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Optimization on Metamodeling-
Supported Iterative
Decomposition
The recently developed metamodel-based decomposition strategy relies on quantifying
the variable correlations of black-box functions so that high-dimensional problems are
decomposed to smaller subproblems, before performing optimization. Such a two-step
method may miss the global optimum due to its rigidity or requires extra expensive sam-
ple points for ensuring adequate decomposition. This work develops a strategy to itera-
tively decompose high-dimensional problems within the optimization process. The sample
points used during the optimization are reused to build a metamodel called principal
component analysis-high dimensional model representation (PCA-HDMR) for quantify-
ing the intensities of variable correlations by sensitivity analysis. At every iteration, the
predicted intensities of the correlations are updated based on all the evaluated points,
and a new decomposition scheme is suggested by omitting the weak correlations. Optimi-
zation is performed on the iteratively updated subproblems from decomposition. The pro-
posed strategy is applied for optimization of different benchmarks and engineering
problems, and results are compared to direct optimization of the undecomposed problems
using trust region mode pursuing sampling method (TRMPS), genetic algorithm (GA),
cooperative coevolutionary algorithm with correlation-based adaptive variable partition-
ing (CCEA-AVP), and divide rectangles (DIRECT). The results show that except for the
category of undecomposable problems with all or many strong (i.e., important) correla-
tions, the proposed strategy effectively improves the accuracy of the optimization results.
The advantages of the new strategy in comparison with the previous methods are also
discussed. [DOI: 10.1115/1.4031982]
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Introduction

Many optimization problems involve high-dimensional, com-
putationally expensive, and black-box objective functions. Shan
and Wang [1] coded the terminology high-dimensional, expen-
sive, and black-box (HEB) to describe this type of problems. In
the design engineering context, in general, problems with more
than ten variables are considered as high dimensional, if function
evaluations are computationally expensive [2]. Expensive prob-
lems typically have objective functions in the form of software
simulations, such as finite-element analysis (FEA) and computa-
tional fluid dynamics (CFD). They are expensive because each
function evaluation takes at least 1 order of magnitude more time
than running one iteration of the optimization algorithm. Using
software simulation makes the objective function black-box,
which means its functional form, (non)linearity with respect to
each variable, and variable correlations are unknown. Though
finite-difference methods can be applied to get gradient informa-
tion, it is found that such gradients are often noisy, erroneous, and
expensive when computed from FEA or CFD processes [3]. More-
over, when the dimensionality of the problem grows, calculating
the derivatives needs numerous function calls, which is not feasi-
ble considering the computational cost.

Beside finite difference, there are other methods, such as
complex-step [4] and adjoint methods [5], used mostly in CFD
optimization. However, they are not suitable for strict black-box
simulation-based optimization because of different reasons. The

complex-step method first assumes that the function is complex
analytical (holomorphic), and second, needs function values of
complex variables which are not available in our case. On the
other hand, the adjoint methods require partial derivatives [6],
which are usually complex, and most CAE software tools do not
provide such information to the users. In this paper, it is assumed
that the objective function is a black-box function and the gradient
of the function is not available to be used in optimization. All the
above challenges make it difficult to solve HEB problems [7–9].

Various strategies are used for addressing high dimensionality
in science and engineering fields [1]. Beside parallel computing
and increasing computational power, which are the clear choices
in all conditions, reducing design space, screening significant vari-
ables, visualization, and decomposing design problem into sub-
problems are the most commonly used strategies. Screening
methods, such as sensitivity analysis, analysis of variance
(ANOVA), and PCA, are used to judge the importance of input
variables in design problems. Then, the less important input varia-
bles are removed and the problem is simplified by reducing the
dimensionality [10–12]. Design space reduction, in general, refers
to any method that focuses on a subregion of the design space.
Shrinking the ranges of design variables leads to shrinkage of the
design space and results in more efficient optimization. A com-
mon space reduction approach is sampling and evaluating a lim-
ited number of sample points then reducing the design space
based on feedback information from modeling on these sample
points. Wang et al. [13] proposed the adaptive response surface
method and the fuzzy clustering based approach [14], in which
the design space was iteratively reduced. Visualizations are used to
visually represent the design problems to the user and can also be
used for design space or dimensionality reduction through interac-
tion with the user. Winer and Bloebaum [15,16] proposed a method
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that allows a designer to make decisions before, during, or after an
analysis or optimization via a visual environment to steer the solu-
tion process. Although all the mentioned methods are useful in dif-
ferent situations, decomposition is identified as one of the most
promising approaches for tackling high-dimensional problems.

Decomposition recommends subproblems of smaller dimension
that can be optimized separately, instead of optimizing all the
dimensions together. After optimization of subproblems, all sub-
components of the main input vector are recombined and the sys-
tem is rebuilt through combination of obtained solutions [17]. In
this way, the required effort for optimization is substantially
reduced. The fact that the subproblems generated by decomposi-
tion can be solved in parallel has made the partitioning and coor-
dination strategies of interest for decades. The challenging issue is
how to decompose a problem, as opposed to how to solve already
partitioned problems. Analytical target cascading is a hierarchical,
decomposition-based strategy for large-scale optimization [18],
which optimizes the objective of each subproblem while minimiz-
ing deviations between design targets. Michelena et al. [19]
decomposed the problem into different partitions of variables and
constraints using hierarchical overlapping coordination. Alison
et al. [20] implemented partitioning and coordination strategies
simultaneously by formulating them as an optimization problem.
Alexander et al. [21] used radial basis function to reduce the
dimensionality of vector-valued coupling variables.

Cooperative coevolution (CC) methods have also been pro-
posed to leverage the capability of evolutionary algorithms (EA)
in dealing with high-dimensional problems by decomposing them
into lower order problems. Traditionally, decomposition strategies
in CC were one-dimensional based and splitting-in-half [22–24].
Yang et al. [25] used random grouping scheme plus an adaptive
weighting system for decomposition in CC. The work has been
elaborated in Ref. [26], adopting particle swarm optimization
position rules using Cauchy and Gaussian distributions for sam-
pling new sample points and adaptively determining the sizes of
the random grouping. Different than the standard iterative CC
methods, Omidvar et al. [27] used the fitness contribution of vari-
ous subproblems in splitting the computational budget between
the subproblems. In this way, more computational resources are
allocated to the subproblems with higher amount of contribution
to the fitness function. Multilevel cooperative coevolution [28]
and multilevel Softmax [29] adaptive methods are used for fully
separable continuous optimization problems. Differential group-
ing method is used for uncovering the underlying interaction
structure of the input variables in Ref. [30]. However, the number
of function calls before reaching an acceptable grouping scheme
is still too high for being used in computationally expensive
problems. Also, because of not considering the intensities of the
correlations, the methods are not capable of optimizing nonsepar-
able problems. Singh and Ray [31] introduced CCEA-AVP that
decomposes nonseparable optimization problems based on the
relations between the design variables. CCEA-AVP is one of the
methods used in Sec. 4 to test the performance of the current
work. Mahdavi et al. [32] used metamodeling in CC decomposi-
tion but again the intensities of the correlations are not calculated.
Similar approach is used in Ref. [33] without using EA. Radial
basis function (RBF)-HDMR metamodeling is used to find the
internal structure of a black-box function and if the problem varia-
bles are decomposable, subproblems are recommended for
optimization.

In Ref. [34], after building the metamodel, sensitivity analysis
has been performed on the metamodel to quantify the correlation
intensities. Then, weak correlations are omitted and a new decom-
position scheme is generated with only strong correlations being
used for decomposition. It is worth mentioning that decomposition
and optimization steps have been performed separately in
Ref. [34]. If the problem has undecomposable structure with all
strong correlations, the decomposition phase suggests one large
group including all the variables for optimization. In this case, the
sample points used for decomposition are basically wasted. Also,

the rigidity of the two-step strategy in building only one decompo-
sition scheme increases the possibility of missing the global
optima, if the decomposition is not correct. On the other hand, to
ensure adequate accuracy of the decomposition, extra expensive
sample points are needed. Moreover, the metamodel used in Ref.
[34], RBF-HDMR, needs structured sampling of the problem,
which is often not achievable in engineering problems.

In this paper, decomposition is not separated from optimization;
the sample points used in the optimization phase are reused for
decomposition. In this way, even if the problem is undecompos-
able, all the sampling costs are used for finding better results.
Moreover, a newly developed metamodel, PCA-HDMR, is used
for metamodeling and sensitivity analysis which does not demand
structured sampling and can be built with nonuniform samples.
The algorithm is named optimization on metamodeling-supported
iterative decomposition (OMID). The rest of this paper is organ-
ized as follows. First, the metamodel HDMR and the metamodel-
based decomposition are briefly described. Then, the proposed
decomposition strategy and the optimization approach are
explained. The Method Testing section provides results of the pro-
posed method on different benchmark functions, along with an en-
gineering design problem. Finally, conclusions are given.

Background

High Dimensional Model Representation (HDMR). HDMR
is an approximation method, first introduced by Sobol [35] and
then elaborated by Rabitz and Alis [36], for representing high-
dimensional black-box functions. It models a high-dimensional
problem as a superposition of lower order functions. It consists of
terms for the individual and joint contribution of the input varia-
bles to the system output. ANOVA-HDMR [36] and cut-HDMR
[37] are two main types of HDMR, which have their own disad-
vantages in modeling black-box functions. To overcome these
disadvantages, random sampling-HDMR (RS-HDMR) [38] and
PCA-HDMR [39] are introduced as a modified version of
ANOVA-HDMR that needs only one set of randomly scattered
sample points. They both use linear combinations of basis func-
tions to build the HDMR components with a general form of

f ðxÞ ¼ c0 þ
Xd
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Xs
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ck
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k
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where f/k
i ðxiÞgs

k¼1 is a family of linearly independent basis func-
tions for univariable functions of xi on ½0 1� and f/k

ijðxi;xjÞgs0
k¼1 is

similarly defined as a family of linearly independent basis func-
tions for bivariate functions of xi and xj on ½0 1�2 and so on. The
problem of finding HDMR components will change to finding the
unknown coefficients of the basis functions (c0, ck

i , ck
ij,…, ck

i1i2…iL
).

To find PCA-HDMR unknown coefficients, a new set of coordi-
nates are defined as the linear transformation between the original
coordinates with minimum possible amount of variation using the
principal component analysis (PCA). A limitation of using PCA-
HDMR is that a minimum number of sample points are required
to build a PCA-HDMR. To overcome the problem of required
minimum number of sample points, it is recommended to just use
the important variable correlations. When only a fraction of corre-
lations are considered, the model is called partial PCA-HDMR.
The proposed OMID algorithm uses partial PCA-HDMR. More
details on PCA-HDMR metamodeling algorithm and formulation
can be found in Ref. [39].

Structural and Component Correlation Matrices. The struc-
tural matrix (SM) and component correlation matrix (CCM) repre-
sent the correlations among the variables of a function in HDMR
representation. SM is a d � n matrix showing all the existing
terms of HDMR, in which n is the number of HDMR terms and d
is the dimensionality. An example is shown in the below equation
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(2)

Each row corresponds to a variable and each column corresponds
to one of the component terms in the HDMR. Each element in the
SM takes “0” or “1”; in each column, 0 means that the corre-
sponding variable does not participate in the component term and
1 means that the variable does participate. For example, the
first column ½01; 02; …; 0d�T denotes the constant component
term, in which no variable is participating;
½01; 02; …; 1i;…; 0d�T represents the first-order component
term fiðxiÞ; ½01; 02; …; 1i;…; 1j;…; 0d�T indicates the exis-
tence of the second-order component term fijðxi; xjÞ, and so on.
CCM is a square matrix defined as

CCMd�d ¼ ½mij�; i ¼ 1; 2;…; d; j ¼ 1; 2;…; d (3)

where mij ¼ 1 if a correlation exists between variables xi and xj in
an HDMR formula for a particular problem; otherwise mij ¼ 0.
The zero and one elements scatter in the CCM shows the structure
of the underlying black-box function. CCM matrix can be made
from SM matrix but the reverse is not possible. Equation (4)
shows the CCM, corresponding to SM matrix in Eq. (2). It can be
seen that the variables fx1; x2; x3; x5; x7; x8; x9; x10g are correlated,
and variables x4 and x6 are independent. The same grouping strat-
egy is used in this paper
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(4)

Metamodel-Based Decomposition. Recently, the authors’
team proposed an algorithm for decomposing high-dimensional
problems to smaller subproblems using a combination of meta-
modeling and sensitivity analysis [34]. The metamodel-based
decomposition algorithm [34] proposes to decompose the original
high-dimensional problem first and solve the decomposed subpro-
blems, instead of the original undecomposed problem. The
method builds a metamodel (RBF-HDMR) of black-box function,
then uses sensitivity analysis for quantifying the intensities of the
correlations among the variables. If the sensitivity index of a

correlation is less than a predefined criterion, the correlation is
omitted from the SM of the problem. The modified SM and CCM
are used for decomposing the problem. For example, if the modi-
fied CCM matrix is found similar to the one in Eq. (4), instead of
optimizing the ten-dimensional original problem, the three sub-
problems of ðx1; x2; x3; x5; x7; x8; x9; x10Þ, ðx4Þ, and ðx6Þ are opti-
mized. More details about the procedure can be found in Ref.
[34]. This work is an improvement of the above-mentioned
metamodel-based decomposition strategy by addressing its disad-
vantages, which are listed below:

(1) RBF-HDMR metamodeling needs structured samples,
which are not always available for engineering problems.

(2) To find the structure of the objective function and the sensi-
tivity of the correlations, a certain number of sample points
are needed, which is in addition to the optimization costs.

(3) When the problem is complicated, to find all the correlations,
RBF-HDMR needs an excessive number of sample points
that may go even beyond the allowed sampling budget.

(4) In cases when all correlations are strong and the problem is
deemed undecomposable, the metamodeling basically wastes
the valuable sample points without helping the optimization.

(5) In cases when the decomposition is not accurate, optimiza-
tion may miss the global optima and there is no chance to
improve the decomposition scheme.

Proposed Method

In this section, steps of OMID algorithm are presented. The
main idea of the proposed algorithm is decomposing the problem
to smaller subproblems iteratively during the optimization pro-
cess, based on the knowledge of the problem obtained until the
current iteration. In this paper, PCA-HDMR’s capability of work-
ing well with nonuniform samples is employed. RBF-HDMR
sampling is omitted and instead the samples used during the opti-
mization process are reused to build a PCA-HDMR model for the
purpose of sensitivity analysis. Figure 1 shows the flowchart of
OMID. Beside the initial sampling unit, the algorithm has four
main units which are repeated during the optimization process and
are shown in the figure: correlation identification (CI), metamod-
eling prediction (MP), subproblem optimization (SO), and global
search (GS).

The procedure starts with generating initial sample points
(XInit). The samples are randomly scattered in the search space
and used to build a PCA-HDMR metamodel. There is a tradeoff
between the efficiency and accuracy when choosing the number
of initial sample points (NInit). If NInit increases, the initial estima-
tion of the variable correlations and their intensities will be more
accurate but the total cost of the algorithm will increase as well.
On the other hand, if a small number is chosen, a few first itera-
tions are not going to properly predict the correlations and their
intensities. Basically, the first few iterations waste the expensive
sample point in searching wrong subproblems because of less
accurate approximated intensities. The other reason can be
thought in biasing the samples when reusing optimization sample
points. A reasonable number of initial randomly scattered sample
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points will help to explore the search space as much as possible.
Different values are tested for different dimensionalities and
finally the number of initial samples is set to be a linear function
of the number of variables (NInit ¼ 10� d). The value can be
changed by the user based on the needed accuracy and efficiency.

As shown in the figure, except at the first iteration, in which the
CCM matrix is set to be an identity matrix, the rest are using the
last updated CCM from the previous iteration. All the sample
points evaluated by the black-box function until the current itera-
tion are given to the CI unit to update the CCM matrix. Pseudo-
code below summarizes how the CI unit works. The output is the
updated CCM matrix

(1) Select the number of correlations to be added ncorr.
(2) Set zero elements of CCM equal to one, one-by-one.

(3) Build the corresponding partial PCA-HDMR metamodels.
(4) Record the R-squared values.
(5) Select the ncorr elements with the maximum R-squared

values.
(6) Build partial PCA-HDMR with CCM including all ncorr

elements.
(7) Perform sensitivity analysis on the model.
(8) Neglect the correlations with a sensitivity indices less than

Smin

(9) Report the updated CCM

The first step of the CI unit is selecting the number of correla-
tions to be added to CCM. For adding one correlation, ncomp �
nbasis sample points are needed, where ncomp and nbasis are the
order of components and number of one-variable basis functions
used to model the component, respectively. In this paper, both

Fig. 1 OMID flowchart
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values are equal to 2. It means that PCA-HDMR goes to second-
order correlations and two basis functions (first- and second-
order polynomials) are used. However, sometimes adding too
many correlations leads to having all-correlated variables (i.e.,
one group of variables) too soon, which defeats the purpose of
decomposition. Therefore, two caps are used to avoid this situa-
tion. The first cap is for the number of added correlations (ncorr).
Theoretically ðNNew Samples=ðncomp � nbasisÞÞ correlations can be
added to CCM at every iteration but the number ncorr is capped
to be the number of variables, d. In this way, the CCM is not
likely to lead to the all-correlated stage too soon. In cases that
there is prior knowledge of the structure/complexity of the prob-
lem, ncorr can be tuned accordingly. The second filtering step
happens in sensitivity analysis that is explained later in this
section.

The next step in the CI unit is setting, one-by-one, the zero ele-
ments of the CCM from the previous iteration equal to one, then
building the corresponding PCA-HDMR metamodel for each
newly added variable correlation. After building all partial PCA-
HDMR models, the R-squared values of the metamodels are
recorded. Assuming that there are nz zero elements in the CCM
matrix, nz partial PCA-HDMR metamodels are built and nz

R-squared values are recorded. The closer the value of R-squared
to one, the more accurate is the approximated model. Therefore,
the metamodels with higher values of R-squared are more likely
to be the ones with most important correlations. ncorr of the tested
CCM elements with the greater R-squared values are selected as
the candidates of new correlations and are added to the previous
iteration’s CCM.

The last step of CI unit is the sensitivity analysis of the selected
correlations. As mentioned before, to avoid reaching all-
correlated stage prematurely, it is tried to pick the best correla-
tions and complete the CCM gradually. Moreover, in cases
with mostly separable variables, it is not desirable to force new
correlations to the problem structure. Therefore, at this stage,
the sensitivity analysis is performed on the added correlations
in order to filter unimportant ones. This is the second filtering
step mentioned previously. A partial PCA-HDMR is built
using all the sample points with a CCM consisting of previous
iteration’s correlations plus the selected correlations from the
last step. Sensitivity analysis is performed and the correlations
with small sensitivity indices, known as weak correlations,
are deleted from CCM. Similar to Ref. [34], a parameter called
Smin is defined which can be constant or varying during the algo-
rithm. Different from Ref. [34], Smin is not determined by the
user manually, because the decomposition is performed several
times during the algorithm and decomposition and optimization
phases are intertwined in OMID. Smin is defined in this work as
follows:

Smin ¼
0:1

d � Iter
(5)

The value is inversely related to the number of variables because
the number of correlations increases with the problem dimension-
ality and the summation of all sensitivity indices is equal to one.
Smin is also set inversely proportional to the iteration number of
the process. The process starts with a large Smin value, which
means it only accepts very strong correlations. Therefore, during
the first few iterations, subproblems have smaller size (i.e., less
number of variables in a group). Progressively, Smin decreases and
the algorithm accepts weaker correlations and leads to subpro-
blems with more input variables. At this stage, a limit can be con-
sidered for the maximum number of variables that a subproblem
can have, depending on the method used for SO. In this paper, the
maximum number of variables in subproblems is set to be ten. It
is assumed that with the specified number of sample points for SO
s (20� d), the optimization algorithm works well for problems of
ten or less number of variables. This limit can change, by

changing the optimization algorithm or changing the number of
allowed sample points.

An updated CCM is the output of the CI unit and is used for
grouping the variables. Note that at the first iteration (i ¼ 1), all
variables of the problem are assumed separable (i.e., there is no
strong correlation among variables). Therefore, the CCM matrix
is set equal to the identity matrix of size d, the problem dimen-
sionality, and the CI unit is bypassed. Therefore, the problem
is broken to d one-variable subproblems. The CCM matrix
resets to the identity matrix every three iterations. It has been
shown in the flowchart by Remainder ðIter=3Þ ¼ 1. In other
words, if the remainder of the iteration number divided by three
is equal to one, the CCM matrix becomes identity matrix. First,
this refreshes the CCM matrices. Reaching subproblems with a
large number of input variables is against the decomposition.
Second, this is to rejudge the previously selected correlations
with new information and delete those incorrectly chosen. Usu-
ally during the first few iterations, the number of sample points
is not enough to correctly judge the correlation intensities.
Refreshing the CCM matrix improves the correlation selection
accuracy.

Before proceeding to the SO unit, a partial PCA-HDMR meta-
model is built based on the CCM matrix. At the first iteration,
because of not considering any correlation between the variables,
a first-order PCA-HDMR is built. Then, a large number of random
sample points are generated and the metamodel is evaluated at
those points. The point with the minimum metamodel value is
evaluated by the black-box objective as a prediction for the actual
optimum point.

The next step is optimization of the subproblems. At this stage,
any algorithm can be used for optimization of the subproblems
(TRMPS is used in this paper). Except for the first iteration at
which the variables are considered as separable, at the rest of the
iterations, the subproblems may have more than one variable. In
these cases, the subproblems are optimized in the SO unit based
on their number of variables. The optimization starts with the sub-
problem with the largest number of variables and continues until
all the subproblems are optimized. In each case, the sampling
budget is a linear function of the number of variables in the sub-
problems (20� d). When optimizing the first subproblem, the var-
iables of the rest of the subproblems are set to be constant values.
The constants are chosen to be at the best location so far. For the
first iteration (i ¼ 1), the best sample point during the initial sam-
pling and MP unit is chosen for this purpose. For other iterations,
the best optimum locations found during previous iterations are
selected.

After optimizing the subproblems, contour-based discrimina-
tive sampling [40] is performed (GS unit) for two main reasons:

(1) Global Search: All the subproblem optimizations using
TRMPS are performed in subspaces of the entire region,
which act as the exploitation phase. Contour-based discrimi-
native sampling searches in the entire search space with the
goal of finding new desirable search regions (exploration).

(2) Unbiasing the metamodeling data: Although PCA-HDMR
works using nonuniform sampling, concentration of all the
samples in small subregions can affect the accuracy of the
metamodel in other regions. Therefore, contour-based dis-
criminative sampling which is performed in the entire
search space will help maintain the global accuracy of
PCA-HDMR.

Again, there is a tradeoff between accuracy and efficiency
in choosing the number of points used in GS (NGS). Increasing
this number will increase the probability of finding favorable
search regions (i.e., better exploration) but will also increase
the total cost of optimization. In this paper, NGS is set to be a lin-
ear function of the dimensionality (NGS ¼ 5� d). However,
if priori knowledge of the problem is available, the number
could be changed accordingly. For example, if it is known
that the objective function is multimodal with many local
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minima, NGS should be increased to empower the exploration
phase, with the goal of not getting trapped in local minimum
regions.

Different stopping criteria can be chosen according to the appli-
cation in which the algorithm is used. In this paper, the number of
sample points is used as the stopping criterion that makes the
algorithm comparison with other methods easier. It is worth men-
tioning that after every TRMPS run on subproblems, the total
number of used sample points is compared with the criterion. If
the number is more than or equal to (NFEmax � NGS), the rest of
the subproblems are not optimized and the algorithm jumps to GS
unit.

Method Testing

In this section, different types of benchmark functions and a
real-world engineering problem are chosen to test the OMID algo-
rithm. The test problems [41,42], as defined in the Appendix, are
chosen with different functional shapes, number of variables, and
intensities of variable correlations. Four different categories of
problems are identified according to intensities of variable corre-
lations [34]

(1) Decomposable problems (type 1): In these problems, varia-
bles are correlated in subproblems that are of small scale.
In other words, without ignoring any correlation, the prob-
lems are decomposable to small subproblems. Test problem
1 (in Table 2) is of this type.

(2) Undecomposable with weak correlations (type 2): In these
problems, variables are correlated and undecomposable.
However, the variable correlations are too weak. In other
words, the correlation terms are not as important as inde-
pendent terms and good results can be obtained by just
optimizing the variables separately. Test problem 2 (in
Table 2) is of this type.

(3) Undecomposable with a mix of weak and strong correla-
tions (type 3): In these problems, the variables are all corre-
lated but the intensities of the correlations are different.
OMID algorithm (CI unit) identifies the intensities and
ignores the weak correlations based on the Smin criterion
and the decomposed subproblems are optimized. Test prob-
lems 3–14 (in Table 2) are of this type.

(4) Undecomposable with strong correlations (type 4):
This type of problem has correlations with similar strong
significance. Test problems 15–17 (in Table 2) are of this
type.

Table 2 shows the results of OMID algorithm compared with
TRMPS, GA, CCEA-AVP, and DIRECT. The tests are repeated
ten times for each benchmark function, and the averages of the
obtained optimum values as well as the standard deviation are pre-
sented. The benchmark functions are shown in the Appendix.
Because DIRECT is deterministic and all runs give same results,
there is no standard deviation to report. Note that the maximum
number of function evaluations is set to be 5000 for TRMPS, GA,
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2Table 1 CCEA-AVP parameter settings

Parameter Value

Population size 50
Number of generations 20
Crossover probability 1.0
Mutation probability 0.1
Crossover index 15
Mutation index 20
Maximum partitions for CCEA-AVP 10
Correlation threshold, T 0.6
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and DIRECT. However, TRMPS converged before reaching 5000
function evaluations in some cases. For OMID and CCEA-AVP,
the maximum number of function evaluations is set to be the value
that TRMPS used. In this way, the comparison is fair between
TRMPS, CCEA-AVP, and OMID and also all of them are using
less number of sample points than GA and DIRECT. The used
sample points in all tests are 5000 in GA and it is thus not
reported in the table. In some cases, it is seen in the table that
DIRECT and CCEA-AVP go beyond the specified number of
sample points and it is because we let the algorithms complete
the last iteration. The main comparison is between TRMPS and
OMID because the subproblems of OMID are optimized by
TRMPS. The parameters used for TRMPS are identical to that
used in Ref. [43]. It should be mentioned that the method is
named TRMPS2 in the original paper [43] and it is called
TRMPS in this paper for convenience.

GA and DIRECT are chosen to compare OMID with these
well-known methods in the literature and also CCEA-AVP is cho-
sen for this purpose because it is a decomposition-based optimi-
zation method. There are several types of GA in the literature. In
this paper, the GA available in the MATLAB optimization toolbox
is used and the parameter settings are the same as those used in
Ref. [43] with the crossover rate, mutation rate, population size,
and stall generation limit being 0.6, 0.05, 100, and 49,
respectively.

The parameters chosen for CCEA-AVP are shown in Table 1.
The only exception is the setting for test problem 2 in which the
population size and number of generations are set to be 10, in
order to make sure that the algorithm goes through a couple of
iterations to reach approximately 700 function calls to be compa-
rable with TRMPS. If the setting in Table 1 is chosen, then the
algorithm would not go beyond the first iteration.

The result of problem 1 (SUR-T1-16) shows that OMID works
well for type 1 problems. The average function value is reduced
from 0.745 by TRMPS to 0.201 by OMID. Both OMID and
TRMPS are remarkably better than GA, CCEA-AVP, and
DIRECT for this problem. For better understanding of the

procedure, the subproblems’ variables considered in OMID in
each iteration are studied, for one of the independent runs. By
looking at the problem formulation, it is clear that the variables
are correlated in groups of four and the problem consists of five-
independent subproblems (x1, x6, x11, x16), (x2, x7, x12, x17),
(x3, x8, x13, x18), (x4, x9, x14, x19), and (x5, x10, x15, x20).
Figure 2 shows that the decomposed subproblems were
assumed and optimized by OMID during different iterations of
a single run for SUR-T1-16. In this figure, black and white pat-
tern fills of the variables’ rectangles represent different groups
of variables with the corresponding variable indices to their
left.

The first iteration starts with optimizing the variables independ-
ently. After the first iteration is completed, the optimization points
are reused for identifying the important correlations. At iteration
2, the subproblems assumed by OMID are (x1, x6, x7, x9, x10,
x11, x12, x14, x15, x16), (x2, x3, x5, x17, x20), ( x8, x13,
x18), and ( x4, x19), which are different from the actual subpro-

blems. At iteration 3, subproblem #2 is also connected to subpro-
blem #3 and the algorithm optimized three subproblems.
Iteration 4 is the one that the CCM matrix is reset and the new
subproblems are getting more accurate. As mentioned in the Pro-
posed Method section, the CCM matrix is reset every three itera-
tions and new correlations are made, based on the existing
sample points so far. It is the reason why the numbers of varia-
bles in groups are increasing when the iteration grows until third
iteration but at iteration 4, the numbers of variable in groups are
less than that at iteration 3.

At iteration 4, predicted ten different subproblems are (x10,
x15), (x9, x14), (x8, x13), (x7, x12), (x6, x11), (x5, x20), (x4, x19),
(x3, x18), (x2, x17), and (x1, x16), which are shown with black
and white pattern fills in Fig. 2. At the first look, it seems that
CI missed many correlations and instead of five subproblems,
assumed ten smaller subproblems. But by a closer look at the
problem formulation, it can be seen that there are two summa-
tions with second-order terms and two summations with
fourth-order terms. The correlations found by OMID are
exactly the fourth-order correlations. In other words, OMID
found the most important terms and neglected the less impor-
tant (second order) terms, based on the formulation defined by
Eq. (5) for Smin criterion. It is clear that if a greater value of
Smin is considered as criterion, more correlations would be
retained and subproblems with more variables would be identi-
fied. As shown in Table 2, the chosen criterion is working
properly and OMID obtained smaller average optimum value
than TRMPS with a smaller standard deviation, and they are
both better than GA, CCEA-AVP, and DIRECT results. The
number of function evaluations in DIRECT is more than 5000,
because we allow DIRECT to complete the last iteration, but
still reaches a poorer optimum than OMID. As shown in the
figure, although Smin is decreased from iteration 4 to iteration
5, iteration 5 keeps almost the same subproblems and just
combines two groups together.

Iteration 6 connects a few groups together and predicts the sub-
problems (x9, x14, x8, x13, x10, x15, x1, x16, x3, x18), (x5, x20, x7,
x12), (x6, x11), (x4, x17), and (x2, x19). Iteration 7 is again the reset
iteration (third iteration after iteration 4), which returns to the
same pattern as iteration 4 and iteration 8 keeps the same pattern.
Note that based on Eq. (5), the Smin criterion is proportional to the
reverse of the number of iterations. Iteration 9 again combines a
few groups and then iteration 10 resets it to the same pattern as
iteration 8, which is kept in the last iteration as well.

Problem 2 is of type 2: The correlations are not identified by
RBF-HDMR metamodeling in Ref. [34]. The reason why the
number of sample points is not 5000 in this problem is that
TRMPS converges around 700 sample points with good results.
We let GA and DIRECT continue until 5000 sample points but
still they cannot reach favorable results in comparison with
TRMPS and OMID. For being fair in comparing the results,
OMID and CCEA-AVP are constrained to 700 sample points

Fig. 2 Decomposed subproblems during OMID procedure for
problem #1
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similar to TRMPS and OMID converged with better and more
consistent results than TRMPS.

Problems 3–14 are of type 3: By looking at the function PUR-
T1-13 (problems 3–5), the importance of the correlations among
the variables is increasing when their index number (i) is increas-
ing. For example, the correlation between variables (x9, x10) is
much more important (i.e., higher sensitivity index) than the cor-
relation between variables (x1, x2). It can be seen by comparing
the coefficients of the terms having variables (x9, x10) with the
coefficients of the terms having (x1, x2). As shown in Table 2,
OMID yields much better results than TRMPS, GA, CCEA-AVP,
and DIRECT in all 10-, 20-, and 30-dimensional cases for this
problem.

By looking at the function SUR-T1-14 (problems 6–8) formula-
tion, it is clear that the variables are all correlated with variables
beside them like a chain (i.e., variable xi is correlated with varia-
bles xi�1 and xiþ1, if exists) and coefficients of the terms, n� i,
are decreasing linearly by increasing the variable index number
(i). As shown in Table 2, OMID does not work as well as TRMPS
but works better than GA, CCEA-AVP, and DIRECT. Also, the
difference between the average of TRMPS and OMID results is
increasing with the increasing dimensionality. In 10-, 20-, and 30-
dimensional problems, the differences between OMID and
TRMPS results are 0.1347, 0.218, and 51.264, respectively. Two
reasons are thought for why OMID results are worse than TRMPS
in higher dimensional cases. First, when the number of variables
increases, because of OMID setting a maximum of ten variables
in a group, the number of correlations that are neglected increases
and consequently the approximation error by decomposition
increases. Second, the coefficient, n� i, is changing linearly,
which means the difference between the intensities of correlations
is not decreasing rapidly. In other words, the neglected correla-
tions (i.e., the correlation of variables x11 – x30) in the 30-
dimensional case are not significantly less important than the kept
correlations. To validate the assumption, a modified version of
function SUR-T1-14 is designed and tested using the same algo-
rithms. The structure of the function is the same as SUR-T1-14

with a difference in the coefficients of the terms of the summation;
(n� i) is changed to ½ððn=2Þ � iÞ2 þ 1� (see the problem in the
Appendix). The problem has two main differences from the origi-
nal SUR-T1-14. First, the intensity of the correlations is more im-
portant when the variable indices are either very small or very
large. The middle range variable correlations (e.g., correlation of
x15 and x16 variables in 30-dimensional case) are less important.
Second, the coefficient function is a second-order function rather
than being linear. This will make the difference between the cor-
relation intensities more significant than the original function.

Figure 3 shows the decomposed subproblems optimized by
OMID during different iterations of a single run for the 20-
dimensional modified SUR-T1-14 (problem #10). Again, black
and white pattern fills are used for representing different groups of
variables in subproblems with the corresponding variable indices
to their left. The process starts with 20 independent variables
being optimized at iteration 1. Iterations 2 and 3 assume a group
of variables (x1, x2, x3, x4, x7, x16, x17, x18, x19, x20) and the rest of
the variables are considered to be independent. It is clear that in
the first few iterations, the decomposition result is not accurate
because of not having enough sample points. However, the main
group includes the most important variables. Iteration 4 resets the
CCM matrix and uses the updated sample points for decomposi-
tion and as shown in the figure, two main groups of variables exist
(x1, x2, x3, x4) and (x16, x17, x18, x19, x20) and the rest are consid-
ered independent. As it continues, at iteration 10 after three resets
of CCM, the groups are almost the same as the ones in iteration 4,
which shows the importance of the grouped variable correlations
in comparison with the rest of the correlations. The results show
that OMID works better than TRMPS, GA, CCEA-AVP, and
DIRECT in all 10-, 20-, and 30-dimensional modified cases. The
results also validate our hypothesis that the poorer performance of
OMID as compared to TRMPS on the original SUR-T1-14 is
mostly due to the limitation of d � 10 for all subproblems set in
OMID.

Problems 12–14 (Zakharov) have a structure with a combina-
tion of strong and weak correlations and also all the variables are
correlated with each other. As shown in Table 2, OMID works
better than TRMPS, GA, CCEA-AVP, and DIRECT in the 10-
dimensional case but worse than them in 20-dimensional and 30-
dimensional cases. The same two reasons for SUR-T1-14 should
apply in this case as well. The problem again would have only
one main group of variables and when the number of variables
increases, the approximation error by decomposition increases
because of neglecting an increasing number of correlations.
Also, similar to SUR-T1-14, the coefficient which makes the
correlation intensities different is changing linearly with respect
to the variables’ index. This property indicates that the inten-
sities of the kept and omitted correlations are not much different.
Another reason that can be thought for this case is the number of
correlations existing in the structure. By looking at the structure,
it can be seen that there are important (fourth order) correlations
among every two, three, and four variables. For having maxi-
mum ten variables in a group, many important correlations
would be omitted that can affect the accuracy of the optimization
results.

The last function is Rosenbrock (problems 15–17) in which all
the correlation intensities are important and in most of the cases,
OMID could not find better results than TRMPS, GA, and
DIRECT. However, OMID is found more efficient than the previ-
ously proposed metamodel-based decomposition method [34]. In
the previous method [34], an excessive number of sample points
would have been used to find if the problem is decomposable or
not. Because OMID progressively reuses the optimization sample
points, it does not waste any sample points and reaches a reasona-
ble solution.

After testing with benchmark functions, OMID is applied to
a real-world engineering problem. The problem is an assembly
variation minimization problem, explained in the following sec-
tion, Engineering Problem.

Fig. 3 Decomposed subproblems during OMID procedure for
problem #10
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Engineering Problem. The quality of sheet metal assemblies
is affected by propagation of dimensional and geometric toleran-
ces through the assembly process. Tolerance analysis shows the
relationship between the tolerances of parts and the final assembly
errors. The analysis indicates that with the same amount of toler-
ances of parts, the positions of the locators play important roles in
the final assembly dimensional quality. The locators include four-
way holes, two-way slots, and clamps that ensure the parts are
positioned properly before welding. In addition to the part size tol-
erances, the locators themselves introduce new variations to the
final assembly. The effects of locator variations on the final as-
sembly dimensional variances can be minimized by selecting opti-
mal positions of these locators.

The goal is to optimize the locators’ positions for an auto-body
assembly, as shown in Fig. 4. A dimensional analysis software
tool, 3DCS ANALYST [44], is used to simulate the assembly process,
and the final assembly quality measures are obtained for different
configurations of the locators during the optimization process.
The optimization algorithm is coded in MATLAB, which calls 3DCS

to create an optimization loop. During the optimization process,
the algorithm iteratively nominates new sets of locator configura-
tions that are subsequently simulated in 3DCS. The overall assem-
bly variation (i.e., the optimization objective function) is then
returned to the optimizer, which suggests new configurations
(design variable values).

A 3DCS design of experiments (DOE) script is used to send
batches of experiments (or candidate configurations) from the
optimizer (written in MATLAB) without launching the 3DCS graphi-
cal user interface. For optimization, hole, slot, and clamp loca-
tions are considered as design variables. Therefore, the number of
optimization variables depends on the number of parts in the as-
sembly and the number of locators on each part. Each part has one
hole, one slot, and three clamps. With ten-parts, there are a total
of 50 entities to be optimized. Furthermore, the location of each
entity includes two coordinates in the assembly plane. Therefore,
the optimization problem has 100 variables. As mentioned in the
“Introduction” section, in the context of simulation-based design,
usually a problem with dimensions more than ten (d> 10) is con-
sidered as a high-dimensional problem when the problem is com-
putationally expensive. On the other hand, the objective function
(i.e., variances at key product characteristic (KPC) points on the
final assembly) of the optimization problem is calculated using
3DCS via Monte Carlo simulation. Thus, this optimization problem
involves HEB functions.

In this problem, the goal is to minimize the final assembly error.
The overall error is usually defined by a combination of measure-
ments at KPC points on the assembly, whose variations from
nominal values affect the final dimensional quality of the product.
For the ten-part assembly (Fig. 4), 224 KPC points are specified
on the assembly. The six-sigma values of the variation at the mea-
sure points from their nominal positions are calculated by 3DCS

using Monte Carlo simulations. The objective function is a

weighted sum of squares of the six-sigma values at all KPCs. In
our studies, all KPC points are weighted equally. In practice, engi-
neers can give more weight to some of the points if so desired.
Two different case studies for optimization of the assembly station
are presented

(1) The full 100-dimensional problem of a ten-part, using all
the assembly stations.

(2) A 30-dimensional problem of a three-part assembly, using
just one of the assembly stations.

The objective function is the same in both cases: it is the sum
of squares of the six-sigma (6STD) of predefined measure points,
which are distributed throughout the assembly. For the 30-
variable case, 14 KPC points and for 100-variable case, 224 KPC
points are defined. The optimization is performed using both
TRMPS and OMID algorithms and the average of the ten runs is
compared with the baseline objective function value before the
optimization. In the 30-dimensional and 100-dimensional cases,
5000 and 10,000 sample points are used, respectively. Due to
confidentiality, the results are shown relative to the baseline
value by percentage. In 100-dimensional case, TRMPS reached
a fixture layout with an objective function value equal to 54.96%
of the baseline, while OMID reached to 19.7%. In the 30-
dimensional case, TRMPS reached a fixture layout with an
objective function equal to 81.25% of the baseline, while OMID
reached to 71.88%. Therefore, OMID obtained more improve-
ment in the objective function value comparing to the baseline
value than TRMPS.

Conclusions

In this paper, a metamodeling-supported iterative decomposi-
tion strategy is proposed to optimize HEB problems. This
approach, called OMID, starts with optimizing the input variables
independently and iteratively builds metamodels, which are used
to explore the intensities of variable correlations. PCA-HDMR is
applied for metamodeling as it provides the ability to reuse the
existing sample points generated during previous optimization
iterations. The decomposition and optimization processes are
intertwined to increase efficiency for global optimization of high-
dimensional problems. The method is applied to 17 test problems
with different dimensionalities from four different categories
based on their inner variable structures and correlation intensities.
The results of the method are compared with three different opti-
mization methods, TRMPS, GA, CCEA-AVP, and DIRECT. The
results showed that for problems with weak correlations and the
problems with strong/weak combination of correlations, the pro-
posed method is remarkably more accurate than other methods,
with the same number of used sample points. For problems in
which all correlations are strong or the intensities are close to
each other, the method is not advantageous. However, because of
integration of the decomposition and optimization phases, even if
the problem is undecomposable, the proposed method still finds
acceptable results, sometimes better than GA and DIRECT. A
100-dimensional assembly variation problem is optimized using
the proposed method and the results are compared with TRMPS
results and the baseline values. The results show significant
improvement of OMID over TRMPS, with the same number of
sample points. Future research will continue to improve the opti-
mization strategy to solve for type 4 problems with all strong vari-
able correlations.

Acknowledgment

The funding from the Natural Science and Engineering
Research Council of Canada (CRDPJ421445-11) is gratefully
acknowledged. Also, the authors would like to gratefully
acknowledge the CCEA-AVP code provided by Dr. Singh and Dr.
Ray at UNSW Australia.

Fig. 4 Assembly sequence

Journal of Mechanical Design FEBRUARY 2016, Vol. 138 / 021401-9

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 06/02/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Appendix

Name D Function Variable ranges

SUR-T1-16 20
f ðxÞ ¼

P5
1

½ðxi þ 10xiþ5Þ2 þ 5ðxiþ10 � xiþ15Þ2 þ ðxiþ5 � 2xiþ10Þ4 þ 10ðxi � xiþ15Þ4�
�2 � xi � 5

F16 16
f ðxÞ ¼

P16

i¼1

P16

j¼1

aijðx2
i þ xi þ 1Þðx2

j þ xj þ 1Þ
�1 � xi � 1

aij ¼

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
6666666666666666666666666664

3
7777777777777777777777777775

PUR-T1-13 10, 20, 30
f ðxÞ ¼

Pn
i¼1

i3ðxi � 1Þ2
� �3 �3 � xi � 3

SUR-T1-14 10, 20, 30
f ðxÞ ¼ ðx1 � 1Þ2 þ ðxn � 1Þ2 þ n

Pn�1

i¼1

ðn� iÞðx2
i � xiþ1Þ2

�3 � xi � 2

SUR-T1-14 modified 10, 20, 30
f xð Þ ¼ x1 � 1ð Þ2 þ xn � 1ð Þ2 þ n

Pn�1

i¼1

n
2
� i

� �2 þ 1
� �

x2
i � xiþ1

� �2 �3 � xi � 2

Zakharov 10, 20, 30
f xð Þ ¼

Pn
1

xi
2 þ

Pn
1

1
2

i xi

� �2

þ
Pn

1

1
2

i xi

� �4 �5 � xi � 10

Rosenbrock 10, 20, 30
f ðxÞ ¼

Pn�1

i¼1

ð100ðxiþ1 � xi
2Þ2 þ ðxi � 1Þ2Þ

�5 � xi � 5
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