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Abstract To deal with high-dimensional, computationally ex-
pensive and black-box optimization (HEB) problems, a Partial
Metamodel-based Optimization (PMO) method using Radial
Basis Function-High Dimensional Model Representation
(RBF-HDMR) along with a moving cut-center strategy is de-
veloped. To reduce the exponentially increasing cost of build-
ing an accurate metamodel for high dimensional problems,
partial RBF-HDMR models of selected design variables are
constructed at every iteration in the proposed strategy based
on sensitivity analysis. After every iteration, the cut center of
RBF-HDMR is moved to the most recent optimum point in
order to pursue the optimum. Numerical tests show that the
PMOmethod in general performs better than optimization with
a complete RBF-HDMR for high-dimensional problems in
terms of both effectiveness and efficiency. To improve the per-
formance of the PMO method, a trust region based PMO (TR-
PMO) is developed. When the allowed number of function
calls is scarce, TR-PMO has advantages over compared
metamodel-based optimization methods. The proposedmethod
was then successfully applied to an airfoil design problem. The
use of a partial metamodel for the purpose of optimization
shows promises and may lead to development of other novel
algorithms.

Keywords High dimension . HDMR .Metamodeling .
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1 Introduction

High dimensionality, high computational cost and being
black-box are three main challenges in simulation-based de-
sign optimization (Shan and Wang 2010a), and their combi-
nation makes a problem very difficult to optimize (Bates et al.
1996; Srivastava et al. 2004). Many science and engineering
problems are of high dimension, with different interpretations
for what constitutes “high dimension” in different fields. In
the design engineering context, if the objective/constraint
function is computationally expensive, problems with more
than ten variables are considered high dimensional (Shan
and Wang 2010b). When the dimensionality increases, the
optimization search space grows exponentially, that makes
the systematic searching intractable. Computational tools such
as Finite Element Analysis (FEA) and Computational Fluid
Dynamics (CFD) are widely used for modeling complex en-
gineering problems. The simulation-based models are consid-
ered black-box functions because their key information such
as functional form, (non)linearity of the function with respect
to each variable, and variable correlations are not known to a
user. The computational costs of simulation models are differ-
ent, depending on the complexity of the model and computer
power. The authors’ team provided a detailed review of tech-
niques solving these so-called High Dimensional, Expensive,
Black-box (HEB) problems (Shan and Wang 2010a).

Since gradients of black-box functions are not readily
available or often not reliable with numerical analysis,
gradient-based global optimizations are commonly not used
for HEB problems. Genetic algorithm (GA) (Goldberg 1989),
Simulated Annealing (SA) (Kirkpatrick et al. 1983), DIviding
RECTangles (DIRECT) (Jones and Law 1993), and Particle
Swarm Optimization (PSO) (Kennedy and Eberhart 1995) are
well-known non-gradient based optimization methods used
for optimization of black-box functions. The main difficulty
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of using these non-gradient optimization methods for HEB
problems is the excessive number of needed function calls,
which is often not feasible for expensive problems. Various
approaches are used for dealing with high dimensionality.
Parallel computing, increasing computational power, design
space reduction (Wang and Shan 2004), mapping (Somorjai
et al. 2004; Rassokhin et al. 2000), visualization (Winer and
Bloebaum 2002) and decomposition (Bloebaum et al. 1992)
are some of the methods used for dealing with high dimen-
sionality. Among all mentioned methods, decomposition is
identified as one of the most promising methods. The main
challenge in decomposition-based methods is how to decom-
pose a problem, considering the fact that the objective func-
tion is black-box. Analytical target cascading (Kim et al.
2003), hierarchical overlapping coordination (Michelena
et al. 1999), simultaneous partitioning and coordination
(Allison et al. 2009), and Cooperative Coevolution (CC)
methods (Liu et al. 2001; Potter and De Jong 1994; Shi et al.
2005; Yang et al. 2008) are among decomposition-based strat-
egies for large-scale optimization. The number of function
calls before reaching an acceptable sub-problems scheme is
usually too high for computationally expensive problems, es-
pecially when the problem has complicated structure.

Recently, the authors’ team introduced the combination of
metamodeling and decomposition, as a means to tackle HEB
problems (Hajikolaei et al. 2014; Hajikolaei et al. 2016). In the
new approach, metamodels are used to “uncover” some of the
knowledge of a black-box function and the correlation be-
tween the variables, applied for decomposing the original
function into smaller sub-problems. Kriging (Cressie 1988),
radial basis function (Fang and Horstemeyer 2006), neural
network (Papadrakakis et al. 1998), and Multivariate
Adaptive Regression Splines (MARS) (Friedman 1991) are
examples of well-known metamodeling techniques.
However, their weakness is found with high dimensionality,
which demands exponentially increasing number of sample
points. High Dimensional Model Representation (HDMR),
first introduced by Sobol (Sobol′ 1993), is identified as a
promising metamodeling approach for HEB problem and is
used in previous works (Hajikolaei et al. 2014; Hajikolaei
et al. 2016). There are two main types of HDMR (Rabitz
et al. 1999): (1) Analysis of variation-HDMR (i.e., ANOVA-
HDMR), which was used for sensitivity analysis and identi-
fying key variables (Kaya et al. 2004); and (2) cut-HDMR,
which is more computationally efficient than ANOVA-
HDMR and is usually used to generate approximation for
black-box functions. The main disadvantage of using
ANOVA-HDMR is the large number of function evaluations,
which come from the Monte Carlo summations that replace
integrals in evaluating ANOVA-HDMR terms (Rabitz et al.
1999; Hajikolaei and Wang 2013). Cut-HDMR does not have
the disadvantage of Monte Carlo summations because it does
not have any integral (Rabitz et al. 1999). But the need of

having control on sampling is a major drawback of using
cut-HDMR, especially for optimization (Hajikolaei and
Wang 2013). Sample points in cut-HDMR should be on spe-
cific lines, planes, and hyperplanes based on the cut center,
and this type of sampling is called structured sampling
(Hajikolaei andWang 2013), as opposed to random sampling.
But during an optimization process, an optimization algorithm
does not follow the structure and may sample anywhere in the
search space.

In the previous work (Hajikolaei et al. 2014), a type of cut-
HDMR called Radial Basis Function-HDMR (RBF-HDMR)
(Shan and Wang 2010b; Shan and Wang 2009) is used as
metamodeling approach and then sensitivity analysis has been
performed on the metamodel to quantify the intensities of the
correlations between variables. A brief review of RBF-
HDMR is given in the next section. RBF-HDMR is an effi-
cient metamodeling approach for high-dimensional problems,
but it is rarely used for optimization purposes. First, the num-
ber of sample points used to construct a complete RBF-
HDMR model is large for high-dimensional optimization
problems. Second, RBF-HDMR requires structured sample
points, which makes updating the metamodel difficult. If
one uses RBF-HDMR in optimization, often a new model
should be built at every iteration. The samples used to con-
struct the previous models cannot be used in constructing the
new model, which is a waste of computational resources.

By keeping only the strong correlations and omitting the
weak ones, a decomposition scheme was introduced
(Hajikolaei et al. 2016). In (Hajikolaei et al. 2016), the decom-
position and optimization steps are incorporated together in a
loop in a way that the sample points used in the optimization
step are reused for decomposition. However, reusing the op-
timization sample points that were non-uniformly scattered in
the search space needed a new metamodeling method.
Principle Component Analysis-HDMR (PCA-HDMR)
(Hajikolaei and Wang 2013), that was a modified version of
ANOVA-HDMR, is used for this purpose. However, PCA-
HDMR was not as efficient as RBF-HDMR.

In this work, we tried to combine the pros of the methods
proposed in (Hajikolaei et al. 2014) and (Hajikolaei et al.
2016), by developing a partial metamodel based optimization
approach in order to push the limit further, i.e., to obtain the
best optimal solution with scarce samples. The developed
metamodel has a moving cut center and its components are
built during the optimization process. In this way, we leverage
the advantage of RBF-HDMR, along with the idea of incor-
porating decomposition and optimization steps together in a
loop. The rest of this paper is organized as follows. First, a
brief review of basic RBF-HDMR is given. Then the proposed
decomposition-based optimization strategy, called Partial
Metamodel-based Optimization (PMO), is described with a
step-by-step example and description of its properties.
Section 4 provides the result of testing the proposed method
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on different benchmark functions. A trust region strategy is
added to the PMO method. Description of the trust region
based PMO (TR-PMO) and its comparison with others are
in Section 5. Section 6 discusses its application to an airfoil
design problem. Finally conclusions are given in Section 7.

2 Review of RBF-HDMR

The general form of HDMR (Rabitz et al. 1999) is:

f xð Þ ¼ f 0 þ ∑d
i¼1 f i xið Þ þ ∑1≤ i< j≤d f ij xi; x j

� �
þ ∑

1≤ i< j< k ≤d
f ijk xi; x j; xk

� �þ⋯

þ ∑
1≤ i1<⋯< il ≤d

f i1i2…;il xi1 ; xi2 ;…; xilð Þ þ⋯

þ f 12…d x1; x2;…; xdð Þ

ð1Þ

where, f0 is a constant representing the zero-order effect on
f(x); the first order component function, i.e., fi(xi), gives the
effect of the variable xi acting independently on the output
f(x), which can be either linear or nonlinear; fij(xi, xj), the
second order component function, describes the correlated
contribution of variable xi and xj upon f(x). As mentioned
before, there are two main types of well-known technologies
of HDMR: ANOVA-HDMR and cut-HDMR; and RBF-
HDMR is of the latter type.

In RBF-HDMR (Shan and Wang 2010b), a Radial Basis
Function (RBF) model with a sum of thin plate spline plus a
linear polynomial is employed to approximate the component
functions. The RBF model is shown as follows (Shan and
Wang 2010b):

f ̂ xð Þ ¼ Σ
N

i¼1
βi x−xsi
�� ��2log x−xsi

�� ��þ P xð Þ

Σ
N

i¼1
βip xð Þ ¼ 0

P xð Þ ¼ pa ¼ p1; p2⋯pq
h i

α1;α2;⋯αq
� �T

ð2Þ

Where xsi is the sampled point of input variables;
β = [β1, β2, ⋯ , βN] and α are parameters to be found. N is
the number of sample points. P(x) is a polynomial function
and p is the vector of basis of polynomial, chosen as (1, x1, x2,
⋯xd), so q = d + 1. The function ∑N

i¼1βip xð Þ ¼ 0 is imposed
on β to avoid the singularity of distance matrix.

The modeling process is described as follows.

(1) Randomly choose a point x0 in the design space as the
cut center. Evaluate f(x) at x0 to obtain the zeroth-order
component function f0.

(2) To approximate the first-order component function fi(xi),
first generate samples in the close neighborhood of the
upper bound and lower bound of xi. Evaluate those two

ends and model the component function as f̂ i xið Þ by a
one-dimensional RBF for variable xi using those two
points.

(3) Check the linearity of f̂ i xið Þ . If the cut center is on the

line formed by the approximation model f̂ i xið Þ, then
consider f̂ i xið Þ as linear and terminate the modeling pro-

cess for fi(xi). Otherwise, rebuild the RBF model f̂ i xið Þ
by using the cut center and the two end points. Generate
a random point along xi to test the accuracy of the newly

built f̂ i xið Þ. If the relative error between the actual value
and the approximation one is larger than a given criterion
(e.g., 0.01), the test point and all the existing points will

be used to rebuild f̂ i xið Þ until sufficient accuracy is
obtained.

(4) Check the accuracy of the first-order HDMR model.
Form a new point through randomly combining the sam-
ple values for each input variable. Then, compare the
value predicted by the approximation model with the
value obtained from the original expensive function. If
these two values are sufficiently close, it indicates that no
higher-order components exist in the model, the model-
ing process terminates. Otherwise, go to Step 5.

(5) Combine the value of xi and xj (j ≠ i) in the existing sam-
ples with the rest of the elements xk(k ≠ i, j) at x0 to create
new points in two-dimensional planes. One of the new
points is randomly chosen to test the first-order RBF-
HDMRmodel. If the approximation model goes through
the new point, xi and xj are deemed not correlated and
continue to test the next pair of input variables.
Otherwise, use the new point as well as the aforemen-
tioned evaluated points to construct the second order

component function, f̂ ij xi; x j
� �

. This sampling-

remodeling process continues iteratively for all two-
variable correlation until convergence. The higher order
component functions can be constructed in the same
manner of Step 5.

The above process of building a RBF-HDMRmodel adap-
tively models a problem and leads to high model accuracy for
high-dimensional problems. The construction process is sim-
ple. Moreover, RBF-HDMR can significantly reduce the
number of expensive function evaluations in approximating
high-dimensional problems.

Besides the original RBF-HDMR, there are several modi-
fications of RBF-HDMR in the literature. Cai et al. (2016)
proposed an enhanced RBF-HDMR (ERBF-HDMR) that
uses enhanced RBF model based on ensemble model to in-
crease the accuracy of HDMR. Other types of metamodel
were employed, instead of RBF, to construct the component
functions. Huang et al. (2015) and Wang et al. (2011)
employed Support Vector Regression (SVR) and Moving
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Least Square (MLS) to replace RBF model in RBF-HDMR
respectively to obtain more accurate metamodels. The men-
tionedmodifications all focus on how to improve the accuracy
of RBF-HDMR. Although original RBF-HDMR is used in
this paper to construct the partial metamodel-based optimiza-
tion, the user may use other variations as well.

3 Description of partial Metamodel-based
optimization (PMO)

Although RBF-HDMR is an efficient metamodeling method,
the cost of building a complete RBF-HDMR can still be very
high for high-dimensional problems. Also RBF-HDMR, as
rooted in cut-HDMR, requires structured samples. This is es-
sentially in conflict with the fact that the optimization process
may lead the search anywhere in a design space. One ap-
proach is to build a new RBF-HDMR in a smaller area, such
as a trust region. The cost of doing so is also too high as almost
none of the existing points can be inherited for the new model
owing to its demand for structured samples.

This work is based on our fundamental belief that optimiza-
tion can be performed on an imperfect or incomplete metamodel.
Instead of building a costly complete metamodel, we propose to
use partial metamodels in the optimization process, in order to
gain efficiency without sacrificing, or even gain, search quality.

3.1 Algorithm description

With the goal of optimizing HEB problems with reduced
number of expensive function calls, in our proposed Partial
Metamodel-based Optimization (PMO) method, a partial
RBF-HDMR is built at every iteration according to the impor-
tance of variables, found by sensitivity analysis. The cut center
of RBF-HDMR model is moving after every iteration to the
newest optimum point. The flow chart of the PMO method is
shown in Fig. 1. To better understand of the procedure, an n-
dimensional optimization problem is employed for the ease of
description of the proposedmethod. Steps of the algorithm are
described as follows.

Step 1. Construct a first-order RBF-HDMR and use this
metamodel for optimization. A random cut center
in the design space (i.e., x0) is selected. Then, the
first-order RBF-HDMR model (i.e., (3)) is built
based on this cut center.

~f xð Þ ¼ f 0 x0ð Þ þ ∑n
i¼1 f i xið Þ ð3Þ

Then, the first-order HDMR model is optimized to obtain
the optimal point xopt. The cut center xnew0 is moved to this
newly found optimum point.

Step 2. Select one dimension. First, sensitivity analysis is
done on the constructed first order RBF-HDMR
model and the normalized sensitivity indices of
the variables are used for quantifying the impor-
tance of each variable. Next, the sensitivity indices
are sorted in descending order to obtain the sensi-
tivity set S = [s1, s2, … , sn], where s1 is the sensi-
tivity index of the most important variable (highest
index) and sn is the sensitivity index of the least
important variable (lowest index). Next, use the sen-
sitivity set S to construct the probability density set
G = [g1, g2, … , gn], where gi = s1 + s2 + … + si ,
i = 1 , 2 , … , n. Hence, g1 = s1 and gn = 1. When
determining which dimension is selected in the
PMO approach, the larger the value of sensitivity
index, the higher the chance of being selected for
optimization. However, in most cases, the probabil-
ity densities of the dimensions are close to each
other. To ensure the most sensitive dimension is
picked up, a speed control factor used in Mode
Pursuing Sampling method (Wang et al. 2004) is
also used in PMO to adjust the sampling aggres-
siveness. With the adjustment, the probability den-

sity setG is changed to Ĝ ¼ g1=r1 ; g1=r2 ;…; g1=rn

h i
,

where r is the speed control factor. To avoid being

Construct first-order RBF-HDMR

Select one coordinate

Construct partial RBF-HDMR

Optimize

Stopping criteria met?

Output

No

Yes

Roulette

Optimize first-order RBF-HDMR

Sensitivity analysis

Fig. 1 Flow chart of PMO
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trapped into the same solution and balance between
exploration and exploitation, a roulette wheel selec-
tion operator is used next to randomly select one

variable, xk1 , according to the set Ĝ, where the sub-
script k1 is the index of the variable, k1 ∈ [1, n] and
k1 is an integer. The index is stored in the selected
index set K = [k1].

Step 3. Construct a partial RBF-HDMR of xk1 and use the
partial metamodel for optimization. Once the variable
is selected, a partial RBF-HDMRmodel with only one
variable is constructed based on the new cut center.

f ̂ xk1ð Þ ¼ f 0 þ f ̂k1 xk1ð Þ ð4Þ

Thus, the partial HDMR model is a one-dimensional func-
tion of only xk1 with the rest of variables taking the corre-
sponding values of x0. Then, optimize the partial HDMR
model to obtain the optimum x*k1 . The cut center is moved to

xnew0 ¼ x1;…; x*k1 ;…; xn
� �T

, and the function value f0 at the

new cut center xnew0 , which is the current optimum value, is
calculated.

Step 4. Select the d-th variable. Assume before this step, (d-
1) variables have been picked from all the variables
(d ≥ 2), and the selected index set is K = [k1, k2, … ,
kd − 1]. The new cut center xnew0 equals to

x1;…; x*k1 ;…; x*k2 ;…; x*kd−1 ;…; xn
� �T

, and the func-

tion value at xnew0 is selected as the new f0. After
removing the selected variables, the left-out sensitiv-
ity set is expressed as S = {si} , i ∉K, and the trans-
ferred probability density set can be represented as

Ĝ ¼ g1=ri

n o
, i ∉K. The d-th variable is then selected

through the roulette wheel selection operator from
the rest of un-picked variables. The index of that
variable kd is then added to the index set K.

Step 5. Construct a new partial RBF-HDMR model and use
the new partial metamodel for optimization. Once
the d-th variable is selected, the partial RBF-
HDMR model can be constructed as follows.

f ̂ xð Þ ¼ f 0 þ ∑
d−1

i¼1
f ̂ki xkið Þ þ f k̂d xkdð Þ

þ ∑
1≤ i≤ j≤d−1

f ̂kik j
xki ; xk j

� �þ ∑
d−1

i¼1
f ̂kikd xki ; xkdð Þ ð5Þ

As shown in (5), the samples used to construct components

f̂ ki xkið Þ (i = 1 , 2 , . . , d − 1) and f̂ kik j
xki ; xk j

� �
(1 ≤ i ≤ j ≤ d

− 1) are all located in the partial design space,

x ¼ xk1 ; xk2 ;…; xkd−1ð ÞT ; x∈ xlb; xub½ �, where xlb and xub are
respectively the lower and upper bound of the design space.
To reduce the number of function evaluations, function values
of most samples used to construct those components can be
predicted by the RBF-HDMRmodel built in the last iteration,
which is represented as

f ̂ xð Þ ¼ f 0 þ ∑
d−1

i¼1
f ̂ki xkið Þ þ ∑

1≤ i≤ j≤d−1
f ̂kik j

xki ; xk j

� � ð6Þ

(6) is a function of x ¼ xk1 ; xk2 ;…; xkd−1ð ÞT . Therefore, the
function values of the component function f̂ ki xkið Þ (i = 1 ,

2 , . . , d − 1) and f̂ kik j
xki ; xk j

� �
(1 ≤ i ≤ j ≤ d − 1) in (5) can

be calculated via (6). Thus, to construct the new partial
HDMR model, only the points used to construct component

functions f̂ kd xkdð Þ and f̂ kikd xki ; xkdð Þ (i = 1 , 2 , . . , d − 1)

need to be calculated by calling the actual function. Next,
optimize the d-dimensional partial HDMR and obtain the op-

timum solution x* ¼ x*k1 ; x
*
k2 ;…; :x*kd

� �
T . Combining with

other fixed variables, the new cut center moves to

xnew0 ¼ x1;…; x*k1 ;…; x*kd…; xn
� �T

. The function value f0 at

the new cut center is set to be the current optimum value.

Step 6. Repeat Steps 4 and 5 until reaching the termination
criterion. In PMO, the maximum number of itera-
tions is chosen as the termination criterion. If the
maximum number of iterations is reached, the pro-
cess is stopped and output the current cut center xnew0

as the optimum solution and the function value f0 at
that cut center as the optimum value; otherwise, go
to Step 4 and repeat the procedure. The maximum
number of iterations gives the number of variables
selected to perform PMO. Selecting more design
variables can improve the optimization results.
However, selecting more design variables means
more second-order component functions need to be
constructed and higher sampling costs. In practice,
four or five selected design variables give a good
balance between optimization effectiveness and effi-
ciency as measured by the number of function calls.

3.2 Example of PMO

A 3-dimensional problem (Adorio and Diliman 2005) shown
in (7) is selected as an example to explain the process of the
PMO method step-by-step.

f xð Þ ¼ −∑4
i¼1αiexp −∑3

j¼1Aij x j−Pij
� �2h i

x1;2;3 ¼ 0; 1½ �
ð7Þ
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Where, α = [1, 1.2, 3, 3.2]T, A ¼
3:0 10 30
0:1 10 35
3:0 10 30
0:1 10 35

2
664

3
775,

P ¼ 10−4
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8808

2
64

3
75.

The theoretical optimum point is x∗ = [0.114, 0.556,
0.852]T; the optimum value is −3.86.

The center of the design space, x0 = [0.5, 0.5, 0.5]
T is select-

ed as the initial cut center, and the function value at this cut
center is evaluated as f0 = − 0.628. Then, a first-order RBF-
HDMR model is constructed based on this cut center. Genetic
Algorithm (GA) fromMatlab is employed to optimize the first-
order RBF-HDMR, and the optimum point x∗ = [0.132, 0.816,
0.774]T is found with the function value equal to −2.143. The
new cut center xnew0 moves to the optimum point. Then, sensi-
tivity analysis is performed based on the first-order RBF-
HDMR model. The normalized sensitivity index of the vari-
ables are 0.590, 0.289 and 0.121, respectively, for x1, x2, and x3.
The sensitivity indices are sorted in descending order to obtain
the sensitivity indices set S = [0.590, 0.289, 0.121]. The prob-
ability density set is then obtained asG = [0.590, 0.879, 1.000].
After adjusting the speed control factor r = 2, the transferred

probability density set Ĝ is [0.768,0.938,1.000]. The roulette
wheel selection is performed to determine the variable con-
structed in the first iteration. Thus, a partial RBF-HDMR,
which only contains zeroth-order component function (i.e., f0)
and first-order component function of x1 (i.e., f1(x1)), will be
constructed as follows:

f ̂ xð Þ ¼ f ̂0 þ f ̂1 x1ð Þ ð8Þ

One-dimensional optimization is performed on the par-
tial RBF-HDMR model, and the optimum point is found

x*1 ¼ 0:131. The cut center moves to the new point xnew0

¼ 0:131; 0:816; 0:774½ �T along x1. The function value at

the new cut center is −2.143. Next, excluding the first
variable, the new sensitivity indices value set is
S2 = [0.705, 0.295] and the transferred probability density

set Ĝ is [0.840,1]. After a roulette wheel selection pro-
cess, variable x2 is selected as the next constructed vari-
able. Therefore, a partial RBF-HDMR (as shown in (9))
with zeroth-order component function, first-order compo-
nent function and second-order component of (x1, x2) is
constructed based on the new cut center.

f ̂ xð Þ ¼ f ̂0 þ f ̂1 x1ð Þ þ f 2̂ x2ð Þ þ f 1̂;2 x1; x2ð Þ ð9Þ

At this time, this two-dimensional partial HDMR model is

optimized and the optimum point x*12 ¼ 0:134; 0:575½ �T is
obtained. Replace the first and second value of the cut center,
the optimum point in this iteration is generated,

xnew0 ¼ 0:134; 0:575; 0:774½ �T , and the function value at this
optimum point is −3.3654, which is much closer to the theo-
retical optimum point. Finally, only x3 is left, and the RBF-
HDMR with one zeroth-order, three first-order and three

second-order components are built. The optimum point x*12
¼ 0:132; 0:568; 0:863½ �T with optimum value −3.847 can be
found. In this example, 3 × 5 = 15 points are used to construct
the initial first-order RBF-HDMR model; five new points are
used to construct the partial HDMR model shown in (8), and
5 + 8 = 13 points are used to construct the model of (9).
Adding the initial cut center and two optimum points obtained
in two iterations, in total 36 new points are involved to finish
the second iteration. On the other hand, 1 + 3 × 5 + 3 × 8 +
1 = 41 sample points are needed to construct and optimize a
complete second-order RBF-HDMR model. Using GA to op-
timize the complete RBF-HDMR with the same initial cut
center, the optimum value is −3.013. Hence, the PMOmethod
can find a better optimumwith higher efficiency than optimiz-
ing on a complete RBF-HDMR model.

Table 1 Optimization results
with numerical benchmark
problems

dim Actual optimum PMO Optimizing complete RBF-HDMR

f* NFE f* NFE

SUR-T1–14 10 0 21.38 156.6 74.33 161.3

Rosenbrock 10 0 107.08 153.5 187.61 194.5

Trid 10 −210 151.7 150.4 618.11 161.7

F16 16 25.88 25.93 151.0 26.76 397.2

Griewank 20 0 3.19 167.0 6.10 194.2

Ackley 20 0 10.31 236.6 21.07 1547.1

Rastrigin 20 0 196.85 158.0 234.27 111.2

SUR-T1–16 20 0 837.61 231.0 2060.3 430.1

Powell 20 0 596.96 215.4 7222.8 434.6

Perm 20 0 5.69e51 238.0 2.45e52 1625.0
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3.3 Properties of PMO

There are two key strategies in PMO. The first one is that a
partial HDMR model is used in optimization. Since not all of
the variables are involved in the partial HDMR model, the
number of sample points used to construct the HDMR model
is much less than building the complete model. For instance,
for a 10-dimensional problem, assuming that five points are
used to construct each first-order component function and
eight points are needed to construct each second-order com-
ponent function, constructing a full second-order HDMR
needs 1 + 10 × 5 + 45 × 8 = 411 sample points, where 45 is
the number of second-order component functions. On the

other hand, assuming a second-order partial HDMR is built
with five iterations (i.e., five variables are involved in the
partial HDMR with 10 possible second-order component
functions), one only needs to generate 5 × 5 + 10 × 8 = 105
expensive sample points during the iterations, adding the ini-
tial 1 + 10 × 5 = 51 samples for the first order model at the start
of PMO, the total number of sample points is only 156, about
one third of the cost of the complete model approach.

Another important strategy used in PMO is the moving cut
center. In PMO process, the cut center is moving at every
iteration to the current optimum point, and a new partial
RBF-HDMR is constructed based on the new cut center.
That means PMO does not focus on the global accuracy of

(a) SUR-T1-14 (b) Rosenbrock

(c) Trid (d) F16

(e) Griewank (f) Ackley

(g) Rastringin (h) SUR-T1-16
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Fig. 2 Box-plots of optimized values
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the HDMR model but pay more attention on the accuracy
around the interesting area (i.e., the area around the current
optimum point). With the moving cut center, a HDMR model
will be built in a more interesting area at every iteration.
Moreover, when a new variable is selected to be added to
the partial HDMR, we can use the former partial HDMR
model to predict the values at the new samples, rather than
invoking the actual expensive function. Although there is a
risk in using the former partial HDMR due to the moving cut-
center and inaccuracy of the models themselves, such a risk is
mitigated by the PMO process, as evidenced from the test
results in the next section. It is easy to see that no matter
how many iterations PMO takes, the total number of function
calls in PMO equals to the number of sample points used to
construct the final partial HDMR, plus those used for con-
structing the first-order HMDR model at the beginning.

In addition, sensitivity analysis is employed in the PMO
process to help selecting the most important variables to

optimize, rather than randomly selecting variables. The rou-
lette wheel selection process helps to balance the exploration
and exploitation phases to avoid being trapped in a local
optimum.

4 Testing of PMO

A number of numerical benchmark functions are selected to
test the performance of the PMO algorithm. In this test, the
proposed PMO algorithm is directly compared to the approach
of optimizing a complete RBF-HDMR. A RBF-HDMR mod-
el is deemed “complete” if the modeling process is terminated
according to the modeling process as described in Section 2.
In other words, it means the construction process of RBF-
HDMR is completed. In RBF-HDMR construction, before
constructing the second-order component functions, the accu-
racy of the first-order RBF-HDMR is checked. If the first-

Table 3 Dimensions selected in PMO on SUR-T1–14 for five independent runs

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Optimum

1 Index 0.116 0.114 0.108 0.107 0.102 0.099 0.091 0.090 0.088 0.083 16.87
Rank 1 2 3 4 5 6 7 8 9 10

No. of iterations 1 3 5 4 2

2 Index 0.117 0.112 0.107 0.107 0.102 0.096 0.096 0.093 0.086 0.083 15.44
Rank 1 2 3 4 5 6 7 8 9 10

No. of iterations 2 1 3 4 5

3 Index 0.112 0.114 0.112 0.107 0.100 0.098 0.095 0.091 0.088 0.081 14.92
Rank 2 1 3 4 5 6 7 8 9 10

No. of iterations 3 1 2 5 4

4 Index 0.112 0.117 0.107 0.107 0.102 0.101 0.095 0.087 0.086 0.082 19.43
Rank 2 1 3 4 5 6 7 8 9 10

No. of iterations 4 3 2 1 5

5 Index 0.116 0.114 0.108 0.105 0.102 0.103 0.095 0.091 0.088 0.081 22.89
Rank 1 2 3 4 6 5 7 8 9 10

No. of iterations 3 2 5 1 4

Table 2 Optimized results with
benchmark functions in different
dimensions

dim Actual optimum PMO Optimizing complete RBF-HDMR

f* NFE f* NFE

SUR-T1–14 10 0 21.38 156.6 74.33 161.3

20 0 214.00 171.5 1117.5 434.1

30 0 863.29 221.7 3971.4 836.3

Griewank 10 0 1.19 93.5 1.28 138.2

20 0 3.19 167.0 6.10 194.2

30 0 28.10 204.2 37.03 223.9

Ackley 10 0 5.55 165.9 20.55 407.4

20 0 10.31 236.6 21.07 1547.1

30 0 11.24 264.9 21.37 3387.0
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order RBF-HDMR is accurate enough, no second-order com-
ponent functions are built and the constructing process will be
terminated. Additionally, before constructing each second-
order component function, whether the two variables, xi and
xj, are correlated or not is checked. If xi and xj are not corre-
lated, the component function f̂ ij xi; x j

� �
will not be built in

the RBF-HDMRmodel. Hence, in the complete RBF-HDMR
model, not all of the component functions are constructed in
some cases. A full RBF-HDMR, however, indicates that all
first-order and second-order component functions have been
constructed. A complete RBF-HDMR may have skipped
modeling of some of the second-order component functions,
and thus costs less than a full RBF-HDMR.

SUR-T1–14 (Schittkowski 1987), Rosenbrock (Duan
et al. 2009), Trid (Duan et al. 2009), F16 (Adorio and

Diliman 2005), Griewank (Duan et al. 2009), Ackley
(Duan et al. 2009), Rastrigin (Duan et al. 2009), SUR-
T1–16 (Adorio and Diliman 2005), Powell (Adorio and
Diliman 2005) and Perm (Duan et al. 2009) problems are
chosen as the benchmark problems, which are listed in
Appendix. In the test, the maximum number of points
used to construct a first-order and second order compo-
nent function in both PMO algorithm and RBF-HDMR
are set to six and eight, respectively. The maximum num-
ber of iterations of PMO is set to be five for the test
problems. Additionally, GA from MATLAB global opti-
mization toolbox is employed as the optimizer in PMO
and RBF-HDMR optimization, and the settings of GA
are all as default. Each problem is run 30 times indepen-
dently. The initial cut centers of both methods are ran-
domly chosen in the 30 runs. The average of the found
optimum values (f∗) and number of function evaluations
(NFE) are recorded to illustrate the effectiveness and
efficiency of PMO. The results are summarized in
Table 1 Note that the NEF values in the table are the
average results of 30 runs, so the decimal values appear.
The box-plots of f∗ are shown in Fig. 2.

As shown in Table 1, for all ten problems, the proposed
method obtained a smaller optimum value than directly opti-
mizing RBF-HDMR model. Figure 2 gives the box-plots of
the optimum values of each problem. It can be found that for
almost all the problems, the ranges of f∗ in the 30 runs of PMO
are smaller than the ranges of optimizing a complete RBF-
HDMR, except for Rosenbrock and Ackley. This means
PMO is more robust in optimization. From the perspective
of the cost (NFEs), PMO clearly costs less than RBF-
HDMR except for Rastrigin. Such an advantage is more dis-
tinct for higher scale problems. For twenty-dimensional func-
tions such as Ackley and Perm, due to the structure of the
function, the cost to construct a second-order metamodel be-
comes high because it has more second-order pairs. For PMO,
because the maximum number of iterations is fixed as five, the
maximum number of second-order component functions need
to be constructed is 10, which is much smaller than building a
full 20-dimensioanl HDMR function (i.e., 190). For Rastrigin,
when using the process described in Section 2 to construct
RBF-HDMR, the metamodeling process is terminated after
construction of all first-order component functions.
Therefore, the number of sample points used to construct the
complete RBF-HDMR is very small. However, due to the
lower accuracy of partial RBF-HDMR, some second-order
components are constructed in PMO. Hence in the case that
the problem can be accurately described by a first-order RBF-
HDMR, the advantage of PMO is not fully realized, even
though PMO lead to a better optimum.

Next, three benchmark functions, including SUR-T1–14,
Griewank and Ackley, with three different dimensions (10, 20
and 30) are randomly chosen in order to see the performance
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Select one coordinate
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Optimize

Stopping criteria met?

Output

No

Yes

Roulette

Optimize first-order RBF-HDMR
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Trust
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Fig. 4 Flowchart of TR-PMO

Fig. 3 Convergence plot of PMO in SUR-T1–14 problem
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change of PMO as the problem dimensionality increases. 30
optimization runs are performed for each problems in each
dimension. The results are shown in Table 2.

As shown in Table 2, with the increase of problem
dimensions, the advantages of PMO method over RBF-
HDMR become larger. For SUR-T1–14 problem, in 10
dimensions, the average f* of PMO is 21.38, which is
29% of the RBF-HDMR’s result. When the dimension
is increased to 30, the optimum result of PMO reduces
to 21% of the RBF-HDMR’s result. The advantage of
PMO over higher dimensional problems becomes clearer
in terms of NFEs. As mentioned before, most samples
are used to construct the second-order component func-
tions in high-dimensional problems. For Ackley func-
tion, because every variable pair has strong correlations,
with the increase of dimension, the number of second-
order functions becomes very large. Thus, the number
of sample points increases significantly to build a com-
plete RBF-HDMR. For SUR-T1–14 and Griewank, the
variables have mixed weak and strong correlations.
Hence, the PMO savings in terms of NFE is milder
for SUR-T1–14 and Griewank than for Ackley when
the dimensionality arises.

The 10-dimensional SUR-T1–14 problem is chosen to
show which dimensions are selected through the roulette
wheel selection method at each iteration. The SUR-T1–
14 problem is optimized five times with PMO and the
data are listed in Table 3. The index is the sensitivity
value of each dimension and number of iterations repre-
sents at which iteration the variable is selected.

As shown in Table 3, dimensions x1 to x5, which have
larger sensitivity values, are more likely to be picked up
in the five independent runs. The selection, however,
does show its stochastic nature. Different selection
schemes lead to different optimum solution with varia-
tions for the test problem.

Figure 3 illustrates the current optimal value obtained
from PMO in seven iterations for the SUT-T1–14 prob-
lem. As shown in Fig. 3, from the third to the fifth
iteration, the optimization results do not improve.

5 Trust region based PMO

The performance of PMO can be further improved by apply-
ing different strategies when optimizing each partial model.
Trust region is often used as a strategy to achieve global con-
vergence and balance the exploration and exploitation phases.
In this section, a simple trust region strategy is added when
optimizing the partial model at each iteration to generate a
higher performance version of PMO.

The trust region strategy follows the description of refer-
ence (Alexandrov et al. 1998). The approximation accuracy
ratio rat at the t-th iteration can be calculated via the following
equation,

rat ¼
f x0;t
� �

− f x*t
� �

f ̂ x0;t
� �

− f ̂ x*t
� � ð10Þ

Where, x0 , t is the center of the design space, x∗ is the

optimal point, f̂ x0;t
� �

and f̂ x*t
� �

are the responses of the

approximate model at x0 , t and x*t , respectively. rat gives the
accuracy of the current metamodel, and the value of rat deter-
mines the shrinkage or enlargement of the design space. The
new size (Lt + 1) of the trust region is defined as follows.

δtþ1 ¼
max c0Lt; Lminð Þ rat < 0
max c1Lt; Lminð Þ 0≤rat < τ1

Lt τ1≤rat < τ2
min c2Lt; Lmaxð Þ rat ≥τ2

8>><
>>:

ð11Þ

Where, τ1 and τ2 are two positive constants to judge the
accuracy of the metamodel and τ1 < τ2 < 1, c0, c1, and c2 are
positive constant ratios to shrink or enlarge the trust region
where c0 ≤ c1 < 1 < c2, Lt is the size of the current trust region,
and Lmin and Lmax are the minimal size and maximal size of
trust region. In this paper, the values of the parameters are set
as τ1 = 0.25, τ2 = 0.75, c0 = 0.25, c1 = 0.5, and c2 = 2. Define
Lmin = 0.01Lmax and Lmax is set to be the size of the original
design space.

For the center of the trust region, if rat < 0, it means that the
objective function value of current optimum (x*t ) is worse
than the value of the center (x0 , t). Thus, the center will not
move, i.e., x0 , t + 1 = x0 , t. Otherwise, the center moves to the
current optimum, i.e., x0;tþ1 ¼ x*t .

The flowchart of trust region based PMO (TR-PMO) algo-
rithm is shown in Fig. 4, which is similar to the flowchart of
PMO as shown in Fig. 1 with the insertion of the Trust Region
box in the flow. In this algorithm, the trust region strategy is
used to find a better solution in each partial metamodel.
Assume that at the d-th iteration, coordinates k1, k2, …, and
kd are selected to construct the partial RBF-HDMRmodel and
the current cut center and optimal solution are x0 and x∗,
respectively. The steps as related to the trust region are intro-
duced as follows.

Table 4 TRMPS parameter settings

Rmin Rmax Stall iterations kreduction Rs , initial RB , initial

0.01 1 5 0.7 0.25 1

Table 5 OMID
parameter settings NInit ncomp nbasis Nas

10 × dim 2 2 5 × dim
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Step A. After optimizing on a partial RBF-HDMR, check if
reaching the maximal iteration number. If the max-
imal iteration number is reached, the trust region
loop terminates and the process goes to Step 6 as
described in Section 3.1 to select a new coordinate,
otherwise, continue to Step B.

Step B. Calculate the appropriate accuracy ratio rat via (10).
The partial HDMR model of d variables is used to

calculate the value f̂ x0ð Þ and f̂ x*ð Þ.
Step C. Determine the new trust region. If rat < 0, the cut

center remains; otherwise, the cut center will move
to the current optimal point. Then, (11) is employed
to shrink or enlarge the trust region. Note that only
the upper and lower bounds of the selected variables
are modified and the regions of other variables re-
main unchanged.

Step D. Generate a certain number of random sample points
in the trust region (e.g., five). These new samples are
used to update the partial model. If the cut center
does not move, the sample points used to construct
the previous partial model can be inherited. If the cut
center moves, only these new samples in the up-
dated trust region are used to build a metamodel
for optimization. Then go back to Step A.

To benchmark the performance of TR-PMO, two effective
optimization strategies developed for HEB problems are chosen
for comparison, i.e., Trust Region based Mode Pursuing
Sampling method (TRMPS) (Cheng et al. 2015) and
Optimization on Metamodeling-supported Iterative
Decomposition (OMID) (Haji Hajikolaei et al. 2015). PMO also
participates in the comparison.

The same ten numerical problems used in Section 4 are
used to perform the comparison and each problem is re-
peated 10 times. The numbers of points used to construct
the first- and second-order component functions are five
and eight respectively. In general, the NFE of TR-PMO is
more likely to be larger than that of PMO when the num-
ber of selected variables and the number of sample points
used to construct component functions are the same in
both TR-PMO and PMO, because more points are gener-
ated when performing the trust region strategy. In this
testing, the number of sample points used to construct
first- and second-order components is increased for PMO
to make a fair comparison with other methods with similar
NFE. Note that PMO cannot terminate at a certain NFE, so
the NFE is controlled to be as close as possible to the NFE
used in TR-PMO. The average NFE of PMO is also listed
in Table 6. Additionally, the number of selected variables
is set to be four for both PMO and TR-PMO. The setting
of trust region in TR-PMO is introduced earlier in this
section. The parameters in TRMPS and OMID are set
the same as in Refs. (Cheng et al. 2015) and (Haji
Hajikolaei et al. 2015), as shown in Tables 4 and 5. The
maximal number of function evaluations of TRMPS and
TR-PMO is set to be the average number of function calls
used by TR-PMO in each benchmark. The results are
shown in Table 6.

In Table 6, theNFE data in the fourth column is the number of
function evaluations used in TR-PMO, TRMPS and OMID,
while the data in the eighth column is the number of function

V  

 U

Y

X
O

 L

Fig. 5 Airfoil design problem

Table 6 Optimization results of
using TR-PMO, TRMPS OMID
and PMO

dim Actual optimum NFE f* NFE f*

TR-PMO TRMPS OMID PMO

SUR-T1–14 10 0 276 19.64 20.11 91.23 279 20.01

Rosenbrock 10 0 157 63.55 273.23 2587.4 150 108.98

Trid 10 −210 165 100.67 331.7 3227.0 154 427.38

F16 16 25.88 276 26.98 25.92 30.97 233 27.08

Griewank 20 0 160 2.11 5.67 39.64 169 15.72

Ackley 20 0 287 9.68 15.83 17.38 280 12.29

Rastrigin 20 0 189 159.9 124.39 214.02 215 186.31

SUR-T1–16 20 0 255 935.87 86.45 2178.6 275 1079.0

Powell 20 0 288 157.05 71.93 2827.1 281 661.00

Perm 20 0 296 1.92e51 2.36e49 1.39e49 298 5.53e52

Boldfaced numbers are the best for each problem.
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evaluations used in PMO. NFE’s of PMO and TR-PMO only
show that they are at a similar level and should not be used for
efficiency comparison as NFE for PMO is artificially increased
for better comparison. As shown in Table 6, with similar NFE,
TR-PMO outperforms PMO in optimizing all the ten benchmark
functions. In PMO, the partial HDMR model is a static
metamodel at each iteration, while the trust region strategy can
actively add points to find better results for each partial model
optimization.

It also can be found that in case of SUR-T1–14,
Rosenbrock, TRID, Griewank and Ackley functions, TR-
PMO obtained better results than TRMPS while in other
problems the results of TR-PMO are worse (boldfaced
numbers are the best for each problem). On the other
hand, compared with OMID, TR-PMO performs better
for almost all benchmark problems except for Perm func-
tion. TRMPS and OMID are two effective optimization
strategies for high dimensional problems but often need
much more function calls to reach a good optimal solu-
tion. When the allowed number of function calls is limited
to a few hundreds, TR-PMO method has comparable or
better performances than TRMPS and OMID. This is be-
cause for TRMPS and OMID, samples are generated in
the entire design space. To adequately cover a high-
dimensional space, a comparatively larger amount of sam-
ples are need for both methods. For TR-PMO, in 10-
dimensional problems, selecting four variables seems to
be enough for obtaining acceptable results with scarce
samples. However, in 20-dimensional problems, four var-
iables is only 1/5 of the total variables, which limits the
optimization performance of TR-PMO. Also, it is noticed
that the range of objective function values in SUR-T1–16,
Powell and Perm problems are too large and a small
change in the design variables causes significant changes
in function values. It is likely the reason that TR-PMO did
not perform as well as TRMPS for these cases.

In summary, when the number of samples is limited, the
advantages of using a partial metamodel emerge and TR-PMO
shows better or comparable results as other methods.

6 Application to airfoil design

After testing with benchmark functions, both PMO and TR-
PMO are applied to an airfoil design problem as shown in
Fig. 5. The symbol α is the attack angle and V∞ is the flow
velocity. Class function/shape function airfoil transformation
representation tool (CST) (Kulfan and Bussoletti 2006), as
shown in (12), is used to model the geometry of the airfoil.

ξU ψð Þ ¼ ψ0:5 1−ψð Þ1:0∑5
i¼0Aui

5!

i! 5−ið Þ! ψ
i 1−ψð Þ5−i þ ψΔξU

ξL ψð Þ ¼ ψ0:5 1−ψð Þ1:0∑5
i¼0Ali

5!

i! 5−ið Þ! ψ
i 1−ψð Þ5−i þ ψΔξL

8>><
>>:

ð12Þ

Where, ξU and ξL are the geometry function of the upper
and lower surfaces of the airfoil, respectively; ψ is the non-
dimensional horizontal coordinate; ΔξU and ΔξL are the
thickness ratios of the trailing edge of upper and lower sur-
faces, which can be represented by the distance between the
upper (or lower) surface and the x-axis at trailing edge; Au and
Al are the coefficients of the shape function. In this example,
the airfoil is a closed curve, so the trailing edge thicknesses of
upper and lower surfaces are zero, i.e., ΔξU = 0 and ΔξL = 0.
In this parametric function, six upper surface coefficients and
six lower surface coefficients are selected as the design vari-
ables. The NACA0012 airfoil is selected as the baseline airfoil
in this design problem, and the coefficients of NACA0012 are
shown in Table 7. The upper and lower boundaries of the
design variables are 130% and 70% of the baseline.

The objective of the airfoil design problem is to maximize
the lift-to-drag ratio (L/D). The constraint of the problem is
that the maximum thickness (tmax) of the new airfoil is not less
than the baseline value (tbaselinemax ). Thus, the optimization mod-
el is as shown in (13).

min −
L
D

s:t: tbaselinemax −tmax≤0
0:7xbaselinei ≤xi≤1:3xbaselinei

i ¼ 1; 2;…; 12

ð13Þ

Table 8 Optimization results
with airfoil design problem dim TR-PMO PMO Optimizing complete RBF-HDMR

f* NFE f* NFE f* NFE

Airfoil design 12 −117.94 295.1 −106.87 175.5 −51.06 584.5

Table 7 Parameters of
NACA0012 Parameter Au0 Au1 Au2 Au3 Au4 Au5

Initial value 0.1703 0.1602 0.1436 0.1664 0.1105 0.1794

parameter Al0 Al1 Al2 Al3 Al4 Al5
Initial value −0.1703 −0.1602 −0.1436 −0.1664 −0.1105 −0.1794
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Software XFOIL (2013) is employed to calculate the
value of L/D. In this test, the Mach number of the flow
is 0.5, and the Reynolds number is 5,000,000. The re-
sults obtained by optimizing RBF-HDMR model direct-
ly are also listed for comparison. 30 independent runs
are carried out for each method. The settings of all
methods are the same as in the numerical tests. The
average optimization results over 30 runs are shown in
Table 8. It should be noted that the constraint is con-
sidered cheap.

As shown in Table 8, the average NFE of PMO is
only 30% of that used to construct a complete RBF-
HDMR model, but the objective is more than twice bet-
ter than the optimum value obtained from optimizing
RBF-HDMR model. TR-PMO achieves a better optimum
than PMO with more NFEs, which is still 50% of the
cost of the RBF-HDMR approach. Figure 6 illustrates the
box-plots of f* and NFE of the three methods. It can be
found that PMO and TR-PMO have similar robustness,
which is better than optimizing RBF-HMDR. The varia-
tions of NFEs for the three approaches are very similar.

7 Conclusion

This work proposed a Partial Metamodel-based Optimization
(PMO) algorithm to deal with High-dimensional, Expensive,
and Black-box (HEB) problems. Instead of building the com-
plete RBF-HDMR model, a series of partial RBF-HDMR
models are constructed to reduce the number of function eval-
uations in high-dimensional optimization problems. To bal-
ance the exploration and exploitation phases of the method,
a roulette wheel selection process is employed to select vari-
ables to construct the partial HDMR model, according to the
sensitivity index values of all variables. The cut center of the
partial HDMR model at each iteration moves to the newly
found optimum point to achieve higher optimization perfor-
mance. The HDMR model in previous iterations is used to
predict the function values used in constructing a new partial
RBF-HDMR model. The proposed method is compared with
optimizing a complete RBF-HDMR using ten numerical
benchmark functions. PMO obtained better optimum solu-
tions than optimizing a complete RBF-HDMR, using less
function calls in almost all the problems. A trust region

strategy is combined with PMO to improve the performance
of PMO, and thus the trust region based PMO method (TR-
PMO) is developed. When the sample points are scarce, TR-
PMO method shows comparable or better performance than
both TRMPS and OMID. The proposed approaches are suc-
cessfully applied to an airfoil design problem. Note that TR-
PMO provides one method to improve the performance of
PMO. Other space reduction-based methods and similar strat-
egies to Efficient Global Optimization (EGO) (Jones et al.
1998) may be integrated with PMO for better performing
algorithms.

PMO offers a novel approach by using partial HDMR
models to guide the optimization. Such an idea is not
limited to HDMR and may inspire the development of
a new set of metamodel-based design optimization algo-
rithms. Future work will apply PMO to more industrial
applications.
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Appendix

Numerical benchmark functions
SUR-T1–14 function, n = 10 , 20 , 30

f xð Þ ¼ x1−1ð Þ2 þ xn−1ð Þ2 þ n ∑
n−1

i¼1
n−ið Þ x2i −xiþ1

� �2
−3≤xi≤2; i ¼ 1; 2;…; n

ð14Þ

Rosenbrock function, n = 10

f xð Þ ¼ ∑
n−1

i¼1
100 xiþ1−x2i

� �2 þ xi−1ð Þ2
� �

−5≤xi≤5; i ¼ 1; 2;…; n
ð15Þ

Trid function, n = 10

f xð Þ ¼ ∑
n

i¼1
xi−1ð Þ2− ∑

n

i¼2
xixi−1

−n2≤xi≤n2; i ¼ 1; 2;…; n
ð16Þ

(a) f* ofairfoil design (b) NFE of airfoil design
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Fig. 6 Optimization results on the airfoil design problem. (a) f* of airfoil design (b) NFE of airfoil design
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F16 function, n = 16

f xð Þ ¼ ∑
16

i¼1
∑
16

j¼1
aij x2i þ xi þ 1
� �

x2j þ x j þ 1
� �

−1≤xi≤1; i ¼ 1; 2;…; n
ð17Þ
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Griewank function, n = 10 , 20 , 30

f xð Þ ¼ ∑
n

i¼1

x2i
4000

− ∏
n

i¼1
cos

xiffiffi
i

p

 �

þ 1

−300≤xi≤300; i ¼ 1; 2;…; n
ð18Þ

Ackley function, n = 10 , 20 , 30

f xð Þ ¼ 20þ e−20e−
1
5

ffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1x

2
i

p
−e

1
n∑

n
i¼1cos 2πxið Þ

−30≤xi≤30; i ¼ 1; 2;…; n
ð19Þ

Rastrigin function, n = 20

f xð Þ ¼ 10� 20þ ∑20
i¼1 x2i −10cos 2πxið Þ� �

−5:12≤xi≤5:12; i ¼ 1; 2;…; 20
ð20Þ

SUR-T1–16, n = 20

f xð Þ ¼ ∑
5

i¼1
xi þ 10xiþ5ð Þ2 þ 5 xiþ10−xiþ15ð Þ2 þ xiþ5−2xiþ10ð Þ2 þ 10 xi−xiþ15ð Þ4

h i
−2≤xi≤5; i ¼ 1; 2;…; n

ð21Þ

Powell function, n = 20

f xð Þ ¼ ∑n=4
i¼1 x4i−3 þ 10x4i−2ð Þ2 þ 5 x4i−1−x4ið Þ2

þ x4i−2−2x4i−1ð Þ4 þ 10 x4i−3−x4ið Þ2

−4≤x j≤5; j ¼ 1; 2;…n

ð22Þ

Perm function, n = 20

f xð Þ ¼ ∑n
k¼1 ∑n

i¼1 ik þ β
� �

xi=ið Þk−1
� �h i2

−n≤xi≤n; i ¼ 1; 2;…; n
β ¼ 0:5

ð23Þ
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