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Abstract 
 
A new metamodel-assisted sampling search approach applied to the aerodynamic shape optimization of turbomachinery airfoils is pre-

sented in this paper. The proposed methodology integrates a non-uniform rational B-spline (NURBS) geometry representation, a two-
dimensional flow analysis, and an improved metamodel driven optimization algorithm named approximated promising region identifier 
(APRI), which represents a momentous advancement of the existing space exploration techniques specifically for the high-dimensional 
expensive black-box (HEB) problems. The novel optimization method prospects the whole design space by generating sample points, 
reporting evaluating information using a surrogate model, and then focusing the search in the most promising region by deploying more 
agents. Using the integration of these adaptive tools and methods, the optimization results are considerably promising in terms of compu-
tational efficiency and performance enhancement of the turbomachinery blade airfoil shape in both design and off-design conditions.  
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1. Introduction 

Nowadays, the increasing demand for energy worldwide as 
well as its environmental effects has forced manufacturers to 
look for optimized component and system performances for 
more efficient energy conversion processes. Considering 
thermal power plants as one of the most important power gen-
eration systems, the heavy-duty gas turbine (GT) compressor 
blades’ aerodynamic shape plays a key role in system per-
formance enhancement. Thus, efficiency preservation/im- 
provement of these blades’ sections, i.e. the airfoils, is of in-
terest to both end-users and original equipment manufacturers. 
That is actually why GT compressor designers have focused 
their efforts on the development of new automated techniques 
for blading process over the last years to improve the existing 
products or to establish completely new blade/airfoil designs. 

At the same time, many robust and adaptive engineering op-
timization techniques are extensively used in recent years to 
optimize complex real life engineering applications. In this 
way, the optimization tends to require large computational 
power, especially when high fidelity analysis such as compu-
tational fluid dynamic (CFD) or finite element analysis (FEA) 

is used in the design evaluation. Among these, shape optimi-
zation of complex mechanical systems represents one of the 
challenges that require more efficient and robust optimization 
algorithms specifically because of its expensive and high-
dimensional objective functions. To achieve the computa-
tional efficiency and accuracy for these problems, a fast and 
effective solution approach is in demand. This important re-
quirement is considered as the main purpose of the present 
study where an efficient integration of new optimization 
methods and adaptive tools is employed to optimally reshape 
the existing airfoil geometry. 

Metamodel-based or surrogate-assisted optimization, which 
uses efficient computational models ─normally known as 
meta-models or surrogates─ for approximating the fitness 
function value of any expensive optimization problems, is an 
attractive methodology recently applied by many researchers. 
As a matter of fact, metamodeling based optimization algo-
rithms are of interest for complex/multidiscipline design opti-
mization, which is normally limited by the massive computa-
tional effort. Metamodeling based optimization algorithms 
enable designers to conduct and perform the design process 
with less computation resources. Therefore, it has also found a 
huge interest and success in the aerodynamic shape optimiza-
tion (ASO) filed and specifically in the optimization of com-
pressor/turbine airfoils [1-10]. On the other hand, because of 
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the considerable success and popularity of evolutionary algo-
rithms in practice in recent years, many approaches have been 
introduced and are being developed to combine these algo-
rithms with the metamodeling concept to establish hybrid 
optimization methodologies, which are called surrogate as-
sisted evolutionary algorithms [11, 12]. In fact, as evolution-
ary algorithms are more often applied to solve black-box 
complex engineering problems, research interests in surrogate 
assisted evolutionary algorithms and their development have 
increased as well in recent years. The same for the ASO prob-
lems, most of references mentioned above have combined 
evolutionary algorithms with metamodels to decrease compu-
tation efforts and/or increase the quality of simulations. This 
approach dramatically decreases the number of expensive 
function evaluations, which is crucial specifically for the ex-
pensive high-dimensional problems where the optimization 
algorithm iteratively calls CFD evaluations. 

One of the recent works in aerodynamic design area has 
been performed by Iuliano and Quagliarella [13] in which a 
computational methodology is proposed for CFD-based wing 
section design to draw out a reduced order model as surrogate 
evaluator. The model is based on the proper orthogonal de-
composition (POD) and integrated in an evolutionary optimi-
zation framework to enhance the aerodynamic efficiency of an 
airfoil. Zhang et al. constructed a double-stage metamodel 
(DSM) combining merit of both interpolation and regression 
metamodels for wing aerodynamic design optimization using 
genetic algorithm [14]. It uses regression model as the first 
step to fit the original model, and then interpolation model is 
applied to improve accuracy of the metamodel. 

In the field of turbomachinery, in particular, a good over-
view of single-/multi- objective problem formulations and 
optimization methods including zero order methods (Random 
search and random walk), simulated annealing (SA), genetic 
algorithm (GA), differential evolution (DE), particle swarm 
optimization (PSO), first order methods (Finite difference 
method, algorithmic differentiation, adjoint method), and sec-
ond order methods are proposed by Verstraete [3]. The study 
focuses on using a metamodel assisted DE by employing arti-
ficial neural network (ANN) to optimally design blades of a 
radial compressor. Almost the same idea with a multi-layer 
ANN technique for estimation of GA expensive objective 
function was introduced by Shahrokhi and Jahangirian [4]. 
They have investigated the performance of this metamodel-
based GA by two transonic airfoil design problems. In the 
same year, Asouti et al. presented a grid-enabled asynchro-
nous metamodel-based evolutionary algorithm based on ANN 
metamodels, which was assessed with a number of ASO prob-
lems [5]. In 2010, an improved centrifugal compressor impel-
ler optimization with a radial basis function (RBF) network 
and principle component analysis (PCA) is applied by Ma et 
al. to transform the training database of ANNs [15]. They 
have then compared the performances of the developed surro-
gate assisted optimization procedures using these different 
trained ANNs. Karakasis et al. [6] and Karakasis and Gianna-

koglou [8] examined performance of RBF-based metamodels 
to assist a multi-objective evolutionary algorithm by filtering 
the poorly performing individuals within each generation and 
subsequently by allowing only the most promising among 
them to be exactly evaluated using the expensive function. 
They also developed a technique for turbomachinery airfoil 
optimization, which relies upon the combined use of hierar-
chical, distributed, and metamodel assisted evolutionary algo-
rithms.  

With application of metamodel-based evolutionary methods, 
a required trade-off has to be considered between accuracy of 
solution and CPU effort specifically for high-dimensional and 
expensive engineering problems. In other words, achieving an 
absolute satisfactory computational cost by means of evolu-
tion concept will lead to an unacceptable decrease in accuracy 
of global optima. Therefore, it would be favorable if other 
algorithms except the evolutionary techniques, which are still 
working based on metamodeling, can be applied for ASO so 
that global minima could be attained while computational time 
is considerably low. 

In this paper, optimizing the geometry of a typical GT com-
pressor blade airfoil is carried out using a guided random 
search technique with the objective of minimizing the total 
pressure loss coefficient for the design as well as off-design 
conditions. A metamodel-based global optimization (GO) 
algorithm called approximated promising region identifier 
(APRI) is developed to perform the design optimization proc-
ess. Though this is a generic methodology, its performance is 
demonstrated in optimization of a compressor airfoil shape. 
Following the introduction, a short problem statement is brief-
ly discussed to clarify the problem in-hand. The GO technique 
developed here is then introduced. Finally, implementation of 
airfoil shape optimization approach is explained. Last, the 
optimization results, discussion and conclusion are included. 

 
2. Problem statement 

While experimental activities remain decisive for ultimate 
assessment of compressor airfoils choices, numerical design 
optimization techniques, along with CFD simulation tools are 
assuming more and more importance for the detailed design 
and evaluation of designs. With the objective of minimizing 
the total pressure losses for the compressor design condition 
as well as maximizing the airfoils operating range in this study, 
design optimization is carried out by coupling an established 
MATLAB code for the geometry parameterization of the air-
foils’ shape, a blade-to-blade flow analysis in CFD module of 
COMSOL Multiphysics tool, and a developed APRI in 
MATLAB script as the optimization algorithm.  

After measuring the in-hand blade point cloud, the geome-
try parameterization is implemented using non-uniform ra-
tional B-spline (NURBS) curve [16] within MATLAB script. 
For geometry parameterization, there are several mathematical 
techniques including Bezier and NURBS as two of the most 
popular ones. Considering all pros and cons of NURBS at the 
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same time, its application in such geometry representation for 
optimization purposes seems to be more appropriate (more 
details can be found in other studies of the authors in Refs. 
[17] and [18]). In this implementation, accuracy and robust-
ness of the optimization process become the core issues, 
where the NURBS control points’ coordinates are considered 
as the design parameters in the optimization loop. To paramet-
rically represent the airfoil geometry, a direct handling of air-
foil shape is employed in this paper, which creates distinct 
curves for the suction side (SS), pressure side (PS), leading 
edge (LE) and trailing edge (TE) segments of the airfoil. 

Once the geometry is generated, it goes to the flow solver 
software for a 2-D fluid flow analysis. Post-processed results 
of the acceptable solutions are then entered to the fitness cal-
culation part. Lastly, since the CFD analysis for turbomachin-
ery application is limited by the time-consuming computa-
tional effort specifically in an iterative optimization process, a 
modified space exploration and region elimination technique, 
called APRI, is developed as a generic surrogate assisted op-
timization strategy for the optimization task. In other words, 
because of the fact that most of the computational time is 
spent in the evaluation of the objective function, a faster solu-
tion approach would be more appropriate. APRI works by 
exploring the whole design space by sending (Sampling 
points) to explore the design space and report some informa-
tion on it. Based on the information obtained from all agents, 
the algorithm focuses the search in the most promising region 
and explores it more by deploying more agents (Generating 
more sample points). Latin hypercube design (LHD) [19], 
which is a well-known sampling technique, is used as a sam-
pling technique to generate sample points. Once a promising 
region is identified, this region is refined with more sample 
points. A surrogate model or metamodel is then constructed to 
mimic the expensive objective function and help in searching 
for the optimum solution. In the next section APRI will be 
described in more detail. Fig. 1 illustrates the integration of 
tools and methods for the blade geometry optimization. 

 
3. Approximated promising region identifier optimi-

zation algorithm 

Surrogate assisted search, space exploration, and region re-
duction techniques are among the most effective optimization 
schemes for computationally demanding global design opti-
mization problems. In this way, an effective approach to es-
cape from the repeated evaluations of such expensive func-
tions is to explore the design space in an optimal design prob-
lem by removing the less promising and previously searched 
regions. Indeed, identification of promising regions where 
there is a higher potential for design solutions will accelerate 
the global search process. In this section, APRI search algo-
rithm used for airfoil shape optimization is introduced and the 
steps are explained. 

The developed algorithm consists of the following key ele-
ments: 

·Exploring the design space by generating sample points 
using the Latin Hypercube sampling method; 
·Identifying the most promising region based on evalu-

ated sample points, and defining the new boundaries of 
the promising region. It is most likely or expected that 
the global optimum should be in that region; 
·Fitting a response surface function (RSF), Kriging model 

(KRG), or radial basis function (RBF) with additional 
design experiments using latin hypercube designs over 
the identified promising region and identifying its mini-
mum; and, 
·Using the metamodel and the evaluated cheap points us-

ing the constructed metamodel RSF/KRG/RBF, the 
global optimum is obtained from the identified promising 
region. 

 
The algorithm is simple and efficient as will be proven on 

the airfoil optimization. Notwithstanding the three above-
mentioned metamodeling techniques used in APRI have 
widely known theory and been explained in literature, a brief 
mention of the formulation and key points may be helpful to 
compare and interpret the results. 

 
3.1 Metamodeling techniques for approximation 

RBF, which is specifically useful for representing irregular 
surfaces, use linear combinations of a radially symmetric 
function based on Euclidean distance or similar metric to build 
approximation models [20]. Beside the interpolating scheme 
as the first application, Dyn et al. made RBFs more practical 

 
 
Fig. 1. Integration of tools and methods in airfoil shape optimization. 
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by enabling them to smooth experiment data as well as inter-
polating it [21]. The form of these meta-models is a basis 
function dependent on the Euclidean distance between the 
sample points and the point to be predicted, as its name repre-
sents. Mathematically, the model can be expressed by the 
following Equation: 

 

( ) 0
1

ˆ
N

i i
i

y x c x x
=

= -å                          (1) 

 
where the approximated function ( )ˆ  y x is represented as a 
sum of N radial basis functions,  ic is a real valued weight, 
and 0ix  is the input vector. 

From the late twentieth century, however, RSFs have been 
used effectively as metamodels [22], while originally was 
developed for the analysis of physical experiments [23]. RSFs 
approximate expensive functions by using the least squares 
method on a series of points in the design variable space. Low 
order polynomials, such as the first and second order polyno-
mials in Eqs. (2) and (3) are widely used as the response sur-
face approximating functions like in this study: 
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where parameters, b̂ , are computed using least squares re-
gression by minimizing the sum of the squares of the devia-
tions of predicted function values, ( )ŷ x , from the actual 
function values, ( )y x , using Eq. (4): 
 

( ) 1ˆ ˆT TF F F yb
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=                                (4) 

 
where F is the design matrix of sample data points, and 
ˆ  y contains the values of the response at each sample point. 

Polynomial response surface models can be easily constructed, 
but the over-simplification may be troublesome for modelling 
highly nonlinear or irregular behaviours [24]. 

On the other hand, KRG which was firstly developed for 
application in geostatistics is a stochastic technique based on 
spatial correlation functions that treat the deterministic com-
puter response as a realization of a random function, with 
respect to the actual system response [25]. Because of its abil-
ity to mimic the behavior of the expensive functions it has 
gained popularity in different applications [26]. A Kriging 
model postulates a combination of a polynomial model and 
the minor departure in the form: 

 
y(x) = f (x) + Z(x)                                 (5) 

where y(x) is the unknown function of interest, f(x) is a known 

polynomial function often taken as constant, and Z(x) is the 
correlation function which represents a stochastic process with 
mean at 0, variance 2s , and nonzero covariance [27]. 

To measure the accuracy of theses surrogate models, the 
coefficient of determination (R-squared) and the relative root 
mean squared error (RRMSE) are taken as the indicators [28]: 
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where N is the number of sampling points for metamodel con-
struction, m is the number of test points in the data set used for 
validating, iy  is the value of the response from the original 
CFD model, ˆiy  is the predicted response from the metamod-
els, and iy  is the mean value of the observed responses from 
the expensive CFD model. 

Table 1 compares the accuracy of the above-mentioned 
metamodels for the nonlinear problem in hand based on dif-
ferent sample/test sizes. While it is desirable that R-squared 
values should be close to 1 indicating that the metamodel can 
be used, the relative RMSE should be as small as possible to 
demonstrate a more acceptable fitting. The table shows that 
the quality metrics of the surrogate models improve with in-
creasing number of fitting designs or test points, although this 
improvement is more considerable for the quality metrics of 
KRG rather than those for RSF/RBF. Generally speaking, it 
can be seen that all the metamodels can indeed show promis-
ing error as well as R-squared values, which in turn, provide 
approximations with adequate accuracy. Among those, how-
ever, KRG and RSF yield better approximations than RBF 
and mixed metamodeling. 

Focusing on the metamodel driven proposed optimization 
algorithm, the following section explains how it exactly works. 

 
3.2 Steps of the proposed algorithm 

The APRI algorithm starts searching by checking the values 
of the function near the candidate point and moves first to the 

Table 1. Accuracy results of the used surrogate models. 
 

Accuracy value  
2R  RRMSE Metamodels 

N = 500 N = 1000 m = 100 m = 500 

RSF 0.6952 0.8618 0.7064 0.4982 

KRG 0.6602 0. 9063 0.7385 0.4136 

RBF 1.0000 1.0000 0.8294 0.6803 

Mixed metamodeling 0.4070 0.5131 0.9001 0.8491 
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right to compare the function value of the nearest sampled 
point with the candidate point (Also known as the center 
point). If the function value of the nearest point is greater than 
the center point, then the algorithm keeps moving in that di-
rection until the function value of the new point becomes less 
than the function value of the point that was checked before it. 
The obtained point represents the edge of the unimodal region 
in that direction. The same happens in all directions, which 
represents the problem dimension. 

As also briefly illustrated in the flowchart of Fig. 2, the op-
timization algorithm developed in this study involves the fol-
lowing steps: 

(1) Generate a set of design data points, ix , 1, ,i n= L   
over the design space; 

 
{ }1 2, , ,i nx x x x= L    p

ix SÎ                     (8) 

 
where p represents the number of design variables, n is the 
number of initial design data points, and S stands for the entire 
design space. 

(2) Evaluate the values of the objective function and con-
straints using the selected design points; 

 
{ }min ( ) : ( , ( ))i iy f x x f x S= Î                    (9) 

 
where y represents the minimum of expensive function values. 

(3) Identify the new upper and lower boundaries of the 
promising unimodal region based on the obtained objective 
function values, by checking the function values of the 
neighboring points and comparing it with the previous evalu-
ated points. If there is a sudden change in the function value 
(Values go up or down- maximization or minimization prob-
lem) that is considered as a boundary. Then check the other 
directions and the same procedure is followed. This will be the 
same in all directions (Depending on problem dimensionality). 
More details on how to identify the promising region bounda-
ries and the neighboring design points that are seized between 
these boundaries have been discussed by Younis and Dong as 
space exploration and unimodal region elimination (SEUMRE) 
methodology [29].  

(4) Once the new boundaries of the approximated promis-
ing region has been identified, refine the data set of this most 
promising region by adding more experiments or expensive 
points (Points evaluated using the objective function) into the 
region (Approximately 30-40% of the initial sample points) 
using LHD, and then introduce RSF/KRG/RBF approxima-
tion models over the region.  

(5) Add more cheap design points that can be obtained us-
ing the easy-to-calculate approximation models. In present 
approach, around 10000 (Optional and depending on the com-
plexity of the problem at hand) cheap points are generated 
using the meta-model over the promising unimodal region to 
identify the optimum point. A local optimizer can be used 
instead of generating these cheap points on the metamodel 

(Optional). 
(6) Carry out the optimization search and identify the opti-

mum point. 
 
This iterative process will continue until the termination cri-

terion is satisfied. 
In APRI, we just explore the whole space once and focus on 

one design space, in which case a metamodel is constructed 
and the global optimum value can be reached. Therefore, the 
way in which the algorithm searches for the global optima is 
totally different from that of its predecessors. Generally, this is 
the first metamodel-based exploration algorithm where the 
algorithm identifies and focuses on one region instead of wan-
dering in the whole design space, checking regions one by one. 
This algorithm can identify the region in which the optimum 
might exist. Also this algorithm constructs one metamodel in 
the region of interest and not all over the design space, which 
significantly reduces the computations.  

 
4. Airfoil shape optimization 

Aerodynamic design optimization techniques for turbo-
machinery application have dramatically changed in the last 
years. While traditional 1-D and 2-D design procedures are 
consolidated for preliminary calculations, emerging tech-
niques have been developed and are being used almost rou-
tinely within industries and academia. To this respect, de-
signer experience plays a major and a decisive role; however, 
the complexity evidenced above claims for a more structured 

 
 
Fig. 2. Approximated promising regions identifier (APRI) flowchart. 
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and organized way of handling the problem, where mathe-
matical and analytical tools are implemented and used as a 
decisive support in the decision making process. In addition to 
the optimization technique applied for an airfoil shape optimi-
zation framework, there are three main parts including shape 
parameterization, fitness function formulation, and airfoil flow 
analysis, which are briefly discussed in the following sections.  

 
4.1 Geometry parameterization 

The blade airfoil shape parameterization addresses 2-D pro-
file construction from either the direct handling of curves of 
airfoil shapes or the superposition of the camber line and 
thickness distribution around it. From these two different ap-
proaches of geometry definition, however, the method of dis-
tinct parameterized curves has been employed for the SS, PS, 
LE, and TE of a blade section. Furthermore, NURBS curves 
[30, 31] have been used to parameterize the geometry fed to 
the optimization process. In this way, the locations of NURBS 
control points are considered as design variables. 

The compressor airfoil considered in this study consists of 
four NURBS curves for four segments, and nine control points 
identify each segment. Each control point has two coordinates 
x and y, and so there are a total number of 72 design variables. 
However, 16 parameters, which are the intersection points of 
the segments are known and fixed. Other 16 parameters are 
also determined by enforcing 2C -continuity at the intersec-
tions of the segments. As a result, 40 variables will remain for 
the optimization algorithms as the design variables. To reduce 
the CPU effort, however, the geometry of LE and TE are con-
sidered constant to keep the number of design parameters to a 
minimum while attaining a high degree of geometric flexibility.  

Hence, as illustrated in Fig. 3, the final total number of de-
sign variables is twenty (The control points of suction and 
pressure surfaces). Based on that, the APRI optimization tech-
nique has been applied to locate the optimal position of these 
twenty control points according to the fitness function formu-
lated in the next section. 

 
4.2 Objective function 

Besides the optimization technique and parameterization 
policy, formulation of the objective function has also a key 

effect on the results of the airfoil optimization process. The 
parameterized profiles are made by the geometry code, and 
then fed to the COMSOL CFD for a 2-D fluid flow analysis. 
Following the convergence check, post-processed results of 
the accepted profiles are then entered to the fitness calculation 
part where the airfoils’ loss values, L, should be minimized 
with respect to any geometry. Seeing Fig. 3, the single objec-
tive function is determined as follows: 

 
( )1 2 3   % . . . 100 .s d cMin L a L a L a L PF= + + + ´   
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=  are total pressure losses for stall, 

design and choke conditions respectively, iy  are design vari-
ables as in Fig. 3, ia are the weighting factors, PF is the pen-
alty function of geometry constraint, 01P is inlet total pres-
sure, 02P is outlet total pressure, and 1V is inlet velocity. The 
minimization of total pressure loss at the right side (Lc) and 
left side of the design point (Ls) effectively widens the range 
of operation. Therefore, this formulation considers both total 
pressure loss, and the operation range through a weighted sum 
approach. In addition to the profile limitations considered in 
the geometric modeling, the minimum acceptable thickness of 
airfoils from structural issues point of view is taken into ac-
count. The weighting factors ia can be defined based on the 
significance of the defined terms in L which may be different 
based on the design optimization priorities. For example, stall 
margin increase is assumed to be more important than the 
choke margin rise in this specific case. In the interim, the re-
sults have high sensitivity to the defined weights; they should 
accurately be specified based on the existing experience as 
well as priorities of the optimization goals. Based on that, the 
weighting factors for the optimization process are specified as 
follows: a1 = 0.20, a2 = 0.70 and a3 = 0.10. Generally speaking, 
sum of these coefficients should be unity and none of them 
has to be negative. More details have been presented by Safari 
et al. [32]. 

 
4.3 Flow analysis 

In the computational domain for airfoil flow analysis, the air 
flows from the left to the right so that the left side is defined as 
the inlet containing the velocity information and the right 
boundary of the domain is the outlet specified by the expected 

 
 
Fig. 3. Schematic diagram of twenty shape design variables. 
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static pressure difference. The upper and lower boundaries are 
outlined as the periodic flow conditions that are actually ad-
dressing a cascade of the rotor blades. Also, a wall function 
formulation is enforced along the airfoil surface. The simula-
tion is carried out for a relatively high subsonic compressible 
flow ( ~ 0.6Mach  ) which has a high Reynolds number as 
well ( 6~ 2.8 10Re  ´ ).  

The preliminary grid generated for the mentioned domain 
consists of free triangular physics-controlled fine mesh. How-
ever, more appropriate mesh to produce the same level of 
accuracy for different designs would be constructed through 
the adaptive unstructured mesh refinement capability of the 
analysis tool. To save also the computational time, the virtual 
operations option is used to reduce the number of mesh ele-
ments without a major impact on the fitness evaluation [32]. 

Using stationary two-dimensional fluid flow analysis capa-
bility of COMSOL Multiphysics, a single-phase turbulent 
interface has been selected in which the conservation laws of 
the momentum, mass and energy is formulated. Considering 
predefined initial and boundary conditions, the partial differ-
ential equations of the conservation laws are solved using 
finite element formulations. COMSOL CFD module contains 
governing Navier-Stokes equations and the standard k-ε model 
[33] introducing two additional transport equations and two 
dependent variables which are the turbulent kinetic energy, κ, 
and the turbulent kinetic energy dissipation rate, ε. Since CPU 
time is an important criterion for any aerodynamic design 
optimization procedure, the κ-ε model which is the most 
broadly used turbulence model with an acceptable computa-
tional cost as well as good accuracy is employed. In this way, 
the turbulent viscosity could be written as follows: 

 
2

0.09 .T
km r e=                                (11) 

 
Transport equations for κ and ε are represented by Eqs. (12) 

and (13), respectively: 
 

( )( ). . T kk k Pr m m reÑ = Ñ + Ñ + -u%              (12) 

( )( ) 2
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and the production term is: 
 

( )( ) ( )2: 0.67 . 0.67 .T
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è ø
u u u u u% % % % %   

       (14) 
 

where r  is density, m  is dynamic viscosity, and  u% is den-
sity-based average of velocity vector so that ( ). 0.rÑ =u%  

Lastly, for each iteration of the shape optimization proce-
dure, a single airfoil is sequentially analyzed at multiple an-
gles of attack to simulate design and off-design conditions. 

5. Designs of experiment and simulation results 

Using the integration of adaptive tools and methods, the 
preliminary results are considerably promising in terms of 
computation time, number of function evaluations and the 
airfoils’ shape performance enhancement from aerodynamic 
efficiency point of view. In this section, the results obtained 
from the application of developed optimization framework are 
investigated in order to show the ability of the proposed tech-
nique to noticeably increase the complex shape optimization 
process efficiency compared to the evolutionary methods. All 
coding in this research has been implemented in the integrated 
COMSOL 4.3a and MATLAB® R2011b, on a PC with In-
tel(R) Xeon(R) CPU X5650 @ 2.66 GHz with 2 processors 
and 32.0 GB RAM. 

Before a comparative analysis, the impact of the number of 
design variables, i.e. degree of freedom (DOF) of the geomet-
ric model, on APRI’s performance is investigated. Table 2 
represents the best, average and median of the optima found 
by APRI as well as the number of evaluations for an exponen-
tial test function with different numbers of variables 

( ( ) 2
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n

nf exp x
é ù
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åx , 0 2nx£ £ ). The results are the 

average of 10 independent runs to decrease the randomness 
effect. As can be seen, the proposed algorithm is working 
robust in a variety of dimensionality so that fitness values 
and/or number of evaluations increase almost linearly with 
exponential growth of the search space due to increasing prob-
lem dimensions. As a result, APRI is adequately robust to the 
design variable count and still presents good numerical per-
formance without significant drop-off for the high-dimen- 
sional problems. 

Tables 3 and 4 show the results obtained from APRI using 
RSF, Kriging, and RBF metamodeling separately. The ob-
tained results are also compared with the mixed metamodels 
driven SEUMRE (as another recently developed metamodel-
ing-based search and space exploration method by the authors 

Table 2. Investigation of the effect of the number of design variables 
on the performance of APRI (10 independent runs of the test function 
with the same termination criteria). 
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[34]) and a real-coded genetic algorithm (RC-GA)’s results 
(as a well-known and widely used guided random algorithm) 
to highlight the advantages of the proposed approach for such 
high-dimensional shape optimization problems. The algo-

rithms’ parameters make a huge difference in the obtained 
optimum or the best obtained airfoil geometry and changing 
one parameter might easily affect the results. 

Accordingly, the most favorable parameters for RC-GA 
have been selected based on existing experience [32] and the 
parameters of all the metamodeling-based techniques are also 
set correspondingly to have a conservative comparison. The 
results are shown at a small termination criteria, e, equal to 
0.001 which represents the difference between the two func-
tion values. When e is small it becomes harder for the algo-
rithm to coverage to a global solution in less computation time 
but the accuracy of the results will be high. Based on the ex-
perience, it can be seen that with low e value, APRI still yields 
results with acceptable accuracy which reflects the high per-
formance of proposed optimization algorithm. All the results 
are for ten different runs; the number of runs considered being 
fair for such random sampling based algorithms.  

As shown, the proposed sampling method with all three 
metamodeling techniques outperforms SEUMRE and RC-GA 
in terms of computational efficiency. The average of CPU 
time for APRI optimization is 630 minutes, while SEUMRE 
requires much more amount of CPU effort and RC-GA takes 
about ten times more to reach even higher weighted pressure 
loss value equal to 5.9331. Computation time is an important 
factor that real world application pays much attention to. Ta-
ble 4 shows the best, median, and standard deviation (SD) of 
the minimum loss function values, f * , number of expensive 
evaluations, NOE, and number of iterations. Though RC-GA 
achieves better optimum results than KRG/RBF driven APRI, 
RSF-based APRI converges to considerably better minimum 
loss value than RC-GA and SEUMRE as well (The loss func-
tion value of 5.6597 is the best among all function values). 
This can be because of behavior of the airfoil loss function 
calculation results (Black-box CFD post-processing), which 
could be more accurately approximated by the polynomial 
functions. 

The other important factor that should be noticed is the 
number of function evaluations, which reflects how many 
evaluation and how much computation time, is required to 
converge to the optimum airfoil shape with minimum total 
pressure losses. Obviously, the median of number of expen-
sive function evaluations for surrogate assisted methods is 
intensely decreased in comparison with the RC-GA. The GAs, 
in general, need many CFD evaluations for convergence, 
which is not acceptable especially for expensive objective 
function evaluations in ASO. Hence because of the fact that 
most of the computational time is spent in the evaluation of 
the objective function, surrogate-assisted optimization proce-
dures are promising search tools for real-world applications 
(Such as the optimization of turbomachinery blade geome-
tries) in terms of the number of expensive function calls and 
consequently CPU effort. On the other hand, among the dif-
ferent features of the proposed metamodel-based approach, 
Kriging which is commonly expected to be more efficient 
shows the relatively better performance from the number of 

Table 3. Performance comparison and optimization results. 
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Table 4. Comparison of median and SD values. 
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evaluations point of view. Nevertheless, it consumes more 
time to reach even higher function value due to its specific 
sampling rule. It can be also because of the particular way by 
which APRI searches for the global optima and sensitivity of 
KRG metamodels to the sample points’ distribution and their 
distance. This might be even more crucial issue for such high-
dimensional data where the search space is relatively large.  

As evidenced in these tables, any feature of APRI presents 
better performance than the most efficient configuration of 
SEUMRE in which three surrogates including KRG, RBF and 
RSF metamodels are combined using a mechanism [34] to 
make a hybrid approximate model over the region of search. 
Considering all the criteria, however, it can be seen that RSF-
assisted APRI performs well and outperformed all other 
methods for this high-dimensional application. 

Lastly, with respect to the comparison shown in Table 4, 
performance of the proposed search method using RSF is 
compared with the results of the real coded genetic algorithm 
in terms of static pressure distribution as well as Mach number 
distribution around the optimized airfoil shapes. Illustrated 
results of one of 10 runs for each optimization algorithms are 
brought below just to show considerable difference as well as 
achieved improvement. Fig. 4 shows the profile of airfoil 
pressure surface and its design variables (NURBS polygons 
and control points) before and after aerodynamic shape opti-
mization. The optimum curve has been generated after the 
optimization. It can be seen that the most important geometric 
changes are made on the second half of the airfoil chord 
toward the TE. Also, APRI and RC-GA propose two totally 
different profiles for the lower side of the existing airfoil. 

Comparison of the whole airfoil geometry has been con-
ducted as depicted in Fig. 5. The dotted line represents the un-
optimized or starting (Datum) airfoil geometry. The dashed 
line represents the airfoil geometry obtained using RC-GA 
optimizer, while the continuous line shows the optimized air-
foil geometry generated using APRI. 

The most obvious conclusion that can be drawn from this 
figure is that optimization process has significantly changed 
the second half of the airfoil shape along the chord, i.e. from 
maximum thickness to TE.  

Since the highest pick of velocity distribution occurs on the 
airfoil’s SS, the influence of its geometry is prevailing in loss 
production. The effects of this geometric change can be seen 
in illustrations of pressure/velocity distribution. Figs. 6 and 7 
show the static pressure distribution and Mach number distri-
bution respectively where APRI, RC-GA and the un-
optimized cases are compared. 

As shown in Fig. 6, there are some significant differences in 
static pressure distribution. The optimum shape demonstrates 
a more moderate acceleration for the first half of the chord on 
the SS of the airfoil (Specifically from 25% to 50% of the 
chord), which leads to the considerable viscous loss reduction 
and prevention of boundary layer separation. This may result 
in sooner starting of diffusion compared with the datum as 
well as GA-based airfoils, due to the change of laminar-

turbulent transition position. The location of this transition 
point is important because the dissipation rate sustains a faster 
increase after that point. At the same time, due to the move-
ment of the maximum curvature position, Fig. 6 shows that 
shock on the SS (The minimum value on the bottom segment 
of the graph) significantly decreases within the APRI-driven 
optimum airfoil shape. Furthermore, the figure shows different 
patterns of the slope of the pressure curves, specifically for the 
pressure surface segment as a result of geometry changes.  

As the entropy generation (Flow losses) can be supposed a 

 
 
Fig. 4. Airfoil’s PS profile and its design variables before and after 
aerodynamic shape optimization using APRI. 
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Fig. 5. Whole airfoil profile before and after optimization. 
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Fig. 6. Comparison of pressure distribution. 
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cubic function of the free-stream velocity, the Mach number 
distribution an issue of discussion. 

It can be seen from Fig. 7 that the pick value of the Mach 
number distribution on the upper side of the airfoil is mark-
edly lower than the pick value for the initial and GA-
optimized airfoils. The fact that it takes place closer to the LE 
implies that the diffusion takes place sooner with respect to 
the GA-optimized profile. All these characteristics could re-
duce the possibility of flow separation results in rigorous justi-
fications about flow quality improvement for the compressor 
stator. 

The total pressure loss coefficient resulting from analysis of 
the initial airfoil as well as the optimum from incidence angle 
of -10 to +10 degrees have been shown in Fig. 8. As illus-
trated in this figure, the APRI-driven profile outperforms the 
current shape in both design and off-design performance (i.e. 
about 1% reduction in total pressure loss at design condition 
(0o incidence angle) as well as increased operating range spe-
cifically for stall condition). While the airfoil’s operating 
range for the stall condition is almost unchanged for profiles 
driven from RC-GA optimization, APRI noticeably shows 
better performance in this regard. Nevertheless, in terms of the 
goals to be achieved, as previously stated in the fitness func-
tion definition part, the figure addresses that RC-GA gives 

more improvement of the compressor airfoil off-design behav-
ior in choke condition (Positive angles) comparing to APRI 
optimization. 

As it was anticipated, APRI proves to be an efficient as well 
as robust algorithm even compared to the techniques which 
have been used in the optimization of aerodynamic shapes for 
a long time. 

 
6. Conclusions 

This study presents a contribution to the metamodel driven 
sampling optimization driven performance enhancement of 
turbomachinery airfoil targeting the minimization of the total 
pressure losses for the design condition as well as maximiza-
tion of the airfoils operating range. The approach discussed in 
the paper introduces a modified metamodel-assisted optimiza-
tion approach, namely APRI, applied to the shape optimiza-
tion problem. The implementation involves coupling a com-
puter code for the geometry parameterization of the airfoils’ 
shape, a blade-to-blade flow-field analysis in a commercial 
CFD tool, and APRI optimization approach developed in this 
work. APRI explores the entire field of interest once and then 
focuses on one region instead of wondering in the whole de-
sign space checking regions one by one. In this way, the algo-
rithm constructs one metamodel in the region of interest and 
not all over the design space which significantly reduces the 
computation effort of identifying the global optimum. The 
comparison of different features of search techniques shows 
that RSF driven APRI is found to be an efficient, robust and 
computationally affordable optimization algorithm for high-
dimensional ASO problems that outperforms any other con-
figuration of the algorithm, mixed metamodels-based 
SEUMRE method and real-coded GA. 

The preliminary results, from the integrated application of 
these adaptive tools and methods, are considerably promising 
in terms of computation time, number of function evaluations, 
and finally the airfoil shape performance enhancement in both 
design and off-design conditions. In other words, the new 
profile derived by the proposed optimization algorithm repre-
sents extremely satisfactory performance over the whole oper-
ating range selected as a reference here ( 10°± ) specifically for 
the stall condition. The whole proposed framework, consisting 
of geometric modeling, CFD analysis, and optimization algo-
rithm, is extendable to the blade design optimization in a 
three-dimensional infrastructure. 
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