to build the QPF or RBF
model for the objective function. Both random and discriminative
sampling, using sampling guidance function, can now be used to
get the desired large number of “cheap” points. A sampling
guidance function for the ith objective function can be constructed

as,)(ˆ xzi = c0 -)(ˆ xfi , c0 ≥)(ˆ xf , where)(ˆ xzi is the sampling

guidance function, c0 is a constant and)(ˆ xf is an approximation
model of the original expensive function. This sampling guidance
function has the tendency to generate more sample points in the
region where the value of fi is minimum [24]. An equal number of
sample points are drawn independently according to each
objective function’s sampling guidance function. If the point
leading to min fi is identified, this point will be at one of the
vertices of the Pareto frontier in the performance space and is
usually called an extreme point. This can overcome the difficulties
of GA-based algorithms in identifying extreme points.

2.1.4 Step 4. Combining the Sample Points From Last Step

With Current Frontier Points; Frontier Points Identification From
the Combined Point Set. In this step preparation for sampling new
frontier points is carried out. First the current frontier points,
which are the expensive points, are combined with sample points
from step 3, which are cheap points, and the fitness value is
recalculated for all the points in the combined set. For the current
frontier points, their real function values are used in the fitness
computation and for the sample points drawn from step 3 their

respective)(ˆ xfi function values are used instead. Sample points
drawn from Step 3 enrich the information for the construction of a
sampling guidance function for the next step, though their
function values are only a prediction from the approximation
model. After computing the fitness values for the combined set,
points having value larger than 1 will be used for sampling in the
next step. Other points are likely non-frontier points and are
discarded.

2.1.5 Step 5. Sampling Frontier Points. The frontier points

obtained in Step 4 are the “best” points among all of the existing
points in terms of the possibility of becoming Pareto set points.
For the frontier points obtained in Step 4 whose fitness value is
larger than or equal to 1, another sampling guidance function is
defined as ,,,(min(max1[1)(ˆ 2211 Lj

s
i
s

j
s

i
siji ffffGxz −−−=−= ≠

1))] −− lj
sm

i
sm ff . This function samples the points in the region

which has higher fitness value and thus represents our goal of
sampling towards the Pareto frontier. A sample guided by the
above function is drawn from the points obtained from Step 4.
The number of samples drawn depends on the ratio of obtained
sample points to the number of current frontier points in the last
iteration. If there is a sample point that has already been evaluated
then it is discarded to avoid re-evaluation.

Figure 1. Flowchart of the C-PSP approach

2.1.6 Step 6. Function Evaluation for New Sample Points. In

this step, the points in the new sample set obtained from Step 5
are evaluated by calling expensive black-box functions.

2.1.7 Step 7. Combining New Sample Points with Expensive

Frontier Points from the Last Iteration and Identification of the
New Frontier Set. At this step, the newly evaluated sample points
are combined with previously evaluated expensive frontier points.
Fitness values of this combined point set are then calculated and
the frontier points are identified as the final frontier points of this
iteration.

2.1.8 Step 8. Checking Convergence. If the convergence

criteria are met, the procedure terminates; otherwise, back to Step
3. Two convergence criteria are applied here. The first one
measures the progress of the iteration so that the difference
between frontier points after two consecutive iterations is
sufficiently small. The first criterion is met if 95% of the frontier
points are the same as the previous iteration. The second criterion
measures the closeness and distribution of frontier points on the
Pareto frontier. If they are closely distributed then the fitness
value will be very close to 1.

The C-PSP has been tested with a limited number of
functions and has demonstrated high efficiency. It is however
limited only to continuous variables and its performance needs to
be benchmarked against other available multiobjective
optimization methods for practical use.

3 Mixed Variable Version of Pareto Set Pursuing
Method (MV-PSP)

Most of the real world design problems contain variables that

are discrete or integers. The discrete variables mostly result from

limited and standardized commercially available raw materials or
off-the-shelf components, such as the thickness of a structural
member or the size of a screw. Other discrete variables include,
for example, the number of holes in a structure, number of turns in
a coil, number of teeth in a gear, the type of material, and so on.
Hence, a practical MOO method should be able to handle mixed
variables.

The issue with C-PSP method with discrete variables arises
in the random sampling stage as the samples generated may not
belong to the desired set of values. This work extends C-PSP to
MV-PSP for MOO problems of expensive black-box functions,
involving all continuous variables, all discrete variables, or a
mixture of both continuous and discrete variables.

In MV-PSP, each design variable can be defined as either
discrete or continuous. Continuous design variables are specified
within their upper and lower bounds:
 u

rrc
l
r xxx ≤≤ , (2)

Whereas discrete design variables are a finite set of values:
 },...,,{ ,,,, 21 mrDrDrDrD xxxx = (3)

Where m is the number of elements within the design
variable set, nr ,...,2,1= is the indicator of variable and n is the
total number of design variables.

Feasible design space is defined as the set of all design points
that satisfies the constraints. Obviously the feasible design space
for continuous variables cannot be enumerated as there exists an
infinite number of values for each continuous design variable. On
the other hand, for discrete variables, the feasible design space is a
finite set and can be enumerated. For instance, for the discrete
variables and inequality constraint described below, the squares in
Figure 2(a) represent the feasible design points and circles are
points that do not satisfy the inequality constraint.

Yes

Call

No

Call

(Expensive)
Black‐box
Functions

Start

1. Initial Sampling & Function Evaluation

2. Fitness Computation; Current Frontier Points Identification

3. Objective Functions’ Fitting; Sampling on Single Objective Functions

4. Combining the Sample Points from Last Step with Current Frontier Points;
Frontier Points Identification from the Combined Point Set

6. Function Evaluation for New Drawn Sample Points

7. Combining New Drawn Sample Points with Expensive Frontier Points from the Last Iteration;
Identification of the New Frontier Set

Stop

8.Converge

5. Sampling Frontier Points

 4

05.0)(

}2,...,2.0,1.0,0{

}1,...,2.0,1.0,0{

2,
2

1,1

2,

1,

≤+−=

=

=

DD

D

D

xxxg

x

x

 (4)

Feasible design space for the cases where both discrete and
continuous design variables are present cannot be enumerated.
Assuming the second design variable of the above example is
considered a continuous variable in the range of [0, 2] and the first
design variable and the inequality constraint are left unchanged
from the above example, the design space are the lines in Figure
2(b) with the lines above the curve become the feasible yet
discontinuous design space. Given a discrete design space, the
corresponding performance space and the Pareto frontier are also
discrete points.

(a)

(b)

Figure 2. Design space with all discrete variables (a), and
mixed variables (b).

In C-PSP, the first step is initial sampling and expensive
function evaluation. In this step the minimum number of points
necessary to construct a full quadratic metamodel of each
objective function is (n+1)(n+2)/2. A problem arises with discrete
variables where random sampling would most likely generate
points that are not on the set. In order to overcome this problem,
random integers in the range of each discrete variable's vector
length (number of elements) are generated and the element
corresponding to the random integer is picked as a random
sample. For example for the following design variable, there exist
five elements in the set.
 }2,3,7,5,2,1{},...,,{

521 ,,,, == rDrDrDrD xxxx (5)

If we want to randomly pick three of the elements in the set,
we first need to generate three random index numbers that are
within the range of 1 and 5 (design variable vector length) and
then pick elements according to these random indices. For the set

in Eq. (5), if three indices are generated as 2, 3, and 5, then
correspondingly x = [2, 5, 32] are chosen as the discrete sample
points. The sampled points are evaluated using the objective
black-box functions. Fitness values are computed and the initial
frontier points are identified as elaborated earlier.

After the initialization step, C-PSP then model the objective
functions using the acquired sample points and then drawing a
large number of "cheap" sample points from the metamodel.
These points are called "cheap" because they are not evaluated by
the expensive black-box function and are not computationally
considered expensive or time-consuming. Using the same
technique as described above, one can draw cheap points from the
feasible design space that contains discrete design variables.

With some minor modifications, C-PSP is revised to take
mixed variables for multiobjective optimization problems. The
performance of the new MV-PSP is then tested for MOO
problems with expensive black-box functions.

4 Quality Indicators for Performance Comparison

MOO performance measurement is completely different from

single objective optimization (SOO). Unlike SOO that has a single
optimal solution, MOO optimum solution is a set of solutions
which makes it difficult to compare the results of two different
methods. The quality of the solution obtained depends on a
number of factors which includes the closeness of the points
obtained to the Pareto frontier, the number of points obtained, and
how well the points are distributed on the Pareto frontier. Refs.
[25-29] gave a few quality metrics that are utilized in this work.

4.1 Spread. It is desired that the Pareto set be well spread.
To quantify the spread, Euclidean distance between any two
neighbor solutions in non-dominated solution set is calculated and
then the average of these distances is obtained. Then the extreme
points of the true Pareto frontier are found and Euclidean distance
between these points and the boundary solutions of the obtained
Pareto solution is calculated and is called as df and dl . The non-
uniformity in the distribution, Δ, is calculated using the equation
below [26].

dNdd

dddd

lf

N

i
ilf

)1(

1

1

−++

−++
=Δ

∑
−

= (6)

The parameter d is the average of all distances di , which are
dis(i,Lj) in crowding distance calculation, i=1,2,…(N-1). With N
solutions, di’s are consecutive distances. Figure 3 indicates how
this metric is calculated. A lower value of Δ indicates a better
spread of Pareto optimal solution.

4.2 Generational Distance. This quality indicator is used for
measuring distance between the elements in the obtained non-
dominated points and the True Pareto frontier (TPF) (known a
prior). It is defined as

k

r
GD

k

i
i∑

1

2

== (7)

where k is the number of vectors in the set of non-dominated
solutions found so far and ri is the Euclidean distance (measured
in the objective space) between each of these solutions and the
nearest member of the TPF. These distances are shown by solid
lines between obtained solution and chosen points in Figure 4. A

 5

value of GD=0 indicates that all the generated elements are in the
TPF [27].

Figure 3. Illustration of variables used in calculating spread
[26]

4.3 Inverted Generational Distance. This quality indicator
is for measuring how far the elements are in the TPF from those in
the obtained set of non-dominated points.

k

q
IGD

k

i
i∑

1

2

== (8)

where k is the number of vectors in the TPF set and qi is the
Euclidean distance between each of these vectors and the nearest
member of the set of the obtained non-dominated points. These
distances include the solid as well as dotted lines between
obtained solution and chosen points shown in Figure 4. IGD=0
indicates that all of the generated elements are in the TPF and all
the extension of the Pareto frontier are covered. Non-dominated
sets should be normalized before calculating the distance
measures [27].

It is to be noted that although Eqs. (7) and (8) have the same
form, GD measures the distances from the obtained frontier to
TPF, while IGD measures the distance from TPF to the obtained
frontier. Assume two obtained frontiers of a given problem: one
only has two points, and the other has the two points in the first
frontier and many other non-dominated points. It is clear that
from the multi-objective perspective that the second frontier is
preferable to the first one. However, GD cannot differentiate the
two frontiers because it only measure the distances from the
obtained frontier to TPF. Meanwhile IGD can tell that the second
one is better because the distances are measured from TPF to the
obtained frontier.

Figure 4. Illustration of Euclidean distance for calculating
generational distance and inverted generational distance [26]

4.4 Hypervolume. This quality indicator calculates the
volume, in the objective space, covered by members of the non-
dominated set of solutions. In other words, for each solution i, a
hypercube vi is constructed such that the solution i and a reference
point W are its diagonal corners of the hypercube. The reference
point can be simply constructed by finding a vector of worst
objective function values. Then union of all such hypercubes are
found and the hypervolume (HV) is calculated

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

=
U
Q

i
ivvolumeHV

1
 (9)

Algorithms that have larger values of HV are more desirable.
Here also the normalized objective values should be used in
calculation. This measure does not need TPF and focuses mostly
on the “goodness” of the solutions rather than spread.

Figure 5. Illustration of calculation of vi [28]

4.5 Generalized Spread. The previously presented metric,

spread, calculates the distance between two consecutive solutions,
which only works for 2-objective problems. A generalized metric
was introduced in [29], which calculates the distance from a point
to its nearest neighbor from Equation (10a)

∑

∑∑

−

∈=

+

−+
=Δ

m

i
i

TPFX

m

i
i

dTPFPFed

dPFXdPFed
TPFPF

1

1

),(

),(),(
),((10a)

where PF is the current optimal Pareto frontier, TPF is the
true Pareto frontier and {e1,…,em} are m extreme solutions in TPF,
and,

∑
∈

≠∈

=

−=

TPFX

XYPFY

PFXd
TPF

d

YFXFSXd

),(1

,)()(min),(2

,
 (10b)

4.6 Percentage of Frontier Points. When comparing

expensive objective functions, it is desirable that the Pareto
frontier solution converges to the true Pareto frontier with
minimum number of function evaluations so that we can save
computational time. The percentage of Pareto frontier points in
the total number of function evaluation should be maximized for a
computationally expensive objective function.

Table I. Test bed functions
Problem n Variable bounds Objective function Characteristics

SCH [30] 1 [-103 , 103]
2

2

2
1

)2(−=

=

xf

xf
 Convex; simple

FON
[31] 3 [-4,4]

))
3

1(exp(1

))
3

1(exp(1

23

1
1

23

1
1

∑

∑

=

=

+−−=

−−−=

i
i

i
i

xf

xf
Non-convex

KUR
[32] 3

[-5,5]
First two
variables

discretized with
0.1 step size

)sin5(

))2.0exp(10(

1

38.0
2

2
1

21

1
1

∑

∑

=

+
−

=

+=

+−−=

n

i
ii

ii
n

i

xxf

xxf

Multi-modal function in one objective;
pair-wise variable interactions in the

other; Pareto frontier not connected with
both concave and convex regions

ZDT6
[33] 10 [0,1]

25.0
2

2
12

1
6

11

)]1/()[(91)(

]))(/)((1)[(

))6(sin4exp(1

−+=

−=

−−=

∑ = nxxg

xgxfxgf

xxf

n
i i

π
 Unimodal; non-uniformly distributed

objective space

DTLZ1
[34] 7 [0,1]

nix

xxxxg

xgxf

xgxxf

xgxxf

i

n

i
ii

,.....,2,1]1,0[

)))5.0(20cos()5.0((100)(

))(1)(1(
2
1

))(1)(1(
2
1

))(1(
2
1

3

2
3

13

212

211

=∈

−−−+=

+−=

+−=

+=

∑
=

π

Hyperplane Pareto frontier with many

local Pareto frontiers due to the constraint

5 Performance Comparison using Benchmark
Problems

In order to calculate the performance measurements

described above, it is desirable to have test problems for which the
TPF is known. There have been numerous studies in defining test
problems for comparison of multiobjective optimization
algorithms. We will consider five test problems for our
comparison, each with different characteristics. These are SCH,
KUR, FON, ZDT6 & DTLZ1 (See Table I). The comparison of
the PSP method is carried out with six different EAs, namely
Abyss [35], CellDE [36], FastPGA [37], NSGAII [26], OMOPSO
[38] & SPEA2 [39]. In order to compare the multiobjective
optimization algorithms, each algorithm is allowed to run for the
test problems for a constant number of function evaluations. The
quality indicators are calculated for each algorithm run. This
procedure is repeated for thirty runs and the average and standard
deviation of the quality indicators are recorded for each algorithm.
The codes for the different algorithms and calculation of quality
indicators are available in jmetal [28]. The default values of
crossover and mutation probabilities are used, which is 0.9 for
crossover probability and 1/n for mutation probability, where n is
the number of variables in the test problem. Some of the
parameters like the initial population size and archive size had to
be changed in order for the algorithms to work with a maximum
of 50 function evaluations. For the PSP algorithm the convergence
criterion had to be bypassed to allow it to run for a constant
number of function evaluations.

5.1. SCH (n=1). Since SCH is a low dimensional problem,

each algorithm is allowed to run first for 50 function evaluations
then for 100 and finally for 200. Then this process is repeated for
30 independent runs. Appendix Table 1 shows the average and
standard deviation of different quality indicators of 30 runs for
SCH test problem for different algorithms and 50 function
evaluations. Abyss was not able to produce any Pareto points and

therefore is not included in the table. Figure 6 shows the Pareto
points obtained with reference to the true Pareto frontier
graphically, for 50 function evaluations using results from one of
the 30 runs. For 50 function evaluations, none of the other
algorithms apart from PSP was able to produce any Pareto points
close to the TPF. The points obtained from other algorithms were
so far apart from TPF that they are not visible in Figure 6. For 200
function evaluations every algorithm was able to generate Pareto
points right on TPF but the performance of PSP was much better,
generating more than 97% Pareto points from the total number of
function evaluations.

5.2. FON (n=3). Appendix Table 2 summarize the results for

30 simulations for different algorithms with 100 function
evaluations. Figure 7 provides a graphical visualization of the
Pareto points obtained for 200 function evaluations. As one can
see from the Table II, PSP outperforms the others with 50
function evaluations. When the allowed number of function
evaluations increases, other algorithms gradually catch up, which
leaves PSP a ranking of 3 and 5 respectively for 100 and 200
function evaluation cases.

5.3. KUR (n=3). To show the performance of MV-PSP with

mixed variables, first two variables of the KUR problem were
discretized with a step size of 0.1. Other evolutionary algorithms
do not have built in capability to handle mixed variables and so
for comparisons the decision variables were discretized after
running the optimization algorithms and function values were
calculated for the new decision variables. Appendix Table 3 lists
the results for the KUR test problem for 100 function evaluations,
for which the graphical representation is shown in Figure 8. The
performance of PSP in this case is also far better than the other
evolutionary algorithms. It was seen that PSP generates points
near all the three segments of the TPF, where many of the other
algorithms were not able to do so.

 7

Figure 6. Pareto frontier of all algorithms on SCH for 50
function evaluations

Figure 7. Pareto frontier of all algorithms on FON for 200
function evaluations

Figure 8. Pareto frontier of all algorithms on KUR for 100
function evaluations

5.4. ZDT6 (n=10). Since ZDT6 has 10 variables, we use 200,
500, and 1000 function evaluations as the stopping criteria to
allow more computation.

From Figure 9, it is clear that none of the algorithms were
able to capture the TPF, mostly due to the vast search space
caused by the high dimension and the limited number of function
evaluations. From Table II, PSP ranks 4, 2, 4, respectively for the
three cases.

5.5. DTLZ1 (n=7). Since this problem has relative high

number of variables, the algorithms for this problem are also run
for 200, 500 and 1000 function evaluations. The test results for

500 function evaluations are listed in Appendix Table 5. As the
number of function evaluations increases, each algorithm
progresses towards the Pareto frontier. PSP ranks number 1 for all
three cases. The graphical illustration is in Figure 10.

Figure 9. Pareto frontier of all algorithms on ZDT6 for 200
function evaluations

Figure 10. Pareto frontier of all algorithms on DTLZ1 for 500
function evaluations

Table II. Ranking of PSP in relation to other six state-of-the-art
MOO algorithms for the test suite

Problem

200 func.
eval. for

ZDT6 and
DTLZ1; 50
for others

500 func.
eval. for

ZDT6 and
DTLZ1; 100

for others

1000 func.
eval. for

ZDT6 and
DTLZ1; 200

for others
SCH (n=1) 1 1 1
FON (n=3) 1 3 5
KUR (n=3) 1 1 1

ZDT6 (n=10) 4 2 4
DTLZ1 (n=7) 1 1 1

From the test results in Appendix and the summary in Table

II, with the limited number of function evaluations (in relation to
the number of variables), PSP yields overall better solutions than
other algorithms for the test problem suite, which has a range of
different characteristics such as segmented frontier, non-convex
regions, multimodal, and so on. The performance of all algorithms
deteriorates for high dimensional problems (n=10) in this case, or

 8

the total number of function evaluations is too few to yield
meaningful results. The advantages of PSP on the high
dimensional problem, ZDT6, are also questionable. PSP, does,
however outperforms others on DTLZ1, an n=7 problem with
clear advantages. Depending on the performance space
characteristics, the number of objective functions, and the number
of variables, it is, however, difficult to draw a conclusion on with
how many function evaluations PSP will outperform the others. It
is relatively safe to say for problems of lower dimensionality with
2 to 3 objective functions, PSP is more efficient than other
algorithms with a few dozens or hundreds of function evaluations.

6. Application Examples

To test the performance of PSP on engineering problems

with mixed variables, two problems are chosen from the literature.

6.1. Welded Beam Design Problem. The welded beam

design problem is a four variable problem, x = (h, l, t, b), with
four non-linear constraints. It has two objectives, one is to
minimize the cost of fabrication and the other is to minimize the
end deflection of the welded beam [40]:

0.10,1.0
0.5,125.0

0000,6)()(
0)(

0)(000,30)(
0)(600,13)(Subject to

,1952.2)(Minimize

),14(04811.0 10471.1)(Minimize

4

3

2

1

32

2
1

≤≤
≤≤

≥−=

≥−=
≥−=
≥−=

=

++=

tl
bh

xPxg
hbxg

xxg
xxg

bt
xf

ltblhxf

c
rr

r

rr

rr

r

r

σ
τ

 (11)

The stress and buckling terms are non-linear function of
design variables and are given below.

3

2

22

22

22
22

) 0282346.01(022.746,64)(

,000,504)(

,
)})(25.012/(707.0{2

))((25.0)5.014(000,6

,
2
000,6

,
))((25.0

)()()(

tbtxP
bt

x

thlhl

thll

hl

thl

lx

c −=

=

++

+++
=′′

=′

++

′′′
+′′+′=

r

r

r

σ

τ

τ

τττττ

 (12)

Though all the variables are dimensions and thus continuous,

we discretized all the variables with step of 0.1, and applied MV-
PSP to solve the problem. We also solved the problem using other
evolutionary algorithms for comparison. As these algorithms
cannot handle discrete variables, we discretized the design
variables after running the optimization algorithms and used the
new values to recalculate the objective functions. We performed
30 independent runs and obtain the average numbers and recorded
them in Table III.

Because the true Pareto frontier for the problem is not
available, we cannot examine the accuracy of this method by
means of the quality indicator indices that we used for the test

suite. We can observe the solutions graphically as depicted in
Figure 11. All the algorithms produced results very close to each
other with MV-PSP producing slightly worse results than the
other in terms of optimum design but the advantage of using MV-
PSP is apparent from Table III which shows that it only takes an
average of 228 function evaluations while other algorithms require
more than 25000 function evaluations.

Figure 11. Pareto points obtained for the welded beam design
problem

Table III. Optimization Results for Welded Beam Design
Problem with 30 independent runs, 1st column specifies
average while 2nd column specifies standard deviation.

Algorithm
Number of
Function

Evaluations

Number of
Pareto Points

Percentage of
Pareto Points

PSP 227.97 95.5 19.97 2.78 10.68 5.51
Abyss 25018.1 13.28 55.47 6.24 0.22 0.02
CellDE 25000.0 0.00 45.57 0.90 0.18 0.00
FastPGA 25000.0 0.00 49.90 4.40 0.20 0.02
NSGAII 25000.0 0.00 47.90 3.08 0.19 0.01
OMOPSO 25100.0 0.00 47.90 1.97 0.19 0.01
SPEA2 25000.0 0.00 45.50 1.01 0.18 0.00

6.2. Spring Design Problem. The second engineering

problem is the spring design problem consisting of two discrete
variables and one continuous variable. The Pareto optimal frontier
has a discrete set of solutions as a result of the discrete nature of
the problem. The objectives are to minimize the volume of spring
and minimize the stress developed by applying a load. Variables
are diameter of the wire (d), diameter of the spring (D) and the
number of turns (N). Denoting the variable vector x = (x1, x2, x3) =
(N, d, D), formulation of this problem with two objective and
eight constraints is as follows [40]:

,0)(

,0)(
,03)(

,0)()(
,0)(

,0)2(05.1)(Subject to

,
8

)(Minimize

),2(25.0)(Minimize

max
6

5

4

32max3

min22

1
max

max1

2
3

3max
2

13
2
2

2
1

≥−
−

=

≥−=
≥−=

≥+−=
≥−=

≥+−−=

=

+=

w

ppm

k
PP

xg

xg
Cxg

xxDxg
dxxg

x
k

P
lxg

x

xKP
xf

xxxxf

δ

δδ

π

π

r

r

r

r

r

r

r

r

 (13)

 9

0)2(25.0)(

,0
8

)(g

13
2
2

2
max8

3
2

3max
7

≥+−=

≥−=

xxxVxg

x

xKP
Sx

π

π
r

r

x1 is an integer; x2 is a discrete variable; x3 is a continuous
variable.

The parameters used are as follows:

./ in, 14 ,in 30

,lb/in 000,500,11 in, 2.0 ksi, 189

in, 6 in, 25.1 lb, 000,1 in, 3

lb, 300 , ,
8

 ,
615.0

44
14

23max
3

max

2
min

wmaxmax

p3
31

4
2

3

2

xxClV

GdS

PD

P
k
P

xx

Gx
k

x
x

C
CK

pm

===

===

====

===+
−
−

=

δδ

δ

The 42 discrete values of d are given below:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0.50.43750.3940.3620.3310.3070.283
0.2630.2440.2250.2070.1920.1770.162
0.1480.1350.120.1050.0920.080.072
0.0630.0540.0470.0410.0350.0320.028
0.0250.0230.020.0180.01730.01620.015
0.0140.01320.01280.01180.01040.00950.009

The obtained Pareto frontier is plotted in Figure 12, which
shows that all algorithms generated solutions quite close to each
other. Table IV summarizes the average results for 30 runs. One
can see that with a modest total number of function evaluations,
PSP generates a large percentage of points on the Pareto frontier,
which present many alternative designs.

Figure 12. Pareto points obtained for the spring design
problem

Table IV. Optimization Results for Spring Design Problem with
30 independent runs, 1st column specifies average while 2nd
column specifies standard deviation.

Algorithm
Average number

of Function
Evaluations

Average
number of

Pareto Points

Average
Percentage of
Pareto Points

PSP 147.10 43.80 49.13 5.42 35.21 7.16
Abyss 25016.7 12.07 90.30 3.24 0.36 0.01
CellDE 25000.0 0.00 98.37 1.25 0.39 0.00
FastPGA 25000.0 0.00 82.50 3.44 0.33 0.01
NSGAII 25000.0 0.00 78.97 3.69 0.32 0.01
OMOPSO 25100.0 0.00 101.0 0.00 0.40 0.00
SPEA2 25000.0 0.00 94.07 2.05 0.38 0.01

7. Conclusions

In this work, we have modified the continuous variable

version of Pareto set pursuing (PSP) algorithm to handle mixed
variables. Then the performance of PSP was thoroughly tested
using a set of quality indicators with a well-selected benchmark
test suite. Its performance was compared with the state-of-the-art
multiobjective optimization algorithms. With limited function
evaluations, PSP outperforms all the others for lower dimensional
problems (n<8) with 2-3 objective functions. PSP offers no
apparent advantage when the dimensionality increases to 10 or
more.

In summary, for design problems with expensive function
evaluations (the time for one function evaluation is at least one
order of magnitude larger than the time for metamodeling), when
the dimensionality is low (n≤10) with 2-3 objective functions, PSP
is recommended for multiobjective optimization with limited
budget. Future work will replace the metamodeling technique in
PSP to accommodate larger dimensions.

8. Acknowledgements

This work was financially supported by the Natural Science
and Engineering Research Council (NSERC) of Canada.

9. References

[1] Keeney, R. L. and Raifa, H., 1976, Decisions with multiple
objective: preferences and value trade-off, John Wiley and Sons,
New York.
[2] Marler, R. T. and Arora, J. S., 2004, “Survey of multi-
objective optimization methods for engineering,” Structural and
Multidisciplinary Optimization, 26, pp. 369-395.
[3] Chen, W., Wiecek, M. M., and Zhang, J., 1999, “Quality
utility -- a compromise programming approach to robust design,”
ASME Transactions, Journal of Mechanical Design, 121, pp. 179-
187.
[4] Messac, A., 1996, “Physical programming: effective
optimization for computational design,” AIAA Journal, 34(1), pp.
149-158.
[5] Tappeta, R. V. and Renaud, J. E., 1999, “Interactive
multiobjective optimization procedure,” AIAA Journal, 37(7), pp.
881-889.
[6] Tappeta, R. V., Renaud, J. E., Messac, A., and Sundararaj,
G., 2000, “Interactive physical programming: tradeoff analysis
and decision making in multicriteria optimization,” AIAA Journal,
38(5), pp. 917-926.
[7] Tappeta, R. V., and Renaud, J. E., 2001, “Interactive
Multiobjective Optimization Design Strategy for Decision Based
Design,” ASME Transactions, Journal of Mechanical Design,
123, pp. 205-215.
[8] Schaumann, E. J., Balling, R. J., and Day, K., 1998,
“Genetic algorithms with multiple objectives,” 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, MO, AIAA Vol. 3, Sept. 2-
4, pp. 2114-2123, Paper No. AIAA-98-4974.
[9] Deb, K., 1999, “Evolutionary algorithms for multi-criterion
optimization in engineering design,” Proceedings of Evolutionary
Algorithms in Engineering & Computer Science, Eurogen-99.
[10] Deb, K., Mohan, M. and Mishra, S., 2003, A fast multi-
objective evolutionary algorithm for finding well-spread pareto-
optimal solutions, Report No. 2003002, Indian Institute of
Technology Kanpur, Kanpur.

 10

[11] Srinivas, N. and Deb, K., 1995, “Multiobjective
optimization using nondominated sorting in genetic algorithms,”
Journal of Evolutionary Computation, 2(3), pp. 221-248.
[12] Nain, P. K. S. and Deb, K., 2002, A computationally
effective multi-objective search and optimization technique using
coarse-to-fine grain modeling, Report No. 2002005, Indian
Institute of Technology Kanpur, Kanpur.
[13] Luh, G. C., Chueh, C. H. and Liu, W. W., 2003, “MOIA:
multi-objective immune algorithm,” Journal of Engineering
Optimization, 35(2), pp. 143-164.
[14] Deb, K., and Jain, S., 2003, “Multi-speed gearbox design
using multi-objective evolutionary algorithms,” ASME
Transactions, Journal of Mechanical Design, 125, pp. 609-619.
[15] Saitou, K., and Cetin, O. L., 2004, “Decomposition-based
assembly synthesis for structural modularity,” ASME
Transactions, Journal of Mechanical Design, 126, pp. 234-243.
[16] Isaacs, A., Ray, T., and Smith, W., 2009, “Multi-objective
design optimization using multiple adaptive spatially distributed
surrogates,” International Journal of Product Development,
9(1/2/3), pp. 188-217.
[17] Shan, S., and Wang, G. G., 2005, “An efficient pareto set
identification approach for multi-objective optimization on black-
box functions,” ASME Transactions, Journal of Mechanical
Design, 127(5), pp. 866-874.
[18] Duan, X., Wang, G. G., Kang, K., Niu, Q., Naterer, G.,
Peng, Q., 2009, “Performance study of mode-pursuing sampling
method,” Journal of Engineering Optimization, 41(1), pp. 1-21.
[19] Wilson, B., Cappelleri, D. J., Simpson, T. W. and Frecker,
M. I., 2001, “Efficient pareto frontier exploration using surrogate
approximations,” Optimization and Engineering, 2, pp. 31-50.
[20] Li, Y., Fadel, G. M. and Wiecek, M. M., 1998,
“Approximating pareto curves using the hyper-ellipse,” 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, Paper No. AIAA-98-4961.
[21] Yang, B. S., Yeun, Y. S., and Ruy, W. S., 2003, “Managing
approximation models in multiobjective optimization,” Structural
and Multidisciplinary Optimization, 24, pp. 141-156.
[22] Li, M., Li, G. and Azarm, S., 2008, “A kriging matamodel
assisted multi-objective genetic algorithm for design
optimization,” ASME Transactions, Journal of Mechanical
Design, 130(3), pp. 031401.
[23] Karakasis, M. K. and Giannakoglou, K. C., 2005,
“Metamodel assisted multi-objective evolutionary optimization,”
ECCOMAS Thematic Conference in Munich, Sep. 12-14, 2005.
[24] Wang, L., Shan, S., and Wang, G. G., 2004, “Mode-
pursuing sampling method for global optimization on expensive
black-box functions,” Journal of Engineering Optimization, 36(4),
pp. 419-438.
[25] Wu, J., and Azarm, S., 2001, “Metrics for Quality
Assessment of a Multiobjective Design Optimization Solution
Set,” ASME Transactions, Journal of Mechanical Design, Vol.
123, pp. 18--25, 2001.
[26] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002, “A
fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, 6: 183-197.
[27] Hansen, S. R., and Vanderplaats, G. N., 1990,
“Approximation method for configuration optimization of
trusses,” AIAA Journal, 28, pp. 161-168.

[28] Durillo, J. J., Nebro, A. J., Luna, F., Dorronsoro B., Alba,
E., 2006, “{jMetal}: A Java Framework for Developing Multi-
Objective Optimization Metaheuristics,” Departamento de
Lenguajesy Ciencias dela Computaci'on, University of Malaga,
E.T.S.I. Informatica, Campus de Teatinos, ITI-2006-10,
http://mallba10.lcc.uma.es/wiki/index.php/Tools, last access: Sept
17, 2009.
[29] Zhou A., Jin Y., Zhang, Q., Sendhof, B. and Tsang E.,
2006, “Combining model-based and genetic-based offspring
generation for multi-objective optimization using a convergence
criterion,” 2006 IEEE Congress on Evolutionary Computation,
pp. 3234-3241.
[30] Schaffer, J. D., 1985, “Multiple objective optimization with
vector evaluated genetic algorithms,” Proceedings of the First
International Conference on Genetic Algorithms and Their
Applications: July 24-26, 1985 at the Carnegie-Mellon University,
Pittsburgh, pp. 93–100.
[31] Fonseca, C. M. and Fleming, P. J., 1998, “Multiobjective
optimization and multiple constraint handling with evolutionary
algorithms. II. Application example,” IEEE Transaction on
Systems, Man and Cybernetics, Part A: Systems and Humans, 28,
pp. 38–47.
[32] Kursawe, F., 1991, “A variant of evolution strategies for
vector optimization,” Parallel Problem Solving from Nature, 1st
Workshop, PPSN I, Vol. 496 of Lecture Notes in Computer
Science.
[33] Zitzler, E., Deb, K. and Thiele, L., 2000, “Comparison of
multiobjective evolutionary algorithms: Empirical results,”
Evolutionary Computation, 8(2), pp. 173–195.
[34] Deb, K., Thiele, L., Laumanns, M., Zitzler, E., 2002,
“Scalable multi-objective optimization test problems,” Congress
on Evolutionary Computation, 1, pp. 825-830.
[35] Nebro, A. J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.
J. and Beham, A., 2008, “AbYSS: adapting scatter search to
multiobjective optimization,” IEEE Transactions on Evolutionary
Computation, 12, pp. 439-457.
[36] Durillo, J. J., Nebro, A. J., Luna, F., Alba, E., 2008,
“Solving three-objective optimization problems using a new
hybrid cellular genetic algorithm,” Proceedings of the 10th
International Conference on Parallel Problem Solving from
Nature, September 13-17, Technischie Universitat Dortmund,
Germany, pp. 661-670.
[37] Eskandari, H. and Geiger, C. D., 2008, “A fast pareto
genetic algorithm approach for solving expensive multiobjective
optimization problems,” Journal of Heuristics, 14, pp. 203-241.
[38] Reyes, M., Coello, C.A., 2005, “Improving pso-based
multi-objective optimization using crowding, mutation and
epsilon-dominance,” Proceedings of Third International
Conference on Evolutionary Multi-Criterion Optimization,
Guanajuato, Mexico, March 9-11, pp. 505-519.
[39] Zitzler, E., Laumanns, M. and Thiele, L., 2002, “SPEA2:
improving the strength pareto evolutionary algorithm for
multiobjective optimization,” Proceedings of the Conference on
Evolutionary Methods for Design Optimization and Control,
CIMNE Barcelona, Spain, pp. 95-100.
[40] Deb, K., Sundar, J., Rao, U. B. and Chaudhuri, S., 2006,
“Reference point based multi-objective optimization using
evolutionary algorithms,” International Journal of Computational
Intelligence Research, 2(3): 273-286.

 11

Appendix: Tabulated Test Results for 30 runs of each algorithm on each test problem

Table 1. SCH test problem for 50 function evaluations, for each major cell the first column indicates the average of thirty runs, the
second column indicates the standard deviation and the third column indicates the rank

SCH 50 Spread Generalized Spread Generational Distance Inverted Generational
Distance Hyper Volume Percentage of

Pareto Points

Sum
of

ranks

Over
all

Rank
PSP 0.618 0.056 1 0.647 0.055 1 0.0006 0.0005 1 0.0018 0.0005 1 0.8227 0.0009 1 91.1 2.47 1 6 1

CellDE 1.000 0.000 6 1.000 0.000 6 974.09 1591.8 6 68.729 112.28 6 0.0000 0.0000 6 2.00 0.00 6 36 6
FastPGA 0.965 0.102 4 0.941 0.172 4 116.86 430.18 5 8.2785 30.338 5 0.0989 0.1723 2 2.27 0.69 4 24 4
NSGAII 0.931 0.142 3 0.890 0.218 3 20.123 22.742 3 1.5323 1.7348 3 0.0525 0.1606 5 2.47 0.86 3 20 3

OMOPSO 0.903 0.176 2 0.860 0.247 2 12.251 19.887 2 0.9172 1.4073 2 0.0872 0.2026 3 2.80 1.63 2 13 2

SPEA2 0.993 0.036 5 0.988 0.064 5 46.523 80.173 4 3.3259 5.6456 4 0.0683 0.1788 4 2.07 0.37 5 27 5

Table 2. FON test problem for 100 function evaluations, for each major cell the first column indicates the average of thirty runs,
the second column indicates the standard deviation and the third column indicates the rank

FON 100 Spread Generalized Spread Generational Distance Inverted Generational
Distance Hyper Volume Percentage of

Pareto Points

Sum
of

ranks

Final
Rank

PSP 0.718 0.141 2 0.729 0.175 3 0.0737 0.0492 3 0.0149 0.0059 4 0.1098 0.0470 4 6.02 2.83 5 17 3

CellDE 0.765 0.145 6 0.741 0.191 4 0.1547 0.0702 7 0.0216 0.0073 7 0.0336 0.0383 7 3.67 1.69 7 31 6
Abyss 0.868 0.128 7 0.864 0.173 7 0.1178 0.0751 6 0.0210 0.0088 6 0.0634 0.0680 6 5.28 2.46 6 32 7

FastPGA 0.754 0.173 5 0.715 0.195 2 0.0772 0.0577 4 0.0149 0.0080 3 0.1004 0.0616 5 7.40 2.79 4 18 4
NSGAII 0.751 0.160 4 0.746 0.186 5 0.0457 0.0286 2 0.0115 0.0047 2 0.1360 0.0641 2 9.07 1.76 2 15 2

OMOPSO 0.550 0.155 1 0.574 0.159 1 0.0272 0.0151 1 0.0076 0.0045 1 0.1803 0.0468 1 9.40 1.22 1 5 1
SPEA2 0.748 0.192 3 0.770 0.210 6 0.0812 0.0741 5 0.0152 0.0080 5 0.1105 0.0799 3 7.67 2.75 3 22 5

Table 3. KUR test problem for 100 function evaluations, for each major cell the first column indicates the average of thirty runs,
the second column indicates the standard deviation and the third column indicates the rank

KUR 100 Spread Generalized Spread Generational Distance Inverted Generational
Distance Hyper Volume Percentage of

Pareto Points

Sum
of

ranks

Final
Rank

PSP 0.654 0.130 1 0.669 0.143 2 0.0216 0.0151 1 0.0033 0.0013 1 0.6530 0.0813 1 8.02 2.74 1 7 1
CellDE 0.792 0.144 6 0.829 0.187 6 0.0981 0.0607 6 0.0091 0.0030 6 0.3929 0.1155 6 5.63 1.96 6 36 7
Abyss 0.710 0.123 2 0.665 0.169 1 0.1309 0.0586 7 0.0093 0.0024 7 0.3881 0.1101 7 4.07 1.20 7 31 5

FastPGA 0.779 0.141 5 0.789 0.174 5 0.0553 0.0309 4 0.0064 0.0027 4 0.5087 0.1351 3 7.27 1.80 5 26 4
NSGAII 0.741 0.121 4 0.762 0.151 3 0.0459 0.0272 2 0.0059 0.0022 2 0.5231 0.1193 2 7.50 2.06 2 15 2

OMOPSO 0.735 0.103 3 0.788 0.132 4 0.0480 0.0362 3 0.0062 0.0024 3 0.5015 0.1173 5 7.40 2.06 4 22 3
SPEA2 0.796 0.115 7 0.835 0.135 7 0.0647 0.0578 5 0.0065 0.0024 5 0.5024 0.1230 4 7.47 2.19 3 31 5

Table 4. ZDT6 test problem for 1000 function evaluations, for each major cell the first column indicates the average of thirty runs,
the second column indicates the standard deviation and the third column indicates the rank

ZDT6
1000 Spread Generalized Spread Generational Distance Inverted Generational

Distance Hyper Volume Percentage of
Pareto Points

Sum
of

ranks

Final
Rank

PSP 0.948 0.036 3 0.949 0.044 4 2.5791 0.4629 5 0.2172 0.0067 7 0.0000 0.0000 2 0.81 0.27 2 23 4
CellDE 0.927 0.033 1 0.921 0.051 1 2.7466 0.7098 7 0.1935 0.0195 4 0.0000 0.0000 2 0.63 0.24 6 21 3
Abyss 0.965 0.043 6 0.942 0.080 3 2.7421 0.9406 6 0.1540 0.0203 2 0.0000 0.0000 2 0.31 0.24 7 26 6

FastPGA 0.974 0.033 7 0.970 0.039 7 2.2004 0.5807 2 0.1821 0.0186 3 0.0000 0.0000 2 0.66 0.25 5 26 7
NSGAII 0.949 0.027 4 0.951 0.038 5 2.2715 0.4127 3 0.1941 0.0093 5 0.0000 0.0000 2 0.76 0.24 4 23 5

OMOPSO 0.962 0.130 5 0.958 0.229 6 1.2942 0.4523 1 0.0311 0.0489 1 0.0725 0.1207 1 1.29 0.51 1 15 1
SPEA2 0.942 0.028 2 0.940 0.054 2 2.3790 0.5212 4 0.2018 0.0090 6 0.0000 0.0000 2 0.80 0.28 3 19 2

Table 5. DTLZ1 test problem for 500 function evaluations, for each major cell the first column indicates the average of thirty runs,
the second column indicates the standard deviation and the third column indicates the rank

DTLZ1
500 Spread Generalized Spread Generational Distance Inverted Generational

Distance Hyper Volume Percentage of
Pareto Points

Sum
of

ranks

Final
Rank

PSP 0.687 0.067 3 0.647 0.077 2 50.786 6.3621 5 0.5482 0.1233 3 0.0000 0.0000 - 7.64 1.65 1 14 1

CellDE 0.662 0.111 1 0.593 0.134 1 42.929 10.831 4 0.6194 0.1170 4 0.0000 0.0000 - 3.67 0.98 6 16 2
Abyss 0.862 0.130 7 0.883 0.184 7 30.240 12.584 2 0.4281 0.1875 1 0.0000 0.0000 - 4.48 1.34 5 22 5

FastPGA 0.809 0.088 6 0.757 0.123 6 42.668 9.4050 3 0.4735 0.1438 2 0.0000 0.0000 - 5.87 1.54 4 21 4
NSGAII 0.730 0.102 4 0.685 0.112 4 51.582 7.6057 6 0.6666 0.2400 6 0.0000 0.0000 - 7.11 1.70 2 22 6

OMOPSO 0.664 0.096 2 0.670 0.086 3 28.876 3.7628 1 0.6657 0.1529 5 0.0000 0.0000 - 2.84 0.70 7 18 3
SPEA2 0.730 0.073 5 0.689 0.097 5 58.040 9.9989 7 0.7074 0.2274 7 0.0000 0.0000 - 6.19 1.59 3 27 7

