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This article addresses the challenges of scheduling patients with stochastic service times and heteroge-
neous service sequences in multi-stage facilities, while considering the availability and compatibility
of resources with presence of a variety of patient types. The proposed method departs from existing lit-
erature by optimizing the scheduling of patients by integrating mathematical programming, simulation,
and multiobjective tabu search methods to achieve our bi-objectives of minimizing the waiting time of
patients and the completion time of the facility. Through intensive testing, the performance of the pro-
posed approach is analyzed in terms of the solution quality and computation time, and is compared with
the performance of the well-known method, Non-Dominated Sorting Genetic Algorithm (NSGA-II). The
proposed method is then applied to actual data of a case study operating department in a major Canadian
hospital and promising results have been observed. Based on this study, insights are provided for
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1. Introduction

Advances in healthcare in recent years accompanied several
efforts to improve the efficiency of operations in healthcare in
order to reduce the expenses in this sector. Accordingly, many
studies have been carried out to improve the efficiency of schedul-
ing in order to address the increase in demand for outpatient and
inpatient services. In this article, we consider multi-stage facilities
that serve patients of different types with non-identical stochastic
service time at each stage. We assume heterogeneous service
sequences; i.e., each patient type follows a specific order to visit
stages of the facility that may vary from type to type. For instance,
a surgical patient may go through stages such as reception, pre-
operation, operation, and post-operation, while a checkup patient
may undergo a different sequence of stages. In this manuscript,
scheduling refers to the determination of the arrival time for each
patient to the facility in order to minimize bi-objectives of the
waiting time of patients and the completion time of the facility.

Relevant literature indicates that analytical methods and simu-
lation studies have been used to solve the problem of appointment
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scheduling and planning in healthcare, including inpatient and sur-
gical facilities. Typically, optimization methods use analytical
approaches to achieve optimal (or near optimal) solutions. These
approaches generally have difficulty addressing large and complex
systems. On the other hand, simulation methods can address many
complexities in large systems. However, simulation methods are
time-consuming and often do not deliver a competitive optimiza-
tion strategy (Cayirli & Veral, 2003). A gap still exists in the litera-
ture for efficient and effective methods to address the challenges in
scheduling of such services. In this article, efficiency of a method
refers to the amount of computation time required by the method
to produce results, while effectiveness addresses the quality of
solutions generated by the method. One of the contributions of this
article is that we target this gap by integrating analytical methods
and simulation. Another contribution is that in contrast with com-
monly used single objective optimization methods, our approach
provides a Pareto front for bi-objectives of patients’ average wait-
ing time and the facility completion time. The average waiting time
refers to the time in which patients have to wait to receive various
services in the facility, while facility completion time refers to the
time that the last patient leaves the facility. The Pareto front (also
known as Pareto set, or Pareto frontier) is the set of choices that are
not strictly dominated by another point in the objective space.
Finally, we depart from existing literature by considering the
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health centers that serve patients with heterogeneous service
sequences.

This work proposes an optimization method termed multi-
agent tabu search (MATS), which simultaneously addresses bi-
objectives of minimizing patients’ waiting time and the clinic’s
completion time. MATS uses mathematical programming (MP),
tabu search, and simulation model. The MP model provides MATS
with promising initial solutions. Tabu search then improves the
initial solution by searching for optimal schedules by running a
number of agents in parallel. The agents seek the non-dominated
solutions of the problem and share information with each other
to improve the search performance of the algorithm. In order to
capture the complexity of multi-stage facilities, MATS is performed
on a discrete event simulation. Therefore, MATS method benefits
from the flexibility of simulation, and the power of mathematical
programming optimization to find Pareto fronts.

In order to evaluate the performance of the proposed method,
we developed several test problems with a range of important fac-
tors such as, the number of patients and patient types, and the
coefficient of variation of service times. We compared the perfor-
mance of MATS with Non-Dominated Sorting Genetic Algorithm
(NSGA-II) in terms of quality of solutions and computation time.
NSGA-II has been selected for evaluating performances since it is
one of the most powerful methods in the field of multiobjective
optimization, and has recently been used in healthcare appoint-
ment scheduling with promising results (Gul, Denton, Fowler, &
Huschka, 2011). To measure the quality of solutions, we use the
hyper-volume and spacing performance indicators, which will be
explained later in this article.

This paper has been organized as follows: Section 2 presents a
literature review for the appointment scheduling problem in surgi-
cal and outpatient settings. Section 3 discusses the problem defini-
tion. Section 4 describes the architecture of the proposed approach
and describes different components of the algorithm. Section 5
gives the design of experiments and analysis of the results. Section
6 provides a case study of an OR department in a major Canadian
hospital. Section 7 provides insights for practitioners. Finally,
Section 8 provides the conclusions and directions for future work.

2. Literature review

This section presents a brief review of the relevant literature.
Here, we consider either articles that study the appointment
scheduling problem as a multi-stage facility, or those which use
discrete event simulation or mathematical programming in their
study. We further divide appointment scheduling into outpatient
appointment scheduling and surgery scheduling. For a more com-
prehensive review of literature, readers are encouraged to refer to
Cayirli and Veral (2003), and Gupta and Denton (2008) for general
outpatient appointment scheduling, as well as Blake and Carter
(1997) and Cardoen, Demeulemeester, and Belien (2010) for sur-
gery scheduling.

We divided the relevant literature into three categories: optimi-
zation studies, simulation studies, and a combination of the two.
Many articles in optimization studies use analytical methods to
address the appointment scheduling problem. Although the major
benefit of analytical methods is their ability to reach optimal solu-
tions, they may not easily represent all the details and constraints
of complex systems. Therefore, many analytical methods simplify
the system or relax some of the constraints in order to solve the
optimization problem. For instance, the queuing theory is an ana-
lytical method that is widely used to address the clinic appoint-
ment scheduling problem. Cayirli and Veral (2003) stated that
most studies in this domain assumed steady state behavior for
the system, which is hardly achievable in healthcare environments.

They further added that many optimization methods considered
only single-stage systems or made strong assumptions on the dis-
tribution of the service time. For instance, special properties of
exponential or Erlang distributions used for service times in outpa-
tient appointment scheduling. In addition, Klassen and
Yoogalingam (2009) reported that most proposed analytical meth-
ods are only valid for problems with a few patients. Begen, Levi,
and Queyranne (2012) addressed the problem of appointment
scheduling with general discrete probability distributions. How-
ever, they considered a single stage facility. Recently, there have
been several reports on applications of genetic algorithms in
healthcare scheduling at individual departments (see, e.g.,
Petrovic, Morshed, & Petrovic, 2011).

Another analytical method is mathematical programming (MP)
which has been used in patient scheduling and surgery depart-
ments. Similar to other analytical methods, MP cannot easily
accommodate the complexities and environmental parameters
arise in the complex-large systems. A major shortcoming of MP
models (except for stochastic programming) is that they are inca-
pable of addressing the stochastic nature of healthcare scheduling
problem. Although stochastic programming can address the uncer-
tainty in patient scheduling, most of the models in this area are
either overly simplified or analytically intractable, and have been
solved using approximation methods (e.g., see Lamiri, Grimaud, &
Xie, 2009; Min & Yih, 2010). Another major concern in stochastic
programming modeling methods is that the computation time of
reaching the optimal solutions is significantly higher than that of
deterministic models. In addition, almost none of the studies that
consider multi-stage facilities cover patients with different service
sequences. The only exceptions are Pham and Klinkert (2008) and
Gartner and Kolisch (2014) which address the deterministic ver-
sion (in terms of processing times) of the problem.

In the context of outpatient appointment scheduling, Fries and
Marathe (1981) proposed a dynamic programming method to
determine the number of patients to arrive at the beginning of each
time block for their appointment scheduling rule. Wang (1999)
studied scheduling using non-linear programming for both static
and dynamic problems in a clinic. The author assumed that cus-
tomer service times were independent and identical exponential
distributions while customer arrivals were punctual. Denton and
Gupta (2003) proposed a stochastic programming model in which
appointment times were determined optimally for a fixed appoint-
ment sequence.

With respect to MP in surgery scheduling, Hsu, de Matta, and
Lee (2003) presented a deterministic two-stage no-wait flow shop
model for an ambulatory surgery clinic. The first stage addresses
the operating room (OR), surgeons, and scarce resources; the sec-
ond stage models the post anesthesia unit (PACU). They proposed
a heuristic to solve the model with the goal of minimizing the
number of PACU nurses and the makespan. Guinet and Chaabane
(2003) developed a no-wait flow shop method for inpatient sur-
gery. However, they did not provide any solution method.
Ozkarahan (1995) introduced a deterministic mixed integer pro-
gramming (MIP) model to assign the surgery cases to operating
rooms (ORs) with the goal of minimizing the under-time and over-
time. In addition, the author developed priority rules to sequence
the patients. Sier, Tobin, and Mcgurk (1997) suggested a mixed
integer non-liner programming model to assign surgery time
blocks to patients. The model considered a penalty function includ-
ing patient’s age and resources such as scarce equipment and ORs.
They proposed a simulated annealing approach to solve the model.
Pham and Klinkert (2008) proposed a deterministic MIP model
based on multi-blocking job shop scheduling problem to minimize
criteria such as makespan in surgery-case scheduling. They defined
each surgery as a sequence of predetermined jobs. They imposed
precedence and priority relations to address the conflict of shared
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resources. In addition, they allowed emergency cases by imposing
deadline constraints and using job insertion methods. Testi and
Tanfani (2009) developed a binary linear programming model to
solve the master surgical schedule problem, together with the sur-
gical case assignment problem. The model minimized overall
patients’ welfare loss calculated based on the waiting time of
patients on the waiting list. They incorporated urgency levels for
patients and investigated the impact of “what-if’ scenarios such
as adding ORs and different strategies of assigning additional
ORs. Min and Yih (2010) proposed a stochastic programming
model for case scheduling problem. They considered OR and surgi-
cal intensive care units that address different specialties. However,
the model did not consider the intake procedure and other
resources such as nurses, surgeons and equipment. They solved
the model using the sample average approximation.

Giiler (2013) studied appointment scheduling of the assign-
ment of the care providers to outpatient rehabilitation clinics. They
proposed a hierarchical goal programing approach in order to
develop schedules that take into account care provider preferences
and reduction of schedule disruptions. Tang, Yan, and Cao (2014)
uses heuristic algorithms to solve outpatient appointment schedul-
ing for two types of patients (i.e., routine, and urgent) considering
no-show probability. They did not consider clinical paths of
patients.

Zhao and Li (2014) addressed elective surgery scheduling in
ambulatory setting and studied three aspects of daily scheduling
including: the decision on the number of ORs to be enabled, the
assignment of cases to ORs, and the sequencing of surgeries
assigned to each OR. They assumed a sequence dependent setup
time for surgeries, which further signifies sequencing of the cases
in this environment. They used mixed integer nonlinear program-
ing along with constraint programing to solve the scheduling prob-
lem. Their work considered deterministic surgery durations and
concludes that constraint programing can offer better results than
nonlinear programing.

Lamiri et al. (2009) proposed a stochastic programming model
for surgery planning in order to minimize elective patients’ assign-
ment costs and expected overtime costs. They considered a mix of
elective and emergency patients and developed an almost-exact
Monte Carlo simulation method. They compared different heuristic
and metaheuristic approaches (such as simulated annealing and
tabu search) with their method. They reported that although their
method outperformed the heuristic and metaheuristics methods
for small to medium sized test problems, the computation time
was significantly higher. In addition, they stated that tabu search
was the best among the heuristic and metaheuristics approaches.
For large problems, tabu search provided solutions better than
those provided by the almost-exact method in a reasonable
amount of time.

Simulation has also been used by researchers to address the
appointment scheduling problem. Contrary to the analytical meth-
ods, simulation can easily accommodate the environmental factors
and system parameters such as patient priorities, multi-stage facil-
ities, and servers with different service time distributions. How-
ever, simulation models do not include any optimization
strategies, and often authors restrict their analysis to the evalua-
tion of pre-specified configurations and manually run the simula-
tions. Since there are several instances of simulation studies in
the literature, we review those that are most relevant to this
article.

Dexter, Macario, Traub, Hopwood, and Lubarsky (1999) devel-
oped a method to assign the block time to surgeons and schedule
patients to improve the utilization of ORs using simulation.
Marcon and Dexter (2006) analyzed the impact of different
sequencing rules on OR utilization and workload of the post
anesthesia care unit. Tyler, Pasquariello, and Chen (2003) used a

simulation model for an OR to improve its utilization. They also
studied how other factors such as the average patient waiting time
and variability of surgery duration affect the OR utilization.
Robinson and Chen (2003) studied outpatient appointment sched-
uling using simulation-based techniques. They suggested that
while the optimal appointment intervals present a dome pattern,
a setting with equal intervals for intermediate appointments might
result in better performance for some systems. M’'Hallah and Al-
Roomi (2014) studied scheduling of elective surgery cases in an
OR department which aimed at reduction of ORs overutilization
and minimizing completion time. They used a simulation model
to evaluate the proposed schedules. They proposed multiple heu-
ristics to achieve better schedules within multiple scenarios.

Although many studies used simulation to solve outpatient
appointment scheduling, only few articles utilized simulation-
based optimization methods to address the problem. Simulation-
based optimization enjoys the flexibility of simulation in modeling
complex systems, while systematically seeks optimal solutions
through its optimization component. In this domain, Denton,
Rahman, Nelson, and Bailey (2006) studied an endoscopy suit,
which included two types of patients, and one surgeon type. They
used simulated annealing as the optimization tool to schedule the
start time of surgery cases to minimize the overtime and patient
waiting time. Klassen and Yoogalingam (2009) examined a single
stage outpatient clinic and used OptQuest to decide on the arrival
time of patients. OptQuest is a simulation-based optimization
package that accompanies several discrete event simulation tools.
They studied dome patterns in appointment scheduling and sug-
gested that practitioners could employ a “plateau-dome” type rule
in many different environments. Chow, Puterman, Salehirad,
Huang, and Atkins (2011) use simulation and mathematical pro-
gramming to propose surgical schedule to reduce surgical ward
congestions.

Gul et al. (2011) considered an outpatient surgical suite, and
investigated the impact of several sequencing and scheduling heu-
ristics on competing performance criteria. They developed a simu-
lation model which incorporated a bi-criteria genetic algorithm.
They demonstrated the impact of different surgery schedules on
the competing objectives of the mean patient waiting time and
amount of overtime of the outpatient surgical suite. They indicated
that the arrival time schedules substantially influenced the
expected overtime and patient waiting time, while surgery alloca-
tion and sequencing heuristics had a smaller effect.

Ewen and Mdénch (2014) studied scheduling of surgeries in an
eye clinic and developed a multi-objective scheduling method in
order to minimize the patient wait time, and to maximize the uti-
lization of the ORs. They used minimizing the weighted sum of
overtime and idleness of ORs as a surrogate objective for maximiz-
ing OR utilization. They used a simulation-based optimization
method by employing NSGA-II and discrete event simulation. They
studied the impact of stochastic arrival patterns of patients and
reported outperforming results gained by their proposed method
compared with schedules developed by dispatching rules and ones
manually created by medical staff.

More recently, Saremi, Jula, EIMekkawy, and Wang (2013) pro-
posed a novel simulation-based optimization method by incorpo-
rating mathematical programming to schedule day surgeries.
Building on the insights by Gul et al. (2011) that merely combining
simulation and heuristics may not necessarily provide the most
promising results, they reported that incorporation of mathemati-
cal programming significantly improves the performance of
simulation-based optimization methods. However, similar to
several other articles tackling multiobjective scheduling of
patients, Saremi et al. (2013) and Gul et al. (2011) did not offer a
Pareto front of solutions. Rather, they only provided a single
solution for each scenario. In addition, their methodology only
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Fig. 1. Layout of a clinic depicting the service sequences of check-up patients and surgical patients.

addresses homogenous sequence of services and does not support
multiple sequences.

Lee and Yih (2014) proposed a simulation-based optimization
method to schedule surgery cases in surgical suits. They developed
a multiobjective method to minimize patients’ wait time, idealness
of resources, and completion time of the schedules. Their schedul-
ing process included two stages: sequencing of surgeries and
determining the exact timing of each procedure. They used a
genetic algorithm to fulfill the sequencing while the further sched-
uling of was done by a “decision-heuristic.” They reported that the
result of their method outperformed simple scheduling rules when
used in regional hospitals.

Our review of the literature concludes with the following
remarks:

1. Current optimization methods in outpatient appointment
scheduling, although can provide optimal or near optimal solu-
tions, mainly focus on elements/stages of the facility, or simpli-
fied analytical models of the system. On the other hand,
simulation methods can address many complexities in large
systems. They are, however, time-consuming and often do not
deliver a competitive optimization strategy. Therefore, we
observed a lack of methods in existing literature that provide
optimal or near-optimal solutions while covering complexities
of healthcare facilities.

2. Several performance criteria such as patient waiting time, clinic
overtime, etc. have been studied in the literature, and several
studies addressed problems with multiple criteria. However,
most of these studies considered a weighted sum of objectives
to generate a single function optimization problem. Therefore,
a gap still exists in the literature for methods that provide Par-
eto fronts for the appointment scheduling problems.

3. To our best knowledge, Pham and Klinkert (2008) is the only
article that proposed a method that can address patients with
different service sequences. However, their method only con-
siders the deterministic version of the problem in OR depart-
ments. Thus, we believe that the existing literature lacks
methods that can address multi-stage facilities serving patients
with different service sequences and stochastic service times.

To address these gaps we propose a multiobjective simulation-
based tabu search method enhanced by MP model. Our work can
be differentiated from the previous works in following directions:
first, to our knowledge this work is the first attempt to address
appointment scheduling of patients with stochastic service times,
and heterogeneous service sequence in a multi-stage facility in
which patients may revisit a stage. Second, our method takes
advantage of the flexibility of simulation to model different
complexities of systems. Our approach integrates MP and tabu
search to find optimal or near optimal solutions. Third, this work

offers the Pareto (near) optimal set of schedules, which shows
the tradeoffs between the factors that influence patients and pro-
viders. Finally, this article includes a case study of an OR depart-
ment of a major Canadian hospital. We apply the proposed
methodology to the actual data and compare the result with the
outcome of actual surgery schedules. In the understudy OR depart-
ment each patient might take a different route which changes
according to required type of procedures, and the availability of
compatible ORs.

3. Problem description

In this work, we address facilities in which patients can have
different sequences of services. A good example for this kind of
facility is a private clinic that offers a large variety of outpatient
services, from checkups to small surgeries. We consider the
appointment scheduling of patients of different types with sto-
chastic service times in each stage where each type of patients
may not only require different service times, but also has a specific
sequence of services (including the possible revisits to a stage).
Here, appointment scheduling refers to the determination of the
arrival time of each patient at the clinic in order to minimize the
average waiting time of all patients, and the completion time of
the facility. The availability and compatibility of resources such
as doctors and nurses for each stage are considered.

For instance, consider a clinic that includes a surgical suite, a
diagnostics section, and doctor consultation sections. Fig. 1 shows
the layout of the clinic and the route that a checkup patient and a
surgical patient may take. It is possible that some patients need to
revisit a stage based on their type. Fig. 1 shows that the checkup
patient first visits the doctor, goes to X-ray and Lab, and then
returns to the doctor stage. Here OR stage includes multiple staffed
ORs with the service time depending on the patient’s type.

A predetermined number of patients of different types are con-
sidered to be scheduled in the horizon of one day. Parameters such
as distribution of service time for each patient type, capacity of
each stage, and sequence of services are given. Patients arrive
according to the schedule, and we assume no tardiness in arrivals
and no no-shows in the system. The stages in the clinic (except for
the reception stage) work according to the first-come-first-served
rule. The reception stage admits the patients according to schedule.

4. Methodology

Our approach, multi-agent tabu search (MATS), employs an MP
model, and a simulation model along with the tabu search to gen-
erate Pareto (near) optimal schedules that minimize waiting time
of patients and completion time of the clinic. The MP model
provides MATS with promising initial solutions through solving
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deterministic version of the problem. Tabu search then improves
the initial solutions by searching for optimal schedules by running
a number of agents in parallel. The agents seek the non-dominated
solutions of the problem and share information with each other to
improve the search performance of the algorithm. Simulation
model enables MATS to evaluate the schedules by considering sto-
chastic nature of services of the clinic and applying several
resource and operational constraints. Finally, MATS presents a
non-dominated set of solutions which contain most promising
appointment schedules.

4.1. Mathematical programming model

In the proposed method, MP model provides the MATS with
promising initial solutions. The MP model is an extension of the
model proposed by Jula and Leachman (2010), which is enhanced
and adapted for appointment scheduling in healthcare. The nota-
tion of the model is presented as follows:

Notation

t discrete time index, t=1,...,T, where T is the
time horizon and number of time grids in each
day

j stage index, j=1,...,k, k+1,...,M, where M is
the number of stages in the department. We
assume that stage k is the doctor visit stage and
the stage (k + 1) is dedicated to patients’ revisit.
Stage M is the discharge stage

p patient type index, p=1,...,P; where P is the
number of patient types

Ulsp indicates the stage located before position of
stage j, in the ordered set of B, for patient type p

Parameters

N, the number of patients of type p

Sip service time of patient type p in stage j

Lip the initial number of patients of type p in the
line, waiting to be served at stage j

R; the number of available servers or operators in
stage j at the beginning of the scheduling
horizon

Yp the cost of waiting of a patient of type p for a
single time period

H an arbitrarily large number

B, the ordered set of stages that patient type p
should follow

o cost coefficient for waiting of a patient per time
period

B cost coefficient of operating the department per
time period

Variables

Xjtp the number of patients of type p at stage j to
start being processed at time t

Qjcp the number of patients type p who are waiting to
be served at stage j at time t

Xitp the cumulative number of patients of type p at
stage j has been started being processed by time
t

Tis the number of available idle resources at stage j
at time t; each stage has its dedicated resources

m the last time block, in which all patients have
been discharged (makespan of the schedule)

Ve a binary (1 or 0) variable which indicates if there

is any discharge at time ¢t

The MP model is expressed as follows:

1. Objective functions:

Minimizing o) "> " 7,.Qj¢p + . (1)
j tp
2. Queue balance constraints:
Qj.t,p =1, — Xjep +X[j]5p,t—s[,8p‘p,p~, Vj € By, t,p. (2)
3. Cumulative variables:
t
Xj.[.p = ij.‘t.lﬂ v] € BP7 tp (3)

=1

4. Capacity constraints:

He=Ri— Y Xip+ Y Xies,p Vi {kk+1}t,  (4)

(plieBp) (plieBp)
Tkt = Rk - Zxk.t,p + Zxk.t—skbp,p - Zxkﬂ,t‘p
p p p
+ Zxkﬂ,t—skﬂ_p.p Vt- (5)
P
5. Number of patients which have to be served:
XM.T—SM,p,p = le.p Vp (6)
J
6. The makespan indicator constraint:
y-H> ZZXM vt, (7)
[
m>ty, Vvt 8)

Xitpr Qiep Xjeps Tie = 0 Vi, t, p. X10p VE, p is an integer variable; y;
is a binary variable for t.

7. Initial conditions:
The values for ;. p, I p, X5, Tj,c Should be pre-specified for t < 0 if
applicable.

To the best of our knowledge, Pham and Klinkert (2008) is the
only article that provided an MP model capable of addressing
scheduling of patients with heterogeneous service sequence in a
multi-stage surgery department. While they only considered the
deterministic version of the problem, they focused on minimizing
the makespan and scheduling of the patients as soon as possible.
Their experiments includes only up to 26 patients served by six
ORs. Our experiments suggest that this policy may cause signifi-
cant patient waiting time.

Our proposed model is able to model the flow of patients in the
stages of the facility as well as revisited stages. In addition, we con-
sider minimization of bi-objectives of patients waiting time and
completion time while considering the resources availability and
compatibility. Our experiments show that our model can solve
large problems in a reasonable amount of time.

4.2. Simulation model

We developed a discrete event simulation model of the
described facility using the Arena™ 12 software. The model
includes all stages shown in Fig. 1. The commonly used lognormal
distribution is adopted to model the service time distribution for
each stage (e.g., see Zhou & Dexter, 1998). The mean and variance
of the service time is determined based on the specified values in
each test problem, to be discussed in Section 5. In addition, the
number of resources at each stage is determined according to the
test problem parameters such as the number of patients, the
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number of ORs, and so on. For OR stages, we assume that the num-
ber of surgeons is equal to the number of ORs, and the ORs are con-
sidered staffed. The allocation of patients to the servers is done by
the algorithm with the goal of finding a better front (set of solu-
tions). More specifically, the algorithm tries to find assignment of
patients to the available servers and resources at each stage in a
way that results in minimal completion time and patient waiting
time. It is embedded in the logic of the simulation model where
within the queues of each stage, the priority is given to the patients
who arrive earlier. In other words, the first available resource is
assigned based on first-come-first-served rule in the queues.
Therefore, the server and resource allocation has direct correlation
with the patients’ appointments sequencing and timing.

The simulation model falls in the category of terminating simu-
lation models (Banks, Carson, Nelson, & Nicol, 2005). That is, in our
simulation model, a predetermined number of patients are served
in the scheduling horizon of one day. The patients arrive according
to the schedule, and we assume no tardiness in arrivals and no no-
shows in the system. Patients proceed through the facility accord-
ing to their service sequence.

We used the simulation model to estimate patients’ waiting
time and completion time for each proposed schedule. Also, the
simulation model is used to as a platform to compare the perfor-
mance of MATS with NSGA-II.

4.3. Multi agent tabu search (MATS)

Most multiobjective tabu search methods consider multiple
solutions that are simultaneously improved towards the Pareto
optimal front. Typically, these methods apply two approaches
regarding the objective function handling. The first approach con-
siders a weighted sum of the objectives as a new objective func-
tion. Therefore, any single objective optimization method can be
used to solve the problem. The weights are usually pre-set and
the result of this method is a single solution rather than a Pareto
front. The second approach deals directly with finding the Pareto
frontier solutions. This approach has been applied in different ways
to enhance the single-objective method.

For instance, Hansen (1997) used a modification of weighted
sum method in which multiple weighted sum objectives are
improved simultaneously considering different sets of weights
for objectives. Caballero, Gandibleux, and Molina (2004) developed
a two-phase tabu search based algorithm: the first phase involved
a tabu search method to generate a non-dominated solution set;
the second phase consisted of an intensification method using
path-relinking strategies. Jaeggi, Parks, Kipouros, and Clarkson
(2008) developed a tabu search method using Hooke-Jeeves direct
search methods. They suggested that NSGA-II might be a better
approach for problems with a small number of variables. However,
they noted that multiobjective tabu search is a better approach for
large and highly constrained problems.

In this article, we propose a new multi-criteria multi-agent tabu
search algorithm (MATS) to deliver the Pareto (near) optimal fron-
tier for the appointment scheduling problem. MATS algorithm
includes a number of agents that attempt to find members of the
non-dominated solution set (also, called approximation set). Here,
we incorporate a stochastic simulation model with the tabu search
to solve a highly constrained problem (including time and resource
constraints). The time and resource constraints implemented using
simulation and MP models. For instance, availability of resources in
each stage is managed by variables local to simulation model.
However, this policy requires passing of many parameters to the
model. Simulation model, for example, requires the initial values
of resources that are provided by MATS algorithm. In order to
reduce the number of function evaluations, we develop a deter-
ministic scheduling module (DSM) which estimates the waiting

time and completion time of a schedule based on the mean of ser-
vice time, and selects a number of schedules with the largest fit-
ness value to be evaluated by the simulation model.

Moreover, agents work in parallel and share information with
other agents regularly to improve algorithm performance. Each
agent functions as a standalone tabu search that seeks optimal
solutions for the problem within each iteration. MATS updates
the information among the agents after every iteration. Each itera-
tion of MATS includes only a single iteration of an agent.

A solution consists an array of size n, where n is the number of
patients. This array represents the time block at which each patient
arrives at the first stage. Fig. 2 depicts the steps involved in MATS,
and each step is described below.

4.3.1. Generating initial solutions using the MP model

In order to initialize the algorithm we need to provide each
agent with an initial solution. A number of initial solutions are
determined using MP. The rest of initial solutions are specified ran-
domly by assigning an arbitrary time block to each patient.

4.3.2. Fitness computation and frontier points identification

In MATS, we determine the fitness value (G score) of a given set
of solutions following the Schaumann, Balling, and Day (1998)
approach.

= [1= max (min (7~ P S Son = Fln) )]

1<) ji \ 1<k<m
9)

where, G; is the fitness value of solution i; J is the number of objec-
tives and m is the number of solutions in the set; i and j are two
solutions in a given set of solutions. fy, is the scaled kth objective
value of the ith solution. The max operator is over all solutions
except solution i. The min operator includes all the objectives. The
fy is scaled in range [0, 1], hence all objective values are in the same
range and comparable. f}, is scaled using Eq. (10).

. fi min
1 k—Jk
fsk = m;x min ’ (10)
kK —Jk

where, f} is the original value of the kth objective and f{"** and f{""
are the maximum and minimum values among original values of
the kth objective of all solutions, respectively. The non-dominated
solution set is determined based on the G score of all solutions.

’ 1. Generating initial solutions using mathematical programming model ‘

!

’ 2. Fitness computation; Pareto frontier identification ‘

¥

—b{ 3. Selecting seeds for agents from current Pareto frontier ‘

!

’ 4. Iterating next agent ‘

I

’ 5. Pareto frontier identification ‘

Fig. 2. Steps of MATS.
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Fig. 3. The crowding distance of point i is the side length of the cuboid surrounding
the point.

The solutions with the score greater than or equal to one are iden-
tified as non-dominated solutions.

For instance, consider five solutions with 2 objectives of f; and f5:
a(0.5,2), b(1,1), c(4,0.5), d(3,1.5), and e(2,3). The scaled objectives
of these points over the first objective are as follows: fl =0,
fl=01428, fL =1, f, = 0.7142, f!, = 04285, f2, = 0.6, f% = 0.2,
f2 =0,f2, = 0.4,f%, = 1.For sake of brevity, only the calculation rel-

evant to point a is presented. The term maszu#i (minkm:1 (fil -

L f = P S — ’5m>> for i=a is equal to following term
by replacing the values: max{min(—0.1428,0.4), min(-1,0.6),
min(—0.7142,0.2), min(—0.4285,-0.4)} which ultimately results
in max (—0.1428,-1,-0.7142,-0.4285) and hence the G, will be

equal to 1.1428.

4.3.3. Selecting seeds for agents from the non-dominated solutions set

In order to achieve the best performance of the algorithm, the
agents’ seeds are updated every time the Pareto front changes.
We expect that the better are the agents’ seeds, the better results
can be expected from the optimization. MATS considers the last
iterated agent and updates the next agents’ seeds with the
solutions that have the highest fitness scores. This treatment
may cause the search to trap in a local minimum. To remedy this
issue we used the crowding distance density estimate by Deb,
Agrawal, Pratap, and Meyarivan (2000) to improve the diversity
of agents’ seeds. In order to assign the agents’ seed, we select the
non-dominated solutions with the highest value of crowding
distance estimator.

4.3.4. Iterating next agent

The next agent performs an iteration, which includes neighbor-
hood generation, fitness evaluation and, selecting the next seed
considering the tabu list. This process is described in detail in
Section 4.4.

4.3.5. Pareto frontier identification

This step includes the identification of Pareto front based on the
new G scores, which are obtained by including the selected prom-
ising solutions from the agents’ iteration in the previous step.
When an agent iterates, the G scores of the promising solutions
within the neighborhood of the agent are evaluated and compared
with the best solutions known in previous iterations. If any of the
solutions within the neighborhood has a high fitness value it will
be added to the long term memory. The solutions with the largest
G score are identified as non-dominated solutions.

4.3.6. Convergence condition check

Several convergence conditions can be applied to the proposed
method. MATS considers two criteria for algorithm termination, (a)
the number of stalled iterations, and (b) the number of function
evaluations. If the Pareto front does not improve from the previous
iteration, the current iteration is considered as a stalled iteration.
MATS converges if a specified number of stalled iterations happen
consecutively. In addition, MATS terminates after performing a
specified number of function evaluations (solutions evaluated by
simulation).

In order to improve the performance, tabu search keeps record
of local information by means of different types of memory struc-
tures. This local information may include parts of the solutions, or
other attributes of the solutions. We use a short-term memory to
address the tabu lists of local searches of the algorithm. After each
move, the attribute of the move is recorded to avoid cycling in the
algorithm. In the proposed method, each local search has a tabu
list. We select the tabu tenure of 30 iterations. Based on the swap
and insertion, we construct the tabu lists, which are shared by all
agents. The lists contain the history of recent moves. For example,
when swapping is applied, a list of moves is recorded. This list pre-
vents any reverse moves.

The long term memory is used to record all best solutions
achieved in all iterations. MATS records all the solutions with G
score greater than Gy € [0,1]. Long term memory includes all
non-dominated solutions at each iteration of the algorithm. In
addition, the recorded solutions are used in the calculation of G
score for future solutions. The G score of each solution is updated
in every iteration. Long term memory is also used to achieve inten-
sification and diversification in the algorithm.

As an agent performs the search, a number of best solutions are
evaluated using simulation model. These solutions are then evalu-
ated and ranked based on their G scores. At the end of each itera-
tion, the seeds of agents are updated and replaced with the best
solutions recorded in the long term memory. The selection proce-
dure includes two steps: first, all the solutions with the greatest G
score are selected. Then, the solutions with the largest crowding
distance are selected as new seeds for the agents. This policy inten-
sifies the search in the most promising regions. Contrary to the
other multi objective tabu search methods which separately
improve multiple solutions in parallel, our method uses all the
information obtained collectively by all agents. Moreover, each
agent uses the information which gathered by all agents.

Long term memory usually used in diversification policies of
tabu search methods to lead the search into the unexplored regions
of search space. In single objective optimization problems, a com-
mon strategy is penalizing objective function based on the fre-
quency of occurrence of attributes. In this work, we use the
crowding distance density estimator introduced by Deb et al.
(2000) to maintain diversity of our search method. This method
estimates the density of the solutions around a specific point by
taking the average distance between this point and its two neigh-
boring points on each side in the performance space. The distance
quantity represents the size of the largest cuboid that encompasses
the point excluding any other point from the Pareto front. Fig. 3
shows the cuboid which determines the crowding distance for
point i in its front. F; and F, represent the first and second objec-
tive. In addition to guiding the search to unexplored regions, the
crowding distance helps to increase the range of non-dominated
solution set by assigning large values to extreme solutions for each
objective function.

MATS applies a hash function in order to speed up the search
and identify the solutions. Hash functions commonly refer to any
algorithm or mathematical function that converts a large amount
of data into an integer value. Hash functions are usually used to
speed up table lookups or to find duplicated records.
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Start of iteration

Neighbourhood generation

)

’ Evaluation using DSM ‘

I

Fitness evaluation and promising solutions selection based on DSM results

Does solution satisfies
aspiration rule?

End of iteration

Fig. 4. Flowchart of an agent’s iteration. This flowchart depicts the step 4 of MATS
depicted in Fig. 2.

We use the hash function here to map an integer value to each
solution which enables us to speed up search in the long term
memory. Furthermore, it prevents the algorithm from recording
duplicate solutions in the long term memory and agents’ seed. In
MATS, Cyclic Redundancy Check (CRC32) algorithm has been used
as the hash function. Reader can refer to Stigge, Plotz, Muller,
and Redlich (2006) for more information on its theory and
implementation.

4.4. Tabu search agent

In this section, we describe the step 4 of the MATS algorithm.
This step includes the steps of an agent’s iteration. In the proposed
algorithm, agents operate according to the tabu search algorithm.
Generally, tabu search iteratively generates the next solution j
from the current solution i through specified steps. A neighborhood
is defined for each current solution, N(i). The next solution is
obtained by searching around N(i) using neighborhood search
methods.

Tabu search allows non-improving moves. That is, even if the
best solution found in the current neighborhood is a non-improv-
ing one compared to the best-known solution, the non-improving
solution will be used in the next iteration. We define a move as
replacing the seed solution of the tabu search with a new solution.
The components of the tabu search are as follows:

4.4.1. Local searches

Swapping: let i and j be two positions in a random sequence s. By
performing a swap-move iteratively, a neighborhood of s is
obtained by interchanging the patients in positions i and j. In the
proposed method, swapping is applied to the second part of the
solution, which concerns time blocks.

Insertion: let i and j be two positions in a random sequence s. A
neighborhood of s is obtained by inserting the patients assigned to
position i to position j, pushing the cells between these positions
backward (forward), including the patients of position j, if j is

greater (less) than i. This change of positions is performed on the
first part of a solution (patients’ time blocks). The policy of swap
on the second part of solution and Insert on the first part reduces
the chance of cycling and trapping in local minima.

4.4.2. Deterministic scheduling module (DSM)

In order to reduce the number of function evaluations (evaluat-
ing solutions by the simulation model), a deterministic heuristic
has been developed. DSM calculates the average waiting time of
patients and completion time of each schedule based on the mean
of service times. This component enables us to screen solutions
before being evaluated by the simulation model. DSM calculates
the discharge time of each patient based on the patient service
sequence and mean of service times. The completion time of the
schedule is the maximum discharge time of all patients. The wait-
ing time of each patient is determined under the assumption that
the waiting time is the total time that a patient spends in the facil-
ity subtracted by the sum of service times at different stages. DSM
ranks the evaluated solutions according the G score calculated
based on deterministic evaluations. A number of solutions with
the largest G score will be evaluated using the simulation model.
Fig. 4 illustrates the flowchart of an agent’s iteration which is a
zoom-in of step 4 of MATS algorithm.

The neighborhood is built based on the current solution using
the swap and insertion local search. A random number of solutions
in each neighborhood are evaluated by using the DSM. The solu-
tions are sorted and ranked based on the values assigned to them
through the deterministic evaluation. The agent algorithm selects
the promising solution based on the G score of all solutions calcu-
lated using the approximate average waiting time and completion
time obtained from DSM. The selected promising solutions are
then evaluated using the simulation model. The simulation model
determines the average waiting time and completion time through
multiple replications of the simulation. We used 30 replications of
simulation run for each setting in our experiments.

The next step includes the fitness evaluation of the selected
solutions with respect to all solutions with high fitness values
obtained in previous iterations. In order to do so we have to add
the set of new solutions which are going to be evaluated to the list
of solutions with the highest fitness values (non-dominated solu-
tion set), and evaluate the G score of all of the solutions based on
this combined set.

5. Performance study of MATS
5.1. Performance measures

To gauge the performance of the proposed MATS for multiobjec-
tive optimization, we compared the algorithm with the well-
known NSGA-II method based on a number of performance
measures.

Typically, to study the performance of a multiobjective optimi-
zation algorithm, two aspects are examined: effectiveness (the
quality of outcome) and efficiency (the required amount of compu-
tational resources to generate such an outcome). For effectiveness
measurement, various performance measures have been defined in
the literature. Addressing the efficiency of an algorithm often
includes considering a fixed number of function evaluations or a
certain amount of computational time. Interested readers refer to
Zitzler, Thiele, Laumanns, Fonseca, and Da Fonseca (2003) for a
review of performance metrics. Here, we selected three criteria
for evaluating performances: the hypervolume indicator, spacing
indicator, and computation time. We use the hypervolume indica-
tor to measure the closeness of the non-dominated solutions set to
the Pareto-optimal front. The spacing indicator has also been
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Fig. 5. Illustration of hypercube indicator, Durillo, Nebro, Luna, Dorronsoro, and
Alba (2006).

utilized to examine the spread of non-dominated solutions. Fur-
thermore, to compare the efficiency of the algorithm, we consider
a limited number of function evaluation (500 function evalua-
tions), and compare the computation time of algorithms.

5.1.1. Hypervolume indicator (HV)

One of the metrics that is employed by many researchers is
hypervolume, first proposed by Zitzler and Thiele (1998). Hypervo-
lume delivers a single scalar for the closeness of the non-domi-
nated solutions to the Pareto optimal front. In addition, it can be
used to compare algorithms in problems in which the Pareto opti-
mal front is unknown.

For example, The HV indicator calculates the volume confined
by the non-dominated points and a reference point as shown by
the shaded area in Fig. 5. The reference point can be simply deter-
mined as a vector of worst possible objective values. The method
that results in larger HV indicator values is more desirable. Fig. 5
presents the calculation of the HV indicator for a bi-objective prob-
lem where the objectives are to be minimized.

5.1.2. Spacing indicator

The spacing indicator proposed by Schott (1995) measures how
evenly the points in non-dominated solutions set are distributed in
the objective space. The indicator is the standard deviation of the
distance of each point to its closest neighbor, Eq. (11).

where, d; = minj<

f —f’i‘-&—p‘; —fﬁ‘), ij=1,...,n, and d is the
mean of all d; and n is the number of solutions in the non-
dominated solution set. The less value of the spacing indicator,
the smoother the points are distributed within the objective space.
The smooth spread of points in Pareto front is preferred because it
suggests that the method is capable of finding non-dominated
solutions in all areas of objective space.

5.1.3. Tests and results

This work uses GAMS™ to develop the mathematical program-
ming model and Arena™ 12 for simulation. The CPLEX solver has
been used to solve the MP model. The multiobjective tabu search
has been coded in Visual C# 2005. We used the Arena object model
component to establish connection between MATS and simulation
model. We used a PC with 2.53 GHz Intel® Core 2 Duo CPU with
3 GB of RAM to run the experiments.

In order to evaluate the performance of the proposed method,
we selected several important factors based on our preliminary
analysis. These factors include the number of patients, number of
patient types, and coefficient of variation of service times. We then
designed a set of experiments to analyze the effect of selected fac-
tors on the performance of algorithms. Based on our case study and
our observations in other facilities, we defined a set of test prob-
lems with three levels (10,20,40) for patients, and three levels
(4,6,10) for patient types to represent different size facilities. Each
patient type follows a different service sequence as depicted in
Table 1.

Table 1 shows the specifications of patient types. For each
patient type, the mean of service time at each stage is derived ran-
domly from a uniform distribution between 15 and 120 min (i.e.,
Uniform [15,120]), as listed in Table 1. The values then are rounded
to the closest multiplier of the length of a time block of 15 min.
Moreover, we considered the lognormal distribution as well as
two different levels of coefficient of variations (CV) of 0.1 and 0.4
for each service time. We used the lognormal distribution since it
is commonly used in the literature to represent duration of services
in the healthcare (e.g., see Zhou & Dexter, 1998). The mean of the
distributions was assumed based on patient types.

In this paper, the algorithm chosen for studying the perfor-
mance of the proposed method is the Non-Dominated Sorting
Genetic Algorithm (NSGA-II), which is a widely used multiobjective
evolutionary algorithm and publicly available (Deb et al., 2000).
NSGA-II classifies the individuals into several layers by applying
a non-dominated sorting method and a crowding distance opera-
tor. It incorporates elitism selection strategies. We used the imple-
mentation of NSGA-II in Matlab™ optimization toolbox. NSGA-II
was run with a population size of 50 and 500 function evaluations.

2
o= M} (11) For the rest of parameters, we used default settings. The crossover
(n—1) rate of 0.8 (the single point crossover has been adopted), the

Table 1
Specification of patient types.

Patient Service Mean of service Description

type sequence time of stages (min)

1 1,59 15, 15, 105 Patients who need a doctor visit

2 1,7 15, 45 Patients who need to do a lab test

3 1,8 15, 105 Patients who need to do an MRI

4 1,6 15, 120 Patients who need to do a X-ray/CT-scan

5 1,2,3,4 15, 105, 60, 120 Patients with surgical procedures

6 1,7,2,3,4 15, 75, 15, 120, 45 Patients who need to do a lab before surgical procedures

7 1,519,7 15, 75, 120, 90 Patients who need to do a lab after doctor visit

8 1,598 15, 15, 30, 120 Patients who need to do an MRI after doctor visit

9 1,509,6 15, 30, 75, 105 Patients who need to do a X-ray/CT-scan after doctor visit

10 1,596, 10 15, 105, 45, 90, 105 Patients who need to do a X-ray/CT-scan after doctor visit and return for consulting

the results with doctor
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Table 2
Comparison of MTAS and NSGA-II in terms of quality and computational time.
Test problem # Of patients # Of patient types cv NSGA-II MATS
HV Spread Time (s) HV Spread Time (s)
P10T4C0.1 10 patients 4 types 0.10 79.49 0.25 353.23 82.20 0.09 196.05
P10T4C0.4 0.40 78.23 0.21 370.98 80.51 0.14 192.66
P10T6CO0.1 6 types 0.10 80.39 0.16 507.21 89.48 0.14 182.50
P10T6C0.4 0.40 77.05 0.24 395.63 85.27 0.16 179.95
P10T10C0.1 10 types 0.10 67.83 0.33 366.36 74.65 0.26 224.30
P10T10C0.4 0.40 63.33 0.21 386.05 68.23 0.17 206.40
P20T4C0.1 20 patients 4 types 0.10 73.23 0.13 383.14 87.05 0.08 203.80
P20T4C0.4 0.40 71.04 0.15 357.47 84.43 0.13 204.22
P20T6C0.1 6 types 0.10 66.53 0.25 396.28 77.65 0.12 225.53
P20T6C0.4 0.40 61.88 0.19 398.58 70.92 0.13 209.39
P20T10C0.1 10 types 0.10 60.07 0.30 488.41 72.45 0.21 236.63
P20T10C0.4 0.40 54.92 0.18 401.63 62.84 0.12 236.50
P40T4C0.1 40 patients 4 types 0.10 64.27 0.11 397.23 78.32 0.07 23230
P40T4C0.4 0.40 62.38 0.12 451.53 74.14 0.08 232.50
P40T6CO0.1 6 types 0.10 58.49 0.11 429.84 71.57 0.07 230.81
P40T6C0.4 0.40 55.74 0.11 410.19 66.74 0.09 199.83
P40T10C0.1 10 types 0.10 52.58 0.15 396.30 66.71 0.13 240.30
P40T10C0.4 0.40 48.70 0.13 417.53 58.90 0.08 258.68
18 Table 3
17 N Specification of test problems.
% 16 : Test problem # Of patients # Of patient types # Of surgeons
Sl Day 1 39 30 10
£Eu Day 2 38 29 10
g 13 ‘::‘3“’3:. ; . + NSGAII Day 3 36 29 9
55 K] . ., MATS Day 4 48 35 11
£ Day 5 32 30 10
S
10
9
0 0.1 0.2 0.3 0.4 0.5 methods. The results suggest that MATS outperforms the NSGA-II

Waiting time (hours)

Fig. 6. Comparison of Pareto sets of MATS and NSGA-II for 30 runs.

mutation rate of 0.01 (order changing mutation has been adopted),
and tournament selection have been used in experiments.

Table 2 presents the result of experiments on the test problems,
and compares MATS with NSGA-II based on the three criteria of
HV, spacing indicator, and computation time. The results are based
on the average value of indicators over 30 runs for each method.

Studying the effectiveness of algorithms, the results in Table 2
show that MATS yields greater values of the HV indicator. It
suggests that solutions offered by MATS are closer to the Pareto-
optimal front than NSGA-II. The spacing indicator results suggest
that MATS presents more evenly distributed non-dominated
solutions than NSGA-II as well. Considering the efficiency of the
algorithms, MATS needs less time to complete 500 function evalu-
ations. In summary, our experiments show that MATS consistently
presents better results than NSGA-II in terms of both efficiency and
effectiveness.

Differences in the performance of the two methods can also be
visually observed. The performance of the two algorithms signifi-
cantly differs from each other when it comes to completion time
as the waiting time increases. For example, Fig. 6 shows the non-
dominated solution set of MATS and NSGA-II for the test problem
P40T6C0.4 with 40 patients, six patient types, and CV of 0.4. The
figure shows the non-dominated solution sets for 30 runs of MATS
and NSGA-IL. The figure suggests that MATS and NSGA-II can
achieve comparable results in the solutions with greater comple-
tion time of the facility. However, in the region which addresses
smaller completion time with greater waiting times of patients,
there is a significant difference between the results of these

in terms completion time.

6. Case study

This section applies our methodology to the data obtained from
an OR department of a regional Canadian hospital with around 500
beds. This hospital is the only site in its health authority that offers
services in specialties such as thoracic surgery. The OR department
of this hospital includes 10 ORs and 20 post anesthesia care unit
bays. Annually around 8000 surgeries are performed in the hospi-
tal; 20% of them are emergency cases and the rest are elective cases.
However, not being a trauma center, most of the emergency cases
in this hospital can be performed within 72 h. This time enables
the surgical program to schedule the emergency and elective cases.
Here we only address scheduling of surgeries including emergency
and elective cases that can be scheduled in advance. That is, emer-
gency cases that are not known by the beginning time of the sched-
uling horizon are out of scope of this study. In addition, patients in
the understudy OR department include both inpatient and outpa-
tient cases served in the department. Inpatient patients are treated
as the same as the outpatient patients in terms of scheduling.

In this setting, the facility completion time refers to the time
when the last served patient leaves the post anesthesia care unit
(PACU). This measure reflects the total time that an OR department
should be operational. Completion times longer than official oper-
ating hours results in overtime of the department. The average
patients waiting time reflects the blocking at each stage. For
instance, if a patient is waiting to receive a PACU bay, this patient
is blocking an OR and delaying the future surgeries of that OR.

The number of patients and patient types are pre-determined in
a higher-level planning step according to the available resources.
We assume patients’ punctual arrivals. Each patient is served by
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a specific surgeon. Therefore, it is important that the compatibility
of resources and patients be considered.

6.1. Experiments and results

The MP models have been developed using GAMS™, and CPLEX
solver has been used to solve the models. The simulation model
has been built in Arena™ 12 environment. Microsoft Visual C#
was used to code the multi-agent tabu search algorithm. The con-
nection between MATS and the simulation model has been estab-
lished using Arena object model component. A PC with i7 2.8 GHz
Intel® CPU with 8 GB of RAM has been used to run the experiments.

In order to evaluate the performance of the proposed method, a
sample of five days of the OR department data are selected. These
days have been suggested by the management of surgery unit,
because the detailed data were readily available. The data for these
five days are then used to construct five test problems. Each test

problem is implemented in the simulation model and the parame-
ters of MP models and MATS are set accordingly.

For each test problem, five runs of the methodology are consid-
ered. Each run provides a Pareto front. The hypervolume (HV) indi-
cator for each run is then calculated. Based on the hypervolume
values of these five runs, the HHV front (the front with the highest
HV value) and the LHV front (the front with the lowest HV value)
are chosen. For each day, the best and the worst performance of
the algorithm are then compared with the actual schedule retrieved
from actual data. Table 3 presents the specification of test problems.

6.2. Sample daily performance

Fig. 7 shows the result of the proposed method on day 5 of test
problems. Results suggest that our method delivers a few non-
dominated schedules (HHV front) compared with actual schedule.
It is observed that our method offers schedules that significantly
decrease the completion time while slightly raises patients’ aver-
age waiting time.

Based on the coordinates of the actual schedule, a gray square
has been drawn to represent the dominated area. The dominated
solutions fall in the square. Most of the solutions from the front with
lower HV value fall in the dominated area, which shows the better
performance of actual schedule than most solutions in LHV. How-
ever, the LHV front still presents few non-dominated solutions.

Fig. 8 compares the performance of the proposed method with
performance of actual schedule in terms of completion time. This
figure presents the results of HHV front, and actual schedule for
a week. For each day, maximum, minimum, and the average value
of the set of solutions in the HHV front are presented. The figure
suggests our method outperforms the actual schedules in terms
of completion time, which is a very important measure in schedul-
ing as it has direct impact on the overtime.

Fig. 9 compares the performance of the proposed method with
performance of actual schedule in terms of average waiting time.
This figure presents the results of HHV front, and actual schedule.
For each set of solutions, maximum, minimum, and average value
of HHV front are presented. The figure indicates that the proposed
method can offer competitive results compared with actual sched-
ules; however, it does not present significantly better solutions in
terms of patients wait time.

Considering the test problems and the performance of the pro-
posed method, it is noticed that the strength of the proposed
method is more apparent in providing schedule with superior
results in terms of completion time in comparison with an actual
schedules, while providing results that are comparable (or slightly
inferior) in terms of patient’s wait time.

Overall, it is observed that our method offers quality schedules
which provide the OR department management with more options
to schedule patients and enables managers to select schedules
which are more aligned with their priorities. For instance, if it is
important for the management to decrease the facility completion
time to reduce the overtime cost, they may choose the schedules
with less completion time at an acceptable expense of patients’
waiting time.

The experiments suggest that our method was capable of offer-
ing solutions that were not dominated by the performance of the
actual schedule that had been retrieved from historical data. That
is, the proposed method can deliver solutions that are at least as
good as actual schedules employed by the practitioner.

7. Insights

Based on our study, and through the collaboration with the OR
booking staff of the case study hospital and the health region’s OR



4040 A. Saremi et al. /Expert Systems with Applications 42 (2015) 4029-4041

booking coordinator, we obtained invaluable insights that can be of
interest to both academic and practitioner readers. In this section,
we provide our observations and some simple recommendations,
which may be useful to improve performance of surgery schedul-
ing in different facilities.

7.1. Overtime should be avoided whenever possible

Based on our interviews with the OR management and the OR
booking personnel, aiming for less overtime has more priority in
their scheduling than other factors such as minimizing postpone-
ments and OR idleness. The following reasons have been
mentioned:

o The financial implication of having overtime suggests against it.
The postponed cases can ultimately be done during the regular
hours of future days if clinical safety measures allow.

e Clinical safety measures recommend avoiding long working
days for surgeons. This not only leads to less complications
due to surgeons’ fatigue in OR departments, but also ensures
that patients with major procedures are stabilized in recovery
and arrive at surgical wards before evening shifts start.

7.2. It is recommended to schedule cases with longer durations or
larger variability (e.g., inpatient cases) in the beginning or in the
middle of the day

Cases with longer durations often have larger variability. This
insight is mainly driven by the fact that scheduling cases with
longer duration at the end of the day may result in more overtimes.
In contrast, having longer cases at the beginning or middle of the
day may result in more postponements. As mentioned above, man-
agers are usually more inclined to see less overtime than having
postponements when it comes to tradeoffs. Additionally, applying
this recommendation gives managers more flexibility to compen-
sate for delays due to long cases by taking reactive measures.

7.3. It is recommended to schedule cases of a surgeon in the same room

Scheduling all patients of a surgeon in a specific room will pro-
vide the opportunity of having shorter turnaround time as most
equipment for a day of surgery may be placed in the same room
and it leads to less transportation and setup time. In addition, it
would avoid postponements and delays for other surgeons’ cases
if a case goes longer than expected. This is a desirable outcome
as the surgeons’ time are often the most expensive and scarce
resource in the OR department. Applying this recommendation is
subject to availability of enough number of cases for a surgeon to
fully utilize an OR.

7.4. It is recommended to schedule similar cases in the same OR

This recommendation mainly aims reducing setup time by plac-
ing similar procedures (i.e., cases that require the same equipment)
in the same room. It particularly pertains to procedures that
require special equipment such as open-heart surgeries or
orthopedic cases. Applying this recommendation is subject to the
availability of enough number of similar cases to fully utilize ORs.

7.5. It is recommended to schedule cases with less flexibility first

Some cases can be assigned to only one type of resource,
whereas others may be flexible and can be assigned to several
alternative resources. This recommendation encourages schedul-
ing of less flexible cases prior to more flexible cases to satisfy
compatibility requirements. For example, scheduling of a case with

an open-heart surgery (that can be performed only in a specific
room) should be done in prior to the scheduling of a general sur-
gery case (that can be performed in most rooms).

All these recommendations should be applied in conjunction
with the clinical and operational constraints that exist in the OR
departments. For instance, usually diabetic and pediatric cases
are done in the early mornings to avoid long fasting of patients
or usually surgeons’ preference and clinical opinion have the final
say in the sequencing of the surgeries.

8. Conclusions

In this article, we addressed the appointment scheduling of
patients of different types with stochastic service times and heter-
ogeneous service sequences in multi-stage outpatient facility set-
tings. The study of literature in this domain reveals that there
exists a gap in the methods that provide competitive optimization
schemes while accommodating challenges presented in the
appointment scheduling. We target this gap by introducing a mul-
tiobjective simulation-based tabu search method enhanced by MP
(MATS), which takes advantage of the flexibility of simulation, and
efficiently and effectively perform multiobjective optimization.
The proposed method integrates the tabu search with mathemati-
cal programming (MP) to deliver (near) optimal Pareto fronts for
appointment scheduling of patients in order to achieve bi-objec-
tives of minimizing patients wait time and minimizing the comple-
tion time of the facility. We use the simulation model to address
the stochastic nature of the problem and accommodate several
constraints and parameters of the system. To study the perfor-
mance of the proposed method, we developed many experiments
over a range of scheduling factors — the number of patients, the
number of patient types, and the coefficient of variation of service
times.

We compared the proposed method with a well-known multi-
objective evolutionary algorithm, NSGA-II, based on solution qual-
ity and computation time. The quality of solutions has been
evaluated by two criteria: the closeness to the optimal Pareto front,
and the smoothness of distribution of non-dominated solution in
the objective function space.

Experiments suggest that MATS presents non-dominated solu-
tions with closer to the Pareto optimal front than NSGA-II. Results
also indicate that MATS yields frontiers, which cover a larger range
of values in the objective space. In addition, we observed that the
solutions presented by MATS are more evenly distributed than
those of NSGA-II. Furthermore, MATS requires less computation
time than NSGA-II. In conclusion, MATS shows its superior perfor-
mance in terms of effectiveness and efficiency.

This article also includes a case study of applying proposed
method on the scheduling of operating room department of a
major Canadian hospital. The proposed method has been imple-
mented and modified to fit the case study problem. Three years
worth of actual data has been used to derive the statistical distri-
bution of processing times and to construct the simulation model
of the OR department. The results show the superiority of the pro-
posed method in compare to actual schedule extracted from his-
torical data.

The experiments suggest that the proposed method was capa-
ble of offering solutions that were not dominated by the perfor-
mance of the actual schedule. That is, the proposed method can
deliver solutions that are at least as good as actual schedules
employed by the practitioner. Additionally, it enables the depart-
ment management to select the schedules which are more aligned
with their priorities.

This article also provides insights that interest both academic
and practitioner readers. We provide some recommendations
gained through collaboration with clinicians and further enhanced
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by our modeling and analysis of results. These insights may be
found useful to improve performance of surgery scheduling in dif-
ferent facilities.

Overall, the contribution of this paper to the area of expert sys-
tems are deemed as follows: first, this paper proposes a method for
scheduling of patients with different pathways in healthcare
industry in which multiple tools of scheduling are integrated. Sec-
ond, the performance of proposed method is evaluated and con-
firmed using the actual data. Third, this research shows how the
application of MP can improve the performance of simulation-
based optimization methods, which historically only relied on
the combination of simulation models and metaheuristic
approaches such as NSGA-II.

Several directions for future research are apparent from this
study. First, we considered appointment scheduling of patients
with punctual arrivals. Future research may include extending
the proposed method to address appointment scheduling in pres-
ence of no-shows or unpunctual arrivals. Second, this research
could be adapted to explicitly address other scheduling challenges
such as processes with sequence dependant setup times/cost, and
resources with time windows constraints. Finally, alternative
approaches (such as stochastic mathematical programming) could
be developed and compared with the proposed method. The effi-
ciency and effectiveness of these approaches should be further
studied in different environments.
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