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ABSTRACT

The first order approximate reliability method (FARM) and second order approximate reliability method
(SARM) are formulated based on evidence theory in this paper. The proposed methods can significantly
improve the computational efficiency for evidence-theory-based reliability analysis, while generally
provide sufficient precision. First, the most probable focal element (MPFE), an important concept as the
most probable point (MPP) in probability-theory-based reliability analysis, is searched using a
uniformity approach. Subsequently, FARM approximates the limit-state function around the MPFE using
the linear Taylor series, while SARM approximates it using the quadratic Taylor series. With the first and
second order approximations, the reliability interval composed of the belief measure and the plausibility
measure is efficiently obtained for FARM and SARM, respectively. Two simple problems with explicit
expressions and one engineering application of vehicle frontal impact are presented to demonstrate the
effectiveness of the proposed methods.

First order approximation
Second order approximation

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties widely exist in practical engineering problems, which
should be appropriately quantified and controlled for the reliability
and safety of a product [1,2]. Usually, uncertainties can be classified
into two distinct types: aleatory and epistemic uncertainties [3-5].
Aleatory uncertainty describes the inherent variation associated with a
physical system or environment, which is often dealt with probability
theory [6-9]. Epistemic uncertainty refers to the lack of information or
data in some phases of the modeling process, which, therefore, can be
reduced with the collection of more information. The probability
theory has been traditionally used to model epistemic uncertainty,
generally by picking some familiar probability distribution and its
associated parameters to represent one’s belief in the likelihood of
possible values. However, for some distributions (e.g. normal or
weibull), even small epistemic uncertainty in probability distribution
parameters can cause large changes in the tails of the distributions,
which may result in unnegligible influence on the reliability analysis
results for practical engineering problems [10].

Evidence theory was proposed and developed by Dempster and
Shafer [11,12], which provides a promising supplement to prob-
ability theory for representation of epistemic uncertainty [13].
First, evidence theory employs a much more flexible framework
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with respect to the body of evidence and its measures. For
example, when information is enough to construct parameter
probability distributions, evidence theory can provide an equiva-
lent description to probability theory model. Second, evidence
theory can deal directly with situations in which both aleatory and
epistemic uncertainties exist. This capability is important because
the available data in many engineering problems commonly
contain both interval-valued information (epistemic uncertainty)
and probability distributions (aleatory uncertainty). Third, evi-
dence theory does not require the assumption of input probability
distributions when there is a lack of information.

Due to the above advantages, evidence theory has recently
been applied in structural reliability analysis and design. Some
exploratory work in this area has been reported, which can be
classified into several main categories:

(i) Comparison between evidence theory and the other uncertainty
analysis models. Several methods for obtaining the evidence
theory and probability boxes structures were introduced in
[14], which shows that these two structures can be inter-
convertible. Probability theory, evidence theory, possibility
theory and interval analysis were explored and compared in
uncertainty representation and propagation with some
benchmark problems [15]. Evidence theory and Bayesian
theory were compared in uncertainty modeling and decision
making, which indicates that Bayesian probabilities can help
make a decision when there is considerable uncertainty [16].
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(ii) Reliability analysis. An evidence theory model considering
dependence between parameters was formulated for the struc-
tural reliability analysis [17]. A structural reliability analysis
method using evidence theory was developed by introducing a
non-probabilistic reliability index approach [18]. By integra-
ting the moment concept and finite element method, a static
and dynamic response analysis approach was formulated for
structures with epistemic uncertainty [19]. A sampling-based
approach [20] and a semi-analytic approach [21] were devel-
oped for sensitivity analysis of the uncertainty propagation
problems using evidence theory.

(iii) Reliability based design optimization. A design optimization
method was developed to handle the mixed epistemic and
random uncertainties, in which the vicinity of the optimal point
and the active constraints are quickly identified and hence a
high computational efficiency is achieved [22]. An evidence-
theory-based multidisciplinary design optimization method was
proposed for structures with epistemic uncertainty through a
sequential approximate strategy [23]. Based on combined prob-
ability and evidence theory, a reliability-based multidisciplinary
design optimization approach was proposed for the mixed
aleatory and epistemic uncertainties [24].

Though some important progresses were achieved above, evidence
theory was barely used in practical engineering applications. One main
reason is the high computational cost [25]. In evidence-theory-based
reliability analysis, the uncertainty is propagated through a discrete
probability assignment due to limited information, which is generally
described by a series of discontinuous sets rather than an explicit
continuous function like the probability density function in probability
theory. Thus, time-consuming uncertainty analyses are required
among each set for the assessment of its contribution to the reliability,
which will inevitably result in expensive computational cost for a
multidimensional problem when using evidence theory to conduct the
reliability analysis. Aiming at this issue, several numerical methods
[25-27] have been proposed to improve the computational efficiency,
mainly by introducing the response surface technique. However, the
precision of these methods is not usually stable since the response
surface is influenced by many factors such as the selection of sampling
techniques and approximation model types, and so on. As discussed
above, actually a close relationship exists between evidence theory
and probability theory, and that is why in many cases evidence theory
is also called “imprecise probability”. It then seems natural and also
reasonable that some important concepts or well-established techni-
ques in traditional probabilistic reliability analysis could be introduced
into the evidence-theory-based reliability analysis, based on which a
series of effective reliability methods might be developed.

In this paper, the first and second order approximate reliability
methods are proposed for evidence theory, which can significantly
improve the computational efficiency of evidence-theory-based relia-
bility analysis. The remainder of this paper is organized as follows. The
conventional reliability analysis using evidence theory is introduced in
Section 2. The first order approximate reliability method (FARM) and
second order approximate reliability method (SARM) are formulated
in Section 3. Three numerical examples are investigated in Section 4.
Finally conclusions are summarized in Section 5.

2. Conventional reliability analysis using evidence theory

Consider the following reliability analysis problem:
8X)=go (1)

where X is a vector of n independent uncertain input parameters
and they are modeled by the evidence variables in this paper; g(X)
is the limit-state function which is usually used to describe the

safety or failure state of a structure; g, denotes an allowable value
of the limit-state function. The safety region G for this problem is
defined as:

G={X|gX)>go} ()

The conventional reliability analysis using evidence theory is
illustrated with the above simple example, which includes two
main steps: the construction of joint basic probability assignment
and the computation of reliability interval.

2.1. Construction of joint basic probability assignment

Evidence-theory-based reliability analysis starts by defining a
frame of discernment (FD) that is a set of mutually exclusive
elementary subsets for each evidence variable X, which is similar
to the sample space in probability theory. The FDs for all evidence
variables in a problem form the uncertainty domain. In this paper,
The FD is also denoted as X. All the possible values of the FD will
form a power set £2(X).

After defining the FD, the basic probability assignment (BPA)
that represents the degree of belief is assigned to each subset of
the FD power set based on the statistical data or the expert
experience. The BPA is assigned through a mapping function:
£2(X)—[0, 1] which should satisfy the following three axioms:

m(A) >0 foranyAeQX) 3)
m@)=0 4)

> mA)=1 5)
AeQ2X)

where m(A) refers to the degree of belief that is assigned to the
subset A. In this paper, we assume that the subsets A are all closed
intervals. Each set A e £2(X) satisfying m(A) > 0 is called the focal
element. Sometimes the information available for a parameter
may come from different sources, thus, the evidence should be
aggregated by rules of combination [12,28,29].

Similar to the joint probability density function in probability
theory, the joint basic probability assignment should be con-
structed in evidence theory when multiple uncertain variables
are involved. Due to the independence among the parameters, the
joint basic probability assignment m can be obtained for an
n-dimensional problem as below:

n
(A) whenA e Q(X), i=1,2,..
m(A): il;llm,( i) whenA; e 2(Xy), i s 2y (6)

0 otherwise

where A; and (X;) are the focal element and FD power set of the
parameter X;, respectively, and A is the focal element of the
Cartesian Product ®, which can be defined as follows:

@ =.Q(X1) X .Q(Xz) X .Q(X_,) X .Q(Xn)

={A=[A1 A, . LA LA A € QX)) i=1,2,...n), 1<j<n

0

2.2. Computation of reliability interval

It should be pointed out that evidence theory employs an
interval composed of the belief measure (Bel) and the plausibility
measure (PI) to characterize uncertainty of the structural response,
rather than a single measure in probability theory.

Based on the obtained joint BPA and the given safety region,
the reliability interval [Bel(G), PI(G)] of the safety event X € G for
the above example can be calculated as below:

Bel(G)= Y~ m(A) ®)

AcG
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PG = > m@A) )]

ANG # ¢

The belief measure Bel(G) and plausibility measure PI(G) can be
regarded as the lower and upper bounds of the probability measure,
which together bracket the true probabilistic reliability p, [22]:

Bel(G) < p, < PI(G) (10)

To calculate Bel(G) and PI(G), the extreme values [g i, 8max] Of the
limit-state function g over each focal element A need to be computed:
[8min> 8max] = | Min g(X), max g(X) an

In addition to the optimization methods, the vertex method
[30] is usually adopted to compute g,;, and g,,., for the computa-
tional efficiency. After obtaining the extreme values [gyin, Emax]
for each focal element, the BPAs are assigned to the Bel and Pl
measures appropriately according to Eqgs. (8) and (9). For a focal
element with g.;, and g.., both larger than the allowable
threshold g, its corresponding BPA contributes to the calculation
of both Bel and PL. For a focal element with only g,,., larger than
8o, its BPA contributes to only Pl. Otherwise, the focal element
contributes to neither Bel nor Pl

3. Efficient reliability analysis methods

In traditional probability-theory-based reliability analysis, the
first order reliability method (FORM) [31,32] and second order
reliability method (SORM) [33,34] have been proposed, which
make the computation of structural reliability very efficient and
therefore significantly extend the practical application of prob-
abilistic reliability theory. As shown in Fig. 1(a), FORM and SORM
utilize the first and second order Taylor series to approximate the
limit-state function at the most probable point (MPP), which has
the largest joint probability density among all the points on the
limit-state surface and hence contributes most to the calculation
of the reliability. Since the approximation is performed at the most
important MPP, generally an acceptable accuracy is provided when
using FORM and SORM to conduct reliability analysis for practical
engineering problems [35].

In evidence-theory-based reliability analysis, a similar important
‘region’ like the MPP also exists. However, due to the discreteness of
BPA, this region is not a point but a focal element, which is generally
a multidimensional box in the parameter space. It is defined as the
most probable focal element (MPFE) in our previous work [36]. As
shown in Fig. 1(b), the MPFE is a focal element intersecting with the
limit-state surface, g(X) =0, and simultaneously has the maximum
BPA. Just like the MPP in probabilistic reliability analysis, here the
MPFE should have a maximum contribution to the evidence relia-
bility. Thus if we conduct the reliability analysis through approximat-
ing the limit-state function around the MPFE, some reliability
analysis methods with high efficiency may be developed. Also, by
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using different types of approximations for the limit-state function,
some different reliability analysis methods could be developed. In
this paper, just like FORM and SORM, we employ the linear and
quadratic Taylor series to approximate the limit-state function
around the MPFE, respectively, and whereby propose two efficient
evidence-theory-based reliability analysis methods. They are called
the first order approximate reliability method (FARM) and the second
order approximate reliability method (SARM), respectively.

3.1. First order approximate reliability method (FARM)

By using FARM, the MPFE is first searched using a uniformity
approach. Then, the limit-state function is approximated around
the MPFE using a linear Taylor series, based on which the
reliability interval [Bel, P1] is calculated efficiently.

3.1.1. Search of the MPFE

As introduced above, the MPFE is the focal element which
intersects with the limit-state surface and furthermore possesses
the maximum BPA. Generally, it is difficult to search this MPFE
directly, since a large number of focal elements will be involved for
a multidimensional problem. To improve the efficiency, a unifor-
mity approach [36] is suggested to quickly locate the MPFE. As
mentioned previously, the focal elements of each evidence vari-
able in this paper are considered as closed intervals. For most
engineering problems, the uncertainty of an imprecise parameter
generally behaves as a small perturbation around its nominal
value. That is to say, the FD of a practical evidence variable is
generally a narrow interval. Therefore, the focal elements, namely
the subintervals of the FDs, are even narrower. Thus for conve-
nience of analysis, we can assume a uniform distribution over the
interval of each focal element, which generally will not bring large
errors.

As shown in Fig. 2, an evidence variable X is transformed to a
random variable Y with the following density function f, through
the uniformity approach:

C(X)
fr»=">_ 8m@A)/R—L)

i=1

(12)

where (i) y is one value contained in the FD of X, (ii) C(X) is the
number of focal elements of X, (iii) A =[L;,R;.j=1,2,...,C(X) are
the focal elements, with L; and R; as the corresponding lower and
upper bounds, (iv) 6;(y) =1 if y € A; and 0 otherwise. Through this
treatment, the original limit-state function g(X) with epistemic
uncertainty is transformed to g(Y) with only random uncertainty.
The reliability analysis problem for g(Y) can be solved by the
efficient FORM [31,32] in probability theory. First, the non-normal
random variables Y should be transformed to standard normal
variables U:

-1 .
ui=¢~ {Fy,(y;)}.i=1,2,...,n (13)
b 1
X,h ||I Safe domain
NI\ g(X)>0
\
N [MAFE
L Quadratic appro_ximation for SARM
\\\ -7

_ § e~
Unceftaipty flomaif M Limit-state surface g(X)=0
N

Linear approximation for FARM

»

X,

Fig. 1. Comparison of MPP in FORM & SORM (a) and MPFE in FARM & SARM (b).
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Fig. 2. Transformation from an evidence variable to a random variable using the uniformity approach.

where Fy, is the cumulative distribution function (CDF) of Y;, and
¢~ is the inverse CDF of the standard normal distribution.
Through this treatment, g(Y) is transformed to a function G(U) in
the standard normal space. The MPP for G(U) can be identified
through solving the following optimization problem:

min ||U]|
v (14)
s.t. GU)=0

The improved HL-RF (iHL-RF) algorithm [37,38] is adopted to
solve the above optimization problem and a final U* is obtained.
After transforming U* into the original space, the MPP X* for the
original reliability problem is obtained, which locates on the limit-
state surface and has the largest joint probability density. As
mentioned before, the uniformity process that transforms the
evidence variables to the random variables generally does not bring
about large deviations, since for most practical problems the
intervals of the focal elements for a parameter are very narrow.
Thus we can be sure that the neighborhood of the obtained MPP
should have a maximum contribution to the reliability of the
original problem with evidence variables. That is to say, the
required MPFE is just the focal element which contains the MPP X*.

3.1.2. Linear approximation of the limit-state function
The limit-state function g(X) is approximated by the first order
Taylor series at the MPP X*:

2X) ~ g'(X) = g(X*)+(X— X" vg(X*) (15)

where Vg(X*) denotes the gradient vector of the limit-state
function at X* and it can be computed by the difference method
for an implicit problem. With this linear approximate function, the
reliability interval [Bel, P1] can be computed efficiently.

Instead of the original limit-state function g(X), the minimum
and maximum values of the approximate limit-state function g’'(X)
over each focal element should be calculated, respectively:

min / max g'(X) = g(X*)+ (X — X*)T vg(X*)
XeA

st. A= {xLA <X sxRA} (16)

where X and X® are the lower and upper bound vectors of the
focal element A. Since g’(X) is a linear function of X, the extreme
values of g'(X) over each focal element can be conveniently
obtained according to the signs of Vg(X*). To illustrate this, one
focal element A in a two dimensional problem is considered as
shown in Fig. 3. It can be seen that the limit-state function
gradients at MPP X* 9g(X*)/aX; <0 and 0g(X*)/aX, >0, which
means that g’(X) is monotonically decreasing along the axis X; but

A Og(X
X, <0, %ﬂ( ) 0)
XX (xFa xR ’
X;A © g(X,X))=0
g'(X;;X5)=0
X )
(X4, x5 (X4 X5
¢ X ILA X 1R i X 1'

Fig. 3. Extreme analysis using signs of Vg(X*).

increasing along the axis X,. Therefore, the maximum function
value g; .. and minimum function value g, over this focal
element are obtained on the points (X?‘,ng‘) and (X’f",Xéf‘),
respectively. After obtaining the extreme values over each focal
element, the Bel and Pl measures can be quickly obtained by
assigning the BPAs according to Egs. (8) and (9).

3.2. Second order approximate reliability method (SARM)

To improve the approximation precision, especially for pro-
blems with stronger nonlinearity, a higher order approximate
method named SARM is developed. SARM also consists of two
steps. In the first step, the MPFE is searched, which is the same as
that in FARM. In the second step, the limit-state function is
approximated using a quadratic Taylor series, based on which
the reliability interval is calculated.

3.2.1. Quadratic approximation of the limit-state function

By solving Eq. (14) and transforming the obtained U* into the
original space, the MPP X* for the original limit-state function g(X)
is obtained. Subsequently, g(X) is expanded into the Taylor series
at X* up to the second order:

1
8X) ~ g'(X) = g(X*) + (X—X*) Vg (X*) +5(X-X*) Vg (X*) (X X*)
a7)
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where V2g(X*) denotes the Hessian matrix of the limit-state
function at X*, which can also be computed using the difference
method for an implicit problem. Here, V2g(X*) is assumed to be a
positive definite matrix, which generally holds for practical engi-
neering problems.

To compute the reliability interval, the extreme values of the
approximate limit-state function g”(X) over each focal element A
should be calculated:

min / max g"(X) = g(X*) + (X—X*) vg (X*) +1(X— X*)" v2g (X*) (X - X*)
XeA

st. A= {XLA ngXRA} (18)

Eq. (18) is a quadratic programming problem, which can be
solved by using some well-established quadratic programming
algorithms [39]. However, it should be pointed out that these
conventional algorithms will generally output the local optimums
related to the initial points, which therefore is likely to cause large
errors of the reliability analysis results for those problems with
multiple local optimums. Actually, Eq. (18) belongs to this type of
problem. Considering the optimization problem in Eq. (18) has
only simple bounding constraints, therefore, we actually could find
the global extreme values through the following suggested
approach, and hence ensure a higher reliability analysis accuracy.

According to the characteristics of quadratic function, g”(X) will
have a global extreme point X° over the infinite parameter space
under the condition that its Hessian matrix is a positive definite
matrix. X® can be obtained through the following necessity
condition:

Vg'(X) = Vg (X*) + (X—X*) v2g(X*) =0 (19)
Therefore, we have:
X® = X*— vg(X*) [v2g(X*)] (20)

When the bounding constraints are applied as in Eq. (18), g"(X)
will then have two extreme values, namely the maximum and
minimum ones, over each focal element. And they can be obtained
through functional evaluations at only a small number of points of
X over each focal element, instead of using the complex optimiza-
tion solution. Here, we will compute the extreme values according
to different cases:

(I) As introduced previously, the FDs described by the variable
bounds together form the uncertainty domain, X' ={Xl <X <
XR1. When X¢ is located inside the uncertainty domain as shown
in Fig. 4(a), it must fall in one focal element, e.g. B. Then we will
have a set of X points composed by X® and the 2" vertex points of
B. Within the focal element B, g”(X) is not monotonous. But
according to the characteristics of quadratic function its two

a
g"(X)
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X,
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X hex Focal
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extreme values will be reached at two certain points among the
above created set. Thus we only need to compute the values of
g”(X) for the points in the set and select the largest and smallest
ones as the required two extreme values. While for the other focal
elements g”(X) is monotonous and the extreme values can be
obtained only on the vertex points.

(II) When X is located outside the uncertainty domain as shown
in Fig. 4(b), g”(X) will be monotonous over all the uncertainty
domain and therefore its extreme values over each focal
element can be obtained directly by comparing functional
values on the corresponding vertex points.

Since no assumption is made during the above process, the
extreme values [g” min, £ max] Of g7(X) over each focal element can
be obtained accurately and robustly. Furthermore, instead of the
local extreme function values, the global values are obtained using
the present technique, which, therefore, can help improve the
accuracy of SARM. Afterwards, the Bel and Pl measures for SARM
will be efficiently calculated using Eqs. (8) and (9).

4. Numerical examples

4.1. Numerical example 1

Consider the following limit-state function:

X1, X2) =k(X1 —X2)* X1 —Xo—a 21

where the FDs of evidence variables X; and X, are both [ -2, 2]; k
reflects the nonlinearity of the limit-state function; o denotes the
threshold of the limit-state function. The BPA structure that each
variable contains 10 subintervals is considered and the detailed
information is given in Table 1.

In order to give a better assessment about the computational
accuracy and cost of the proposed FARM and SARM, the direct
reliability analysis based on the original limit-state function, as
introduced in Section 2, is adopted to provide the reference
results, and it is denoted as the conventional method. Also, our
recently proposed method [18], termed as non-probabilistic index
based reliability method (NIRM), is adopted to provide the results
for comparison. Through adjusting the threshold «, a set of
different limit-state functions are obtained, while « is fixed at 0.03.

The computational cost is obtained for four different a as
shown in Fig. 5. It can be found that the proposed FARM and
SARM are much more efficient than the conventional method,
requiring almost only one tenth of the function evaluations of the
conventional method for all & values. For example, the function
evaluation number of the conventional method is 400 at
a = —0.63, which, however, is only 31 and 41 for FARM and
SARM, respectively. Due to the computation of Hessian matrix,

g"(X)
XZ
e /
X{"A /
/ Uncer/t/inty }Km i
X
X
/ / /
Xt xb xp xkox

Fig. 4. Two different location cases of X¢ (a) Inside the uncertainty domain and (b) Outside the uncertainty domain.
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SARM needs 10 more function evaluations than the FARM. On the
other hand, though NIRM has saved much computational cost than
the conventional method, its computational efficiency is much less
than FARM and SARM. For example, the function evaluation
number of NIRM is 300 at @ = —0.63, almost eight times of the
function evaluations of FARM and SARM.

The reliability analysis results are obtained for different a
values as shown in Table 2. It can be found that when « varies
from —0.05 to —4.11, SARM and NIRM provides exactly the same
results as the reference ones for all the cases. For SARM, it is
because that the limit-state functions are quadratic and hence the
exact results can be obtained using a second order Taylor series
approximation. For NIRM, it is because that the limit-state func-
tions are simple and symmetrical about the line X; =X, and
therefore the exact non-probabilistic indexes are easily obtained,
which guarantees the accuracy of the reliability results. FARM
performs not so accurately as SARM and NIRM and in some cases
there is a slight deviation between its results and the reference
ones. It is because that the approximation errors are introduced

Table 1
The 10-subinterval BPA structure for variables X; and X,.

X1 X2
Subinterval BPA Subinterval BPA
[-2.0,—-1.6] 0.02 [-2.0,—-1.6] 0.02
[-1.6,-1.2] 0.06 [-1.6,-1.2] 0.06
[-12,-0.8] 0.10 [-12,-0.8] 0.10
[-0.8,-04] 0.14 [-0.8,-04] 0.14
[-0.4,0] 0.18 [-0.4,0] 0.18
[0,0.4] 0.18 [0,0.4] 0.18
[0.4,0.8] 0.14 [0.4,0.8] 0.14
[0.8,1.2] 0.10 [0.8,1.2] 0.10
[1.2,1.6] 0.06 [1.2,1.6] 0.06
[1.6,2.0] 0.02 [1.6,2.0] 0.02

400 IThe conventional mehtod|

=
é 350 EFARM
®
2 300
©
3
IS 250
£
S 200
pa
g 150
£
Z 100
50
0 n

-0.05 -0.63 -1.50 -2.08
a

Fig. 5. Comparison of computational cost among FARM, SARM, NIRM and the
conventional method.

Table 2

when using the linear Taylor series to replace the nonlinear limit-
state function. However, its computational errors are still accep-
table for practical applications. As shown in Table 2, for many
cases, FARM provides even exactly the same results as the
reference ones. For the other cases, the largest deviation for the
belief and plausibility measures of FARM is only 2.5% and 0.7%,
respectively, which occurs at the same a = —0.63.

Finally, we would analyze the influence of the limit-state
function nonlinearity on the precision of FARM and SARM. In this
problem, « changes from 0.03 to 2.1 while « is fixed at 0.2. The
results are shown in Table 3. It can be found that FARM provides
exactly the same Bel and PI results under all cases, since a linear
approximation is used and hence the nonlinearity of the limit-
state function cannot be reflected in FARM. When the nonlinearity
is small, the Bel and PI results from FARM are very close to the
reference ones. For example, at x = 0.07, the deviation of the belief
measure for FARM is only 3.13% and that of the plausibility
measure is only 1.72%. With the increase of the nonlinearity
degree, the Bel and Pl results from FARM gradually behave a
larger deviation from the reference ones. In SARM, the nonlinear-
ity is reflected by the second order Taylor series, thus, it provides
very good reliability analysis results for all cases. Actually, for this
problem, the results are exactly the same as the reference ones.
Thus, from the numerical example, it can be found that for
problems with relatively weak nonlinearity, FARM can be used to
obtain a sufficiently precise result, while for problems with
relatively strong nonlinearity SARM is recommended for use. On
the other hand, though SARM is generally more accurate than
FARM, it seems a little more complex and time-consuming than
the latter.

4.2. Numerical example 2

A crank-slider mechanism as shown in Fig. 6 is investigated,
which is modified from [40].The inner diameter d; and outer
diameter d, of the coupler are 10 mm and 20 mm, respectively.
The coefficient of friction u between the ground and the slider is

Table 3
Comparison of precision between FARM and SARM when under different values of «.

K Reference results FARM Deviations SARM Deviations

(Bel, PI] [Bel, PI] [Bel, PI]

0.03 [0.31,0.57] [0.31,0.57] [0% 0%] [0.31,0.57] [0% 0%]

0.07 [0.32, 0.58] [031,057] [3.13% 172%]  [0.32, 0.58] [0%, 0%]
01 [0.36,0.61] [0.31, 0.57] [13.89%, 6.56%] [0.36, 0.61] [0%, 0%]
0.5 [0.54, 0.75] [0.31, 0.57] [42.59%, 24.00%] [0.54, 0.75] [0%, 0%]
09 [0.54,0.78] [0.31,0.57] [42.59%, 26.92%] [0.54, 0.78] [0%, 0%]
13 [0.57,0.82] [0.31, 0.57] [45.61%, 31.70%] [0.57, 0.82] [0%, 0%]
1.7 [0.61, 0.89] [0.31, 0.57] [49.18%, 35.96%] [0.61, 0.89] [0%, 0%]
21 [0.61,0.89] [0.31,0.57] [49.18%, 35.96%] [0.61,0.89] [0%, 0%]

Comparison of precision among FARM, SARM, NIRM and the conventional method under different a.

a Reference results FARM Deviations SARM Deviations NIRM Deviations
[Bel, PI] [Bel, PI] [Bel, PI] [Bel, PI]
—0.05 [0.435, 0.691] [0.434, 0.691] [0.2%, 0%] [0.435, 0.691] [0%, 0%] [0.435, 0.691] [0%, 0%]
—0.63 [0.580, 0.804] [0.566, 0.798] [2.5%, 0.7%] [0.580, 0.804] [0%, 0%] [0.580, 0.804] [0%, 0%]
-1.21 [0.798, 0.938] [0.798, 0.938] [0%, 0%] [0.798, 0.938] [0%, 0%] [0.798, 0.938] [0%, 0%]
-1.79 [0.881, 0.972] [0.881, 0.972] [0%, 0%] [0.881, 0.972] [0%, 0%] [0.881, 0.972] [0%, 0%]
-2.37 [0.945, 0.990] [0.938, 0.990] [0.8%, 0%] [0.945, 0.990] [0%, 0%] [0.945, 0.990] [0%, 0%]
—2.95 [0.990, 1] [0.990, 1] [0%, 0%] [0.990, 1] [0%, 0%] [0.990, 1] [0%, 0%]
—3.53 [0.997, 1] [0.997, 1] [0%, 0%] [0.997, 1] [0%, 0%] [0.997, 1] [0%, 0%]
—-4.11 [11] [1,1] [0%, 0%] [1,1] [0%, 0%] [11] [0%, 0%]
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0.2. Due to the manufacturing errors and harsh working environ-
ment, the length of the crank a, the length of the coupler b and the
external force P are treated as evidence variables. Also, different
installation positions of the slider are required in various working
sites, thus, the offset e is also considered as an evidence variable.
The limit-state function is defined as the difference between the
material strength and the maximum stress of the coupler:

4P(b—a)
71'(\/(b—a)2 —e2 —;4e> (d% —df)

The FDs for a,b, P, e are determined based on limited historical
data and they are [94 mm, 106 mm], [290 mm, 310 mm)], [220 kN,
280 kN], [100 mm, 150 mm], respectively. Two different cases that
the BPA structure contains 4 and 6 subintervals are investigated in
this problem, whose detailed information is given in Tables 4 and 5,
respectively.

Fig. 7 gives a comparison of the computational cost among
FARM, SARM, NIRM and the conventional method under both BPA
structure cases. First, it shows that the conventional method and
NIRM require much more function evaluations than the proposed
methods under both cases, almost two to three more magnitudes.
For example, under the 4-subinterval BPA structure case, the
function evaluation number for the conventional method and
NIRM at S=1.98 is 4096 and 3840, which, however, is only 35
for FARM and 79 for SARM. Though much more time-consuming
than FARM and SARM, NIRM is more efficient than the

g(a,b,P,e)=S—

(22)

M-M Section

\OO3 P

N N

Fig. 6. A crank-slider mechanism [40].

Table 4
The 4-subinterval BPA structure for variables a, b, P and e.

a b P e

Subinterval BPA Subinterval BPA Subinterval BPA Subinterval BPA

conventional method. Second, it shows that the function evalua-
tion number of the conventional method and NIRM increases
sharply when the number of subintervals in the BPA structure
increases from 4 to 6. For example, for the same S=1.98, the
number of the conventional method and NIRM increases from
4096 and 3840 to 20,736 and 16,640, respectively. However, for
the proposed methods, the computational cost only shows a tiny
fluctuation. Finally, by comparing Figs. 5 and 7, it can be found that
the function evaluation number of the conventional method and
NIRM increases sharply to a higher order of magnitude with the
problem dimension, while that of both FARM and SARM is almost
still in the same order of magnitude.

The reliability analysis results for the 4-subinterval and 6-subin-
terval BPA structure cases are obtained as shown in Tables 6 and 7,
respectively. First, it can be found that with the increase of the number
of subintervals for each parameter, the gap between the belief and
plausibility results for the same S becomes narrower. In other words,
the increasing information of input parameters leads to a lower level of
epistemic uncertainty in the response. Second, it can be found that the
Bel and Pl results obtained from SARM exactly agree with the reference
ones under both cases, which implies its good accuracy for problems
with not strong nonlinearity. Thirdly, the Bel and Pl results obtained
from NIRM exactly agree with the reference ones at most cases, except
at S=1.86 and S = 2.10. The non-probabilistic indexes are not exactly
obtained in these cases, which is caused by the fact that using
sequential quadratic programming (SQP) to solve the optimization
model constructed for the non-probabilistic index [18] seems not to
be always stable. Finally, the Bel and Pl results obtained from FARM
agree well with the reference ones under both cases, and at many cases
they are even exactly the same. The largest deviations of the belief and
plausibility measures are only 1.4% and 0.6%, which occurs at S = 1.74.

4.3. Application to a vehicle crash problem

In recent years, traffic accidents have resulted in thousands of
passenger injury and death, among which the frontal impact of vehicle
has been the most principal factor. Therefore, much attention has been
drawn to the vehicle safety research for the frontal impact. Here, a
model of full-width frontal crash as shown in Fig. 8 is investigated.
Vehicle safety can be measured by parameters such as the contact
forces exerted on the occupants or the resulting accelerations during a
vehicle crash [41]. In this application we will carry out a reliability
analysis for the mean integration acceleration of the left backseat,
which can be calculated as follows:

ty
a= max{ 1 / adt} (23)
ti—t Jy,

where t; and t, are any selected time instances during the testing

[94,97] 01 [290,295] 01 [220,235] 01 [100,1125] 0.1 period which satisfy t, —t; = 36 ms; a is the synthesis acceleration of
[97.100] 04 [295300] 04 [235250] 04 [1125125] 04 the left backseat and its unit is the gravitational acceleration, g.
[100,103] 04 [300,305] 04 [250,265] 04 [1251375] 0.4 Durine th hicl fety desien. the front b hb
[103,106] 01 [305310] 01 [265280] 01 [1375150] 0.1 uring the vehicle safety design, the front bumper, crash box
and front rail are major energy absorbing components which will
Table 5
The 6-subinterval BPA structure for variables a, b, P and e.
a b P e
Subinterval BPA Subinterval BPA Subinterval BPA Subinterval BPA
[94,96] 0.1 [290,293.33] 0.1 [220,230] 0.1 [100,108.33] 0.1
[96,98] 0.2 [293.33,296.67] 0.2 [230,240] 0.2 [108.33,116.67] 0.2
[98,100] 0.2 [296.67,300] 0.2 [240,250] 0.2 [116.67,125] 0.2
[100,102] 0.2 [300,303.33] 0.2 [250,260] 0.2 [125,133.33] 0.2
[102,104] 0.2 [303.33,306.67] 0.2 [260,270] 0.2 [133.33,141.67] 0.2
[104,106] 0.1 [306.67,310] 0.1 [270,280] 0.1 [141.67,150] 0.1
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Table 6

Comparison of precision among FARM, SARM, NIRM and the conventional method under the 4-subinterval BPA structure.

S Reference results FARM Deviations SARM Deviations NIRM Deviations
[Bel, PI] [Bel, PI] [Bel, PI] [Bel, PI]
1.74 [0.374, 0.958] [0.374, 0.958] (0%, 0%] [0.374, 0.958] [0%, 0%] [0.374, 0.958] (0%, 0%]
1.86 [0.611, 0.993] [0.613, 0.993] [0.3%, 0%] [0.611, 0.993] [0%, 0%] [0.612, 0.993] [0.2%, 0%]
2.10 [0.898, 1] [0.900, 1] [0.2%, 0%] [0.898, 1] [0%, 0%] [0.894, 1] [0.4%, 0%]
222 [0.947,1] [0.948, 1] [0.1%, 0%] [0.947, 1] [0%, 0%) [0.947, 1] [0%, 0%]
234 [0.976, 1] [0.979, 1] [0.3%, 0%] [0.976, 1] [0%, 0%] [0.976, 1] [0%, 0%]
246 [0.991,1] [0.991,1] (0%, 0%] [0.991,1] [0%, 0%] [0.991,1] [0%, 0%]
2,58 [0.998, 1] [0.998, 1] (0%, 0%] [0.998, 1] [0%, 0%] [0.998, 1] [0%, 0%]
2.70 [0.999, 1] [0.999, 1] (0%, 0%] [0.999, 1] [0%, 0%] [0.999, 1] [0%, 0%]
Table 7
Comparison of precision among FARM, SARM, NIRM and the conventional method under the 6-subinterval BPA structure.
S Reference results FARM Deviations SARM Deviations NIRM Deviations
[Bel, PI] [Bel, PI] [Bel, PI] [Bel, PI]
1.74 [0.508, 0.858] [0.515, 0.863] [1.4%, 0.6%] [0.508, 0.858] [0%, 0%] [0.508, 0.858] [0%, 0%]
1.86 [0.676, 0.950] [0.683, 0.951] [1.0%, 0.1%] [0.676, 0.950] [0%, 0%] [0.678, 0.950] [0.3%, 0%]
2.10 [0.892, 0.998] [0.896, 0.998] [0.4%, 0%] [0.892, 0.998] [0%, 0%] [0.905, 0.998] [1.5%, 0%]
222 [0.947,1] [0.950, 1] [0.3%, 0%] [0.947,1] [0%, 0%] [0.947,1] [0%, 0%]
234 [0.977,1] [0.978,1] [0.1%, 0%] [0.977,1] [0%, 0%] [0.977,1] [0%, 0%]
246 [0.991, 1] [0.994, 1] (0%, 0%] [0.991, 1] [0%, 0%] [0.991, 1] [0%, 0%]
2.58 [0.997,1] [0.998, 1] [0%, 0%] [0.997,1] [0%, 0%] [0.997,1] [0%, 0%]
2.70 [0.999, 1] [0.999, 1] (0%, 0%] [0.999, 1] [0%, 0%] [0.999, 1] (0%, 0%]
directly affect the vehicle crashworthiness. Due to the manufactur- experimental value a:
ing and measurement errors, here the thicknesses of the front o
8 g=a ~a(dr.dy.d3.ds.ds) 23)

bumper dq, the crash box inner plate d, and outer plate ds, the
front rail inner plate d, and outer plate ds are treated as evidence
variables. Their FDs are [2 mm, 3 mm], [1 mm, 2.5 mm], [1 mm,
2.5 mm], [1.5 mm, 3 mm)], [1.5 mm, 3 mm], respectively. The limit-
state function is defined as the difference between the allowable
mean integration acceleration @ of the left backseat and its

A finite element analysis (FEA) model is created to compute the
mean integration acceleration a of the left backseat, in which the
vehicle impacts the rigid wall with an initial velocity 56.4 km/h at
the front. The model has 755 components, 998,220 nodes and
977,742 elements. Due to the high computational cost of this
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Fig. 8. A vehicle crash problem and its involved uncertain parameters (a) A vehicle frontal collision and (b) The involved uncertain parameters.

Table 8
Reliability results of the vehicle crash problem at @ =38 g.

Methods Bel PL Evaluation number of FEA
FARM 0.7076 1 43
SARM 0.7684 0.9632 113

model, only one case that @ =38 g is considered and the relia-
bility analysis results for FARM and SARM are given in Table 8. On
one hand, two different reliability intervals [Bel, PI] =[0.7076, 1]
and [Bel,Pl] =[0.7684,0.9632] are obtained using FARM and
SARM, both of which indicate that the vehicle’s acceleration of
the left backseat during the frontal impact cannot well satisfy the
risk requirement and the passengers have a possibility to be
injured. Therefore, a structural modification is needed to improve
the vehicle safety. The difference between the reliability results of
FARM and SARM is caused by the nonlinearity of the limit-state
function. However, the deviation of the belief measure is only
7.91% and that of the plausibility is only 3.82%, which indicates
that the nonlinearity of this problem is not too strong and hence
both results of FARM and SARM can be accepted. On the other
hand, the evaluation number of FEA for FARM is only 43, while
that of SARM increases to 113. Since each evaluation of the FEA
model takes almost 8 h, the increased computational cost for
SARM would be more than 20 days. Therefore, if we pay more
attention to the computational cost in this problem, then FARM is
preferred. Otherwise, SARM would be preferred for the better
accuracy.

5. Conclusions

In this paper, the first order approximate reliability method (FARM)
and second order approximate reliability method (SARM) are devel-
oped for evidence theory. They approximate the limit-state function
using the first and second order Taylor series around the most
probable focal element. The efficiency and accuracy of FARM and
SARM are studied, compared with the non-probabilistic index based
reliability method (NIRM) and the conventional method. Some
observations can be obtained from the results of the numerical
examples. (1) FARM and SARM are much more efficient than the
conventional method and NIRM. As the number of subintervals for the
input parameters or the dimension of the problem increases, the
efficiency of FARM and SARM becomes even much better. SARM
requires a little more computational cost than FARM, which is caused
by the calculation of the Hessian matrix. (2) FARM could provide
acceptable reliability results for problems with relatively weak non-
linearity. For problems with stronger nonlinearity, SARM is recom-
mended to provide more accurate results. The accuracy of NIRM is
supposed to be good for many problems, however, at situations where

the non-probabilistic indexes are not exactly obtained, nonnegligible
deviations may occur.
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