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A plug-in hybrid electric vehicle (PHEV) can improve fuel economy
and emission reduction significantly compared to hybrid electric
vehicles and conventional internal combustion engine (ICE)
vehicles. Currently there lacks an efficient and effective approach
to identify the optimal combination of the battery pack size, electric
motor, and engine for PHEVs in the presence of multiple design
objectives such as fuel economy, operating cost, and emission. This
work proposes a design approach for optimal PHEV hybridization.
Through integrating the Pareto set pursuing (PSP) multiobjective
optimization algorithm and powertrain system analysis toolkit
(PSAT) simulator on a Toyota Prius PHEV platform, 4480 possible
combinations of design parameters (20 batteries, 14 motors, and 16
engines) were explored for PHEV20 and PHEV40 powertrain con-
figurations. The proposed approach yielded the optimal solution in
a small fraction of computational time, as compared to an exhaus-
tive search. This confirms the efficiency and applicability of PSP to
problems with discrete variables. In the design context we have
found that battery, motor, and engine collectively define the optimal
hybridization scheme, which also varies with the drive cycle and all
electric range (AER). The proposed method and software platform

could be applied to optimize other powertrain designs. [DOI:
10.1115/1.4007149]

Keywords: multiobjective optimization, Pareto set pursuing,
hybridization, PHEV, powertrain system analysis toolkit

1 Introduction

Developed by Shan and Wang [1], the Pareto set pursuing
(PSP) method is a multiobjective optimization method, especially
suitable for design problems that involve expensive black-box
functions [1]. This approach provides a set of Pareto set for
choices without any prior knowledge of the objective functions or
preferences, and it can be of high efficiency for solving optimiza-
tion problems that are coupled with black-box simulations. PSP
captures the Pareto optimal frontier automatically without calling
any formal optimization process. Approximation is used in order
to guide only the sampling process, and does not demand an accu-
rate approximation model. Through tests and applications, PSP is
found robust and efficient and the Pareto set points found by PSP
are actual or close-to-actual Pareto set points and spread closely
and evenly over the entire Pareto optimal frontier. PSP can solve
problems with continuous, discrete, or mixed type variables [2].
In this study, the applicability and computational efficiency of this
approach for solving the hybridization optimization of the PHEV
powertrain system components is studied. The hybridization prob-
lem for HEV/PHEVs [3] is a computationally expensive problem,
which requires simulation runs in order to obtain objective func-
tion values for each set of design variables. The characteristics of
these vehicles and the hybridization optimization problem will be
presented first. Then the PSP method will be explained and the
application of this approach for design optimization of PHEVs
will be discussed.

A plug-in hybrid electric vehicle (PHEV) is a newer generation
of electrified vehicles which are powered by a combination of an
internal combustion engine and an electric motor with a battery
pack. The battery pack can be charged through plugging the vehi-
cle into the grid and from using excess engine power. A PHEV
allows for all electric operation for limited distances, and has sig-
nificant potential to reduce oil consumption and greenhouse gas
(GHG) emissions [4]. The design considerations for PHEVs nor-
mally include vehicle architecture, drivetrain component selection
including internal combustion engine (ICE) and electric motor,
energy management systems, energy storage tradeoffs, and grid
connection [5,6]. It is a critical step in PHEV design to choose the
proper combination of ICE, electric motor, and battery pack. The
degree of hybridization, defined as the ratio of electric motor
power to the sum of electric motor and ICE power, affects the
optimality of the drivetrain components performance [7]. In gen-
eral, it is believed that greater degree of hybridization allows for
using a smaller ICE, which operates at near its optimum efficiency
for a larger proportion of time. This work addresses the hybridiza-
tion by using optimization, considering simultaneously the fuel
economy, operating cost, and GHG emissions for PHEVs with
two drive cycles. Toyota Prius PHEV20 and PHEV40 (with 20
and 40 miles of all electric range, respectively) are chosen as the
vehicle platform in this study. This work aims at demonstrating
the optimal hybridization methodology rather than achieving new
practical vehicle designs. Practitioners, however, can apply the
proposed methodology for their actual vehicle design by changing
the assumptions and vehicle platform.

2 PHEV Design Studies

There have been many research works on PHEV design. Reyn-
olds and Kandlikar [8] found that the weight penalty for fuel con-
sumption in HEVs was significantly lower than in equivalent
conventional ICE vehicles. The performance of PHEVs has also
been found to be dependent on the energy management mode and
the vehicle architecture [9–11]. PHEVs can operate in four energy

1Corresponding author.
Contributed by the Design Automation Committee of ASME for publication in

the JOURNAL OF MECHANICAL DESIGN. Manuscript received November 14, 2011; final
manuscript received May 24, 2012; published online August 7, 2012. Assoc. Editor:
Shinji Nishiwaki.

Journal of Mechanical Design SEPTEMBER 2012, Vol. 134 / 094503-1Copyright VC 2012 by ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/08/2013 Terms of Use: http://asme.org/terms



management modes: charge sustaining (CS) mode, charge deplet-
ing (CD) mode, electric vehicle (EV) mode, and engine only
mode [12–14].

There is no standard solution for the optimal size or ratio of the
ICE and the electric power system. The optimum choice includes
tradeoffs between the engine and electric propulsion system on
one hand, and cost, fuel economy, and performance on the other.
A review of the automotive industry literature shows that each
company has developed its own solution for the relative size of
the ICE to the electric motor, the hybridization factor. The optimal
level of hybridization ranges for HEVs have been found to be
between 0.3 and 0.5, depending on the total vehicle power [13].
Further increase of the hybridization factor beyond an optimum
value could lead to lower energy conversion efficiency of the
powertrain and higher fuel consumption [12].

The past studies in PHEV design have focused on prototyping
and testing hundreds of design parameters for improving the per-
formance of PHEVs. However, multiple testing procedures are
cumbersome and time consuming. Therefore, the emphasis of
research shifted to simulation-based optimization algorithms that
work together in a loop with a computer simulation model to
reach optimal design solution [15]. One such simulation-based
algorithm for modeling the performance of HEVs and PHEVs is
PSAT, developed by Argonne National Laboratory [16].

In this work, PSAT and the PSP optimization algorithm are
integrated in order to search for the best hybridization of battery,
engine, and motor. Such a hybridization optimization however
faces a few challenges: (1) the variables are types of battery,
engine, and motor and thus discrete in nature, (2) each vehicle
simulation takes a relatively long time, and (3) for each combina-
tion of these components, a vehicle design needs to satisfy certain
performance constraints, which requires a prior selection of the
components to meet the desired performance before optimization
toward the desired objective functions. In addition, this work also
considers multiple objectives. The optimization is in essence an
expensive simulation-based optimization problem with discrete
variables. Therefore, the Pareto set pursuing (PSP) method has the
potential to be used as a practical tool for this problem.

3 Methodology

Our proposed design approach is to integrate the PSP method
with PSAT to optimize the components of PHEV MY04: Toyota
Prius model year 2004 vehicle [16]. The drivetrain hybridization
is optimized for the minimum fuel consumption, operating cost,
and GHG emissions on two different drive cycles: urban dyna-
mometer driving schedule (UDDS) [17,18] and Winnipeg week-
day duty cycle (WWDC) [19,20] with two AER specifications.

3.1 Toyota Prius MY04 Vehicle Model. The Prius has two
electrical machines: an electric motor and a generator. The Toyota
hybrid transmission system incorporates a system of planetary
gears, called a power split device, which directs power between
the ICE, electric motor, generator, and wheels, in all directions.
The planetary gear set is both a power summing device and a gear
ratio device. Details of its configurations can be found in [7].

3.2 Vehicle Modeling and Simulation. Toyota Prius MY-04
is modeled by PSAT simulator, which can simulate the driver as a
control system that attempts to follow a target driving cycle
through obtaining a specific speed at every moment by actuating
the accelerator and brake pedals. For the simulations in our study,
we used the Prius as a baseline vehicle platform, and changed the
battery, motor, and engine as driven by the optimization process.
Battery capacity is designed to achieve the desired 20 or 40 miles
AER; simultaneously electric motor and engine are scaled to
achieve 0 to 60 mph within the required acceleration time specifi-
cation of 10.5þ 0.0/�0.5 s, which is approximately the accelera-
tion performance of Toyota Prius. The PSAT split hybrid control
strategy is modified so that the vehicle operates as an electric

vehicle in CD mode without engaging the engine until the battery
reaches a 35% SOC value, after which time the vehicle switches
to the CS mode and operates like a normal hybrid Prius.

The list of drivetrain components for modeling the vehicle
includes the following, whose detailed parameters can be found in
the PSAT software tool.

• 14 different permanent magnet electric ac motors,
• 20 different batteries (including one lithium-ion battery, one

nickel cadmium battery, nine nickel metal hydride batteries,

one nickel zinc battery, and nine lead acid batteries), and
• 16 different spark ignition gasoline engines.

Other vehicle parameters remain constant, including vehicle
body mass (except for battery mass, which varies with the number
of battery modules), width of the vehicle, frontal area of the vehi-
cle, length of the vehicle, height of the vehicle, distance between
two front axles, mass of the vehicle cargo, and vehicle center of
gravity height. For simplicity, the chosen generator is one of the
available models for the Toyota Prius, and it is neither varied dur-
ing the powertrain components selection phase nor during the
optimization procedure. It is a permanent magnet motor with con-
tinuous power of 25 kW and peak power of 50 kW.

A comparison of key characteristics of the two drive cycles,
UDDS and WWDC, is shown in Table 1. As one can see that
WWDC, as compared with UDDS, has more aggressive accelera-
tion and deceleration, and more stops and longer stop duration.

3.3 Optimization of PHEVs. For a given set of types of bat-
tery, engine, and motor, their sizes should be dynamically deter-
mined. In each PHEV battery simulation, the number of battery
modules needed to reach the desired 20 or 40 miles AER is first
determined in the electric only CD mode when the battery is
assumed to start with 80% SOC until reaching a 35% SOC value.
Then, the vehicle is operated in the CS mode to complete the
22.35 miles for PHEV 20 and 44.70 miles for PHEV40. In the CS
mode, both the battery and engine work together to support the
necessary driving power. The motor and engine sizes are scaled to
achieve a 0–60 miles per hour acceleration within 10.5 0.0/�0.5 s,
which is approximately the acceleration performance of a Toyota
Prius [21]. This procedure is repeated iteratively for each battery
type until convergence to a vehicle profile that both AER and
acceleration specification is achieved for the desired drive cycle
(UDDS and WWDC in our study). Finally, the electric efficiency
in CD mode (kW h/mile) and the fuel efficiency in CS mode
(miles/gallon) are calculated.

Figure 1 shows the optimization process for battery sizing and
Eq. (1) defines the mathematical form of the optimization problem:

Table 1 Comparison of UDDS and WWDC drive cycles

Simulation parameters Units
UDDS

drive cycle
WWDC

drive cycle

Cycle time s 1369 3386
Distance miles 7.45 19.61
Maximum speed miles/h 56.70 61.91
Average speed miles/h 19.58 20.85
Standard deviation speed miles/h 14.70 16.91
Maximum acceleration m/s2 1.48 2.78
Average acceleration m/s2 0.50 0.55
Standard deviation acceleration m/s2 0.45 0.50
Maximum deceleration m/s2 �1.47 �6.48
Average deceleration m/s2 �0.58 �0.59
Standard deviation deceleration m/s2 0.52 0.57
Number of stops 17 33
Stop frequency stop/mile 0.0014 0.0010
Stop duration s 259 595
Stop percent of cycle % 18.92 17.57
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Min Simulation AER� Ideal AERj j
w:r:t: x ¼ number of battery modules

(1)

The optimization problem for motor and engine sizing is similar
to the procedure of battery sizing as illustrated in Fig. 1, and
Eq. (2) defines the mathematical form of the optimization prob-
lem, where ACC stands for “acceleration”:

Min Simulation ACC� Ideal ACCj j
w:r:t: x ¼ x1; x2f g; x1 ¼ motor power; and x2 ¼ engine power

(2)

The optimization model uses a 1D optimization method (i.e.,
Matlab function FZERO) for battery sizing, and an nD search
method (i.e., Matlab function FMINSEARCH) for motor and
engine sizing. Theoretically, one ought to combine the two prob-
lems as defined in Eqs. (1) and (2), to define a three-variable opti-
mization problem. It is found, however, that the problem could be
decomposed into two subproblems as defined above since the bat-
tery size affects mostly the AER while the engine, and motor sizes
are the key parameters determining the acceleration performance.
Such a decomposition strategy also helps to reduce the total com-
putational time for optimization.

The optimal hybridization of PHEVs is achieved by combina-
tions of the three drivetrain components: battery storage, electric

motor, and gasoline engine that provide maximum fuel economy
(miles/gallon), minimum operating cost ($/mile), and operation
GHG emissions (kg/mile) on UDDS and WWDC drive cycles. The
optimization model includes a total of 4480 combinations of bat-
teries, electric motors, and gasoline engines. Since for PHEV20
design it takes about 3 h on a desktop computer [Dell Optiplex 755
Intel(R) Core(TM) 2QuadCPU Q6700 @2.66 GHz, 3.25 GB of
RAM] for designing one vehicle, i.e., to solve the optimization
problems defined in Eqs. (1) and (2), the exhaustive search method
to run all 4480 combinations will take 560 days. The time for each
PHEV40 design takes more than 5 h on the same computer due to
the longer drive cycle, and thus the total time for exhaustive search
would be unacceptable. Therefore, we used PSP multiobjective
optimization approach to select the most optimum hybridization
combination from these 4480 vehicle combinations [1]. PSP has
been found to be among the most efficient methods when the total
of function evaluations is limited, as compared to state-of-the-art
evolutionary algorithms for multiobjective design problems [2].

The PSP multiobjective optimization method builds a sampling
guidance function by providing efficient and uniformly distributed
set of Pareto optimal points based on approximation models [1].
The PSP approximates the entire Pareto frontier directly by sam-
pling Pareto points for the multiobjective optimization problem of
minimizing the operating costs and GHG emissions, and maximiz-
ing the fuel economy with the PSAT black-box function. It starts
with a random sample in the first iteration, but moves closer to the
Pareto frontier with successive iterations. Two types of sampling
guidance functions are developed in the process. The first function
is for the sampling of cheap points from the approximation model
of each objective function, and the second function is for the sam-
pling towards the Pareto frontier [1]. Figure 2 shows the flow
chart of the Pareto set pursuing identification approach.

For the PHEV design in this work, as shown in Fig. 3, the input
is the combination of battery, motor, and engine types. PSP algo-
rithm selects the combination of component types, and performs

Fig. 1 Optimal battery sizing

Fig. 2 Flow chart of the Pareto set pursuing approach
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the optimal sizing for battery, as well as motor and engine by call-
ing the PSAT as a black box. PSP algorithm finds the most efficient
points based on the performance values.

Mathematically, for PHEV design, the multiobjective optimiza-
tion problem is defined as

Minimize : F xð Þ ¼ f1 xð Þ; f2 xð Þ; f3 xð Þf g (3)

f1(x)¼� fuel economy, f2(x)¼ operating cost, cOP, f3(x)
¼ operation GHG emission, vOP.

The average operating cost cOP (not including the battery pur-
chasing cost) is given by [21]

cOP ¼
1

d

dCD

gCD

cELEC

gC

þ dCS

gCS

cGAS

� �
(4)

where gCD is CD mode vehicle electrical efficiency; gCS is CS
mode vehicle fuel efficiency; gC is the charging efficiency; cELEC

is the cost of electricity; cGAS is gasoline cost assuming
cELEC¼ $0.11 per kW h, gC¼ 88% and cGAS ¼ $3:00 per gallon.

The average operation GHG emission per mile vOP is calculated
by [21]

vOP ¼
1

d

dCD

gCD

vELEC

gC

þ dCS

gCS

vGAS

� �
(5)

where vELEC is the emissions associated with electricity; vGAS is
the emissions associated with gasoline assuming vELEC¼ 0.730 kg
CO2� eq per kW h, vGAS ¼ 11.34 kg CO2� eq per gallon.

Constraints, dAER ¼ 20 or 40 miles; ACC time¼ 10.5 s for
0–60 mph.

Design variables, vector x¼ {x1,x2,x3}, x1¼ battery type, 2
[1,20]; x2¼motor type, 2 [1,14]; x3¼ engine type, 2 [1,16].

Fig. 3 PSP multiobjective optimization algorithm with PSAT as
a black box

Fig. 4 Flow chart of the program structure for the automated optimization process
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It is to be noted that the fuel economy parameters defined in
Eqs. (4) and (5) are obtained from calling the PSAT simulation
for each given x.

Figure 4 shows the program structure for the automatic process
of hybridization and PSP multiobjective optimization of PHEV.
Constants used in the above formulations are taken from Ref.
[21]; these values can be changed according to specific situations
when applying the proposed methodology.

4 Results and Discussion

4.1 Sampling Design Points for PHEV20 and PHEV40. The
results of simulation and optimization for PHEV20 show a total of
139 sampling design points for each drive cycle, UDDS and
WWDC (based on PSP convergence criterion of Gavg¼ 1.015).
Four Pareto design points representing the most efficient hybrid-
ization combination of battery, motor, and engine for UDDS drive
cycle, and three Pareto design points for WWDC are obtained
from each of these 139 sampling design points for the PHEV20
vehicle. There are 72 design points for PHEV40 obtained from 48
iterations using UDDS drive cycle. Out of these 72 sampling
design points, only two combinations are Pareto design points that
represent the most efficient hybridization for PHEV40 on UDDS
drive cycle.

4.2 Simulation Results Using UDDS and WWDC. Each
sampling design point represents a combination of battery, motor,
and engine under the given constraints of desired 20 or 40 miles
AER and acceleration requirement. Tables 2 list the final Pareto
points and their key performance indicators for the two drive
cycles. Details on their readings of the three objective function
values, as well as their specific types, are omitted for brevity.

As one can see from Table 2, among the optimum solutions on
UDDS drive cycle, the hybridization factor varies from 0.47 to
0.93 for PHEV20, from 0.61 to 0.62 for PHEV40; while for
PHEV20 on WWDC, the number varies from 0.53 to 0.80. Similar
behavior can be observed from the data for WWDC. In general
higher hybridization factors tend to lead to higher fuel efficiency
but lower electrical efficiency. However when three objectives are
simultaneously considered, the hybridization factor alone is not
sufficient to characterize the performance of PHEV. One can see
from Table 2 that the optima can exist with a wide spectrum of
hybridization factor values.

To show the convergence of the multiobjective optimization
process, the 139 sample points of PHEV20 are shown in Fig. 5.
The 3D plot shows in gray the best design points obtained through
iterations. At the end of the final iteration, four Pareto design
points for UDDS drive cycle are marked as black dots, represent-
ing the final optimal hybridization combinations of battery, motor,
and engine. As shown in these figures, the search starts from the

left upper corner and gradually converges to the right lower sec-
tion, where the Pareto points can be found.

5 Discussions

The proposed work automates the optimal design by integrating
PSP with PSAT using multiple objectives. The proposed work is
found to be efficient and effectively finding good combination for
PHEV 20 and PHEV 40 with respect to a given drive cycle. This
in fact may be the first multiobjective optimization that has been
applied for PHEV hybridization design. There are a couple of cav-
eats, however, that need to be noted. First, the optimal design is
obtained on the basis of a set of given conditions: (1) Prius vehicle
platform with a fixed generator and transmission, (2) AER is
specified at either 20 or 40 miles and the acceleration requirement
is fixed at 10.5 0.0/�0.5 s from 0 to 60 mph, (3) the weights of the
three objectives are equal, which in practice may not be the case,
(4) the parameters and constants used in the hybridization model
defined in Eqs. (3)–(5) may be adjusted according to the changing
market condition, and (5) the battery cost model is based only on
operational cost; a complete life-cycle cost model should be used
to reflect the total cost of a battery. Therefore the obtained optimal
designs only make sense under all of these conditions. Second, the
optimization of sizing and hybridization are based on black-box
functions. As such there is no guarantee of the absolute global op-
timum. Third, although PSP is the more efficient choice for the
purpose thus far, the integrated design approach does not dictate
the exclusive use of PSP.

6 Conclusions

PSP algorithm for multiobjective optimization is used in con-
junction with the PSAT simulation tool for optimizing the type
and size of ICE, electric motor, and storage battery for PHEVs.
The objective functions in this study are fuel economy, operating
cost, and GHG emissions simultaneously. The modeling and

Table 2 Pareto design points and their key performance values

Sample
point

Number of modules
in a battery

Motor
power (kW)

Engine
power (kW)

Battery
capacity (kW h)

Hybridization
factor

Electric efficiency in
CD mode (miles/kW h)

Fuel efficiency in CS
mode (miles/gallon)

PHEV20 UDDS drive cycle
31 101 57.20 65.63 7.67 0.47 5.96 129.31
72 101 86.00 54.00 7.67 0.61 6.02 122.73
114 25 122.0 8.63 8.40 0.93 5.39 193.20
128 51 80.00 60.00 2.20 0.57 7.05 67.21

PHEV20 Winnipeg weekday drive cycle
30 7 100.00 33.00 9.07 0.75 4.97 108.54
56 51 80.00 60.00 2.39 0.53 6.24 60.49
71 15 105.00 25.50 9.72 0.80 4.74 109.96

PHEV40 UDDS drive cycle
29 69 110.50 66.38 13.91 0.62 6.09 156.48
63 202 95.00 60.75 13.08 0.61 5.89 160.19

Fig. 5 Fuel efficiency, operation cost, and GHG emissions for
PHEV20 using UDDS
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optimum hybridization is presented for Toyota Prius PHEV20 and
PHEV40 vehicles under two drive cycles, i.e., UDDS and
WWDC.

In summary, the proposed simulation and optimization model
automated with PSAT simulator is a promising method in finding
the optimal hybridization combination for PHEVs drivetrain com-
ponents with respect to a given drive cycle. Multiobjective optimi-
zation applied for PHEV drivetrain components hybridization
design is a novel approach to achieve sustainable mobility. In the
PHEV design context, it was found that:

1. The proposed approach can efficiently search for the optimal
hybridization for PHEV’s considering multiple objectives.
The optimization problem is in essence an expensive
simulation-based optimization problem with discrete varia-
bles. For the test problem with 4480 combinations, the ex-
haustive search approach will have taken 560 days; while
our approach only takes 17 days (139 points with 3 h each)
for PHEV 20 on the UDDS drive cycle.

2. Simulation results demonstrate that battery, motor, and
engine work collectively in defining a hybridization scheme
for optimum performance of PHEVs. The commonly used
hybridization factor alone is insufficient to capture all of the
objectives; it is however strongly correlated with the electri-
cal or fuel efficiency of the vehicle.

3. The optimal hybridization scheme varies with drive cycles.
In this study we compared the optimal results with two drive
cycles and obtained different optimal schemes and
performances.

4. The optimal hybridization scheme varies with AERs. This
study also found that the optima for PHEV20 and PHEV40
vary on the same drive cycle.

The PSP approach can be potentially applied to similar prob-
lems in the area of powertrain optimization for HEV/PHEVs.
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