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a b s t r a c t

Non-Intrusive Load Monitoring (NILM) techniques have been leveraged by new instrument and machine
learning algorithms to provide customers the breakdown of their energy usage. The state-of-art indicates
a large amount of high-frequency measurement (>1 Hz) can lead to accurate disaggregation. This paper,
however, proposes a disaggregation algorithm relies on hourly smart meter readings, aiming to extend
the application of the low-frequency data that is accessible by both utilities and customers. The output
of the disaggregation includes the breakdown of energy into load-category-based components that
have different average power factors. The disaggregated data will support small-scale planning, e.g., in
microgrid, by revealing the variance and patterns in different load categories. Our approach is built on
a top-down structure that requires no prior knowledge or general models of individual loads. Using
clustering and optimization techniques, we infer the load signatures of each category based on the active
and reactive power from smart meters. The signatures are updated periodically using the most recent
smart meter data. The results show that our disaggregation approach could be applied to random houses
in different seasons and to single house and small neighborhood in both offline and quasi-real-time
context.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The Non-Intrusive Load Monitoring (NILM) of residential
electric loads provides new opportunities for energy efficiency
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and Demand Response (DR) that benefit both utilities and cus-
tomers [1,2]. NILM (also referred as NALM or NIALM) is an ap-
proach for inferring the consumption of individual end-uses based
on a single-point measurement of the total consumption of a
house [3]. Recently, NILM has been leveraged by advanced elec-
trical measurement that enable adaptive load disaggregation in
granular levels [4], and by machine learning techniques. The ad-
vanced measurement typically include high-frequency transient
signatures such as current waveform, harmonics, instantaneous
admittancewaveform, instantaneous powerwaveform [5], andV–I
trajectory [6,7]. Machine learning based approaches, including su-
pervised and unsupervised learning, rely on load models trained
by high-resolutionmeasurement [8,9]. Althoughmachine learning
models such as Hidden Markov Models (HMMs) have been proved
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effective [10–12], they typically require a large amount of train-
ing data measured at less than 15-min frequency, and the accu-
racymay decay as the number of appliances increases [11]. Also, as
pointed in [13], the HMM approach is not compatible with DR pro-
grams due to its dependency on uncontrolled load patterns. Never-
theless, most existing disaggregation approaches attempt to solve
the disaggregation problem at the individual load level which ap-
peals to either high-frequency measurement or machine-learning
models trained by large amount of data. Extra devices other than
smart meters or upgrades of infrastructure are most likely needed
to meet the signature requirement [8,14]. As a result, most dis-
aggregation approaches are mainly customer oriented, whereas
fewer studies have been focusing on the utility side. Moreover, the
privacy of customers is also amajor concern in term of information
sharing among utilities, customers, and third-party disaggregation
vendors [15].

This paper studies the disaggregation problem from the utility’s
perspective, where the target loads in a household are not known
in advance, and smart meters are the only available sensors.
The disaggregation algorithm for utilities needs to be adaptive to
general households, to work with low-frequency measurement,
and not to violate customer privacy. Although smart meters
are capable of high-frequency measurement (<15-min), useful
information could still be retrieved at low frequency with existing
Advanced Metering Infrastructure (AMI). In fact, utilities such as
BC Hydro only collect hourly electricity usage data [16]. This is due
to government regulation that protects customer privacy.

The disaggregation granularity in this paper is enlarged to load
categories that group end-uses with comparable power factors
(PFs). The purposes of PF categories are to:

• identify load categories that are recognizable across general
households in an unsupervised context with available data
(active and reactive power),

• disaggregate to a low-frequency compatible aggregation level,
instead of to individual load level, to satisfy the low-frequency
constraint faced by certain utilities,

• avoid inferring appliance-level information which may expose
customers’ privacy,

• analyze the variance and patterns in different load categories
featured by power factors.

The proposed algorithm first infers the signatures of potential
load categories based on hourly aggregate active (P) and reactive
power (Q) measured by real-world smart meters. The algorithm
then separates each load category in each hour through the
weighted least squares (WLS) method constrained by the inferred
signatures. The outcome includes the separation of meter readings
into sub-readings of high, medium, and low power factor load
categories. Utilities could use the results in:

• analyzing load variance in different categories on various
aggregation levels (single house or neighborhood),

• scrutinizing loads that affect the power quality,
• infer emerging loads that are critical to infrastructure planning,

e.g. electric vehicle (EV) charging,
• planning for power supply, power factor (PF) correction,

residential DR, and Volt-VAR control.

These benefits are particularly useful in small scales such as
microgrid, in which traditional planning methods may under-
perform with less averaged data and more abrupt variance seen
in small scales.

The remainder of the paper is organized as follows. Section 2
briefly reviews related works. Section 3 provides the theoretical
analysis of the overall algorithm. Section 4 analyzes the disaggre-
gation results. Section 5 summarizes the paper.
2. Related works

Conventional bottom-up disaggregation techniques require
known or generalized load signatures as the bases. For exam-
ple, pattern recognition requires individual load profiles in an op-
erational cycle. Machine learning approaches may need typical
transitional probabilities and consumption of each load to build
general loadmodels [17]. For approaches that learn load signatures
from aggregate measurement, the required frequency is much
higher than one hour [9]. The disaggregation for utilities requires
a generic algorithm that provides the right granularity of informa-
tion with less supervised training. Most previous works related to
low-frequency disaggregation for utilities appeal to general prior
knowledge of load components or temperature and time correla-
tion.

Xu et al. propose a disaggregation algorithm for substation-
level measurement [18]. Loads perceived at the substation are
categorized as component-based models with unique voltage-
dependent exponential powers. From Monte Carlo simulation, the
weight of each load model contributing to the total load with
respect to active and reactive power and voltage is derived from
an Artificial Neural Network (ANN). Our work is similar to [18]
in term of disaggregating broad categories of loads. However,
the estimation of component-based models in [18] may not be
generalized across different locations in the grid or at different
aggregation levels, similar to other bottom-up approaches.

Birt et al. disaggregate hourly smart meter data into base,
activity, heating and cooling loads [19]. The authors focus on
the piece-wise linear relation between power consumption and
temperature, and model the heating and cooling gradients of
different temperature frames based on the average measurement.
The base load is identified during the night when other loads are
not active, and the activity load is the remaining portion that sums
up to the aggregate measurement. The disaggregation algorithm
is used for improving demand side management (DSM). The
heating and cooling gradient models provide good estimation of
the temperature-dependent loads. The overall approach, however,
may not apply to moderate weather condition or households
without heating/cooling equipment.

Wytock and Kolter suggest a contextually supervised disag-
gregation scheme in which loads are categorized as temperature
dependent loads such as A/C and heating, base load, and appli-
ances [20]. The contextually dependent loads are modeled as ra-
dial basis functions (RBFs) of temperature with delayed response.
The base load is modeled as a function of the hour of day, and ap-
pliances are treated as the remaining composition of the aggregate
measurement. The benefit of their approach is that the dynamic
portion of aggregate load can be accurately captured and disaggre-
gated, and their approach is scalable to thousands of houses. The
limitation of their algorithm is the insight into the appliance load
category.

Our work is similar to [19,20] in term of using low-frequency
data to distinguish load categories that have various impact on the
grid. Armel et al. in [21] point out that the low-frequency data
(15 min–1 h) is useful in classifying loads into temperature and
time dependent and base categories. In this paper, the proposed
approach is another type of load-category based disaggregation,
and it applies to similar scenarios in [18–20] when load-category
based disaggregation is used for DR, DSM and load studies. For
example, the cooling load category in [18,19], in our approach,
falls into the low-PF group. In case of DR, the low-PF group can be
targeted instead. The application and motivation of load-category
based disaggregation generally apply to the PF based alternative.
The main difference in the PF based approach is it largely reduces
the amount of supervised training for generalization and further
utilizes the hourly smart meter data.
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Fig. 1. Top-level disaggregation structure.
3. Description of the method

3.1. Problem overview

The disaggregation of active power (P) and reactive power (Q)
could be described generally in (1) as an under-determined linear
system finding the consumption and power angle of each load
category, given only the aggregate consumption of all the loads at
time t .

P (t)
=

N
i=1

x(t)
i + ϵP , for x

(t)
i ∈ [xmin

i , xmax
i ], (1a)

Q (t)
=

N
i=1

x(t)
i tan(θi) + ϵQ , (1b)

where x(t)
i is the real power (source signal) of the i’th load category

at time t; θi is the typical power angle of the load category; N is the
number of load categories; ϵP and ϵQ are the errors; and xmin

i and
xmax
i are the lower and upper bound of x(t)

i .
Unlike the typical bottom-up approach that uses fixed bases

as source signals and finds the activation matrix that recovers the
measurement P (t), we define x(t)

i in (1) as the base of the i’th load
category with varying magnitude in [xmin

i , xmax
i ].

Neglecting the error terms in (1), we separate (1) in R2NT

into a sub problem in RN and another in RNT , where T is the
length of the disaggregation window. The problem in RN infers
θi prior to the new disaggregation in RNT . The structure of our
disaggregation approach is illustrated in Fig. 1. The hourly power
data and timestamps in this paper are available through utility
meters. The load signature inference step generates signatures
of potential load categories based on historical P–Q data. The
disaggregation step then separates each category by the parallel
matching of P and Q. The disaggregation results are able to re-
adjust the signatures through the feedback in Fig. 1.

3.2. Load categories from clustering

Load categories in this paper are defined as the clusters of loads
that exhibit similar power factors. Fig. 2 shows a clustered P–Q
scatter plot of the data from a real-world smart meter. We infer
the power angle and power range that best represent each cluster
as signatures, and use these signatures in the disaggregation step.

The agglomerative clustering method with weighted-average
linkages is used to create clusters with various sizes. The size of
cluster here means the ‘weight’ of each cluster, i.e. the number of
data points and their magnitude.

3.3. Load signature inference

The idea of load signature inference from aggregate P &Q comes
from the observation of the hourly smart meter data (Fig. 3). For
Fig. 2. Demonstration of load clustering for one month of real-world smart meter
data.

different dwell and heating types, the scatters of hourly P–Q form
linear patterns in radial directions. Based on this observation, an
important assumption in this paper is made as that each individual
load, regardless of multi-state or single-state, has a fixed power
factor (PF) over one-hour periods. Hence, if a radial line in Fig. 3
represents the true consumption of a single load and the average
consumption of the load in each operation cycle is consistent, the
variance along the line will indicate its ON duration (e.g. lighting).

However, each radial line may not represent an individual
load because of the aggregation effect (e.g. multiple loads turned
on at the same time). In this case, each radial line in Fig. 3,
if regarded as vector, is the addition of multiple load vectors.
Goncalves et al. use a matching pursuit approach to synthesize
component vectors and find matching on–off events to validate
the synthesis [22]. However, because each load may have various
active states over one hour (due to active duration or multiple
states), vector synthesis with matching pursuit will yield a large
number of ON–OFF matches without correct labeling. Therefore,
within the 1-hour time frame, it is challenging to find signatures at
single-load level, or to represent a load by a state model without
prior knowledge.

The solution in this paper is to apply clustering on the aggregate
data regarding the power angles, which allows us to represent each
load cluster as:

v̂i = P̂i ̸ θ̂i, (2)

where vector v̂i is the signature vector of the i’th cluster with
inferred typical power angle θ̂i and active power P̂i ∈ [0, P̂max

i ],
for a maximum possible active power, P̂max

i .
The signature vector, v̂i, represents the typical power char-

acteristics of the cluster. In disaggregation, θ̂i is fixed while P̂i
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Fig. 3. Real-world AMI data at one-hour frequency in BC, Canada from Mar. 24 to Apr. 23, 2013.
is allowed to vary in range. Eq. (2) relies on the assumption that the
PF of each cluster averages to a constant in the hourly context. Sec-
tion 3.3.1 explains how to derive θ̂i for each cluster. Section 3.3.2
describes how to derive P̂i. Sections 3.3.1 and 3.3.2 combined de-
rive the signature vector in (2)whichwill be used in disaggregation
in Section 3.4.

3.3.1. Inferring power angles
The challenge of finding the typical angle of a cluster of loads is

the interference fromother clusters due to the aggregation effect. If
each cluster is represented by a signature vector and we are given
the addition results of all the vectors, then our goal is to resolve
the addition and recover θ̂i. In this paper, an optimization-based
method of resolving vector addition is applied to find θ̂i in (3). The
symbols in (3) are explained in Table 1 and (4). The problem in (3)
mainly depends on the constraints to shrink the search space.

Note that (3)–(4) generally apply to less than three load clusters.
Formore clusters, (3)–(4) need to be adjusted. Nevertheless, disag-
gregation into more than three clusters may not apply to residen-
tial context with smaller power factor range (e.g. 0.90–0.99). More
clusters will cause sparsity in cluster and effectively lead to disag-
gregating single loads instead of groups. For example, if a cluster
has a range of 0.93–0.95, only several or even no load will fall into
this category.

min : f (θ̂i) = (Θ̂ − Θ̄)2, (3a)

s.t. : lbi < θ̂i < ubi, (3b)

SRθ̂ = θ̄, (3c)

θ̂i+1 − θ̂i ≥ θ̄i+1 − θ̄i, (3d)
lbθ < |v̂θ| − |v̄θ| < 0, ifWlow > Whigh
0 < |v̂θ| − |v̄θ| < ubθ , ifWlow ≤ Whigh,

(3e)

where : Θ̂ = arctan(Q̂/P̂), (3f)

Θ̄ =

n
arctan(q/p)/n, (3g)
Q̂ =

N
i=1

Qi, P̂ =

N
i=1

Pi, (3h)

Qi = Pi tan(θ̂i), Pi = LiWi, (3i)

Li =

ni
k=1

p(k)
i /ni, (3j)

|vθ| =

 N
i=1

θ2
i

1/2
, (3k)

lbθ ∈ [|lb| − |v̄θ|, 0), ubθ ∈ (0, |ub| − |v̄θ|]. (3l)

The concept of blindly resolving vector additions is based on the
estimation of the mean active (turn-on) power, Li ∈ L, and the
weight, Wi ∈ W , of each cluster. The objective is to find L and W
that generate the weighted-summed angle, Θ̂ , of all the clusters
close to the direct observation, Θ̄ , from the aggregate P–Q data
(3a). Eq. (3i), based on L andW , shows the P–Q components of each
cluster in Θ̂ . The problem in (3a) could also be described in (3c) as
finding the rotational matrix R that rotates the inferred vector, θ̂,
to the observed vector, θ̄ about an arbitrary axis through origin in
a Cartesian coordinate system formed by the power angle of each
cluster, subject to a uniform scaling defined by S (Fig. 4). R can be
derived from (4) given in Box I. Based on our test data, the diagonal
entries of SR are typically larger than 0.95, so 0.95(θ̂i+1 − θ̂i) ≥

θ̄i+1 − θ̄i. A more conservative constraint would be (3d).
Constraint (3e) denotes that if the low-PF clusters have less

weight, v̂θ will be longer than v̄θ due to the square in (3k) and
that θ̂low > θ̄low, and vice versa. lbθ and ubθ in (3l) belong to
discrete sets of possible values dependent on the angle boundaries
from clustering. The minimum value of lbθ depends on the lower
bound angle of each cluster, lbi, in (3b). Similarly the maximum
value of ubθ depends on each ubi. In a high-level loop, lbθ or ubθ

is incremented in the range in (3l) until θ̂ is solved. For each step
in the loop over lbθ or ubθ , θ̂ is solved multiple times in a nested
iteration. The high-level loop over lbθ or ubθ breaks when at least
two θ̂i converge at the same time (changes in two θ̂i reduce close to
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a)

b)

c)
R =

 u2
x(1 − cosφ) + cosφ uxuy(1 − cosφ) − uz sinφ uxuz(1 − cosφ) + uy sinφ

uxuy(1 − cosφ) + uz sinφ u2
y(1 − cosφ) + cosφ uyuz(1 − cosφ) − ux sinφ

uxuz(1 − cosφ) − uy sinφ uyuz(1 − cosφ) + ux sinφ u2
z (1 − cosφ) + cosφ

 , (4

where : r⃗ = (ux, uy, uz) =
θ̂ × θ̄

|θ̂ × θ̄|
, (4

φ = arccos


θ̂ · θ̄

|θ̂| · |θ̄|


. (4

Box I.
Fig. 4. Power angle vector rotation concept.
Table 1
Notation for symbols in (3).

Variables & dependents Description

θ̂i Inferred average power angle of the i’th cluster

Θ̂ Inferred average power angle of all loads in a house
R Rotation matrix in 3D about arbitrary axis through the origin

θ̂ (θ̂1, θ̂2, . . .) as the inferred power angles of each cluster

v̂θ Vector in the coordinate system formed by θ̂

Q̂ Inferred reactive power of all loads in a house

Parameters Description

lbi Lower bound of the inferred power angle of the i’th cluster (derived as cluster boundaries in Fig. 2)
ubi Upper bound of the i’th cluster
Θ̄ The mean power angle of all loads from the aggregate P–Q data
S Scaling matrix in 3D

θ̄ (θ̄1, θ̄2, . . .) as the observed (mean) power angles of each cluster
lbθ Lower bound of the vector length difference

v̄θ Vector in the coordinate system formed by θ̄

| · | Length operator of a vector
ubθ Upper bound of the vector length difference
Wlow Weight of low-PF clusters
Whigh Weight of high-PF clusters

P̂ Inferred active power of all loads in a house
n Total number of P–Q data points
q Reactive component of a single P–Q point
p Active component of a single P–Q point
N Number of load clusters
Qi Reactive power of the signature for the i’th cluster
Li Power base denoting the active power of the i’th cluster
Wi Weight of the i’th cluster, considering only the active states of the cluster
Pi Active power of the signature for the i’th cluster considering the weight
ni Number of P–Q points in the i’th cluster

p(k)
i Active power of the k’th P–Q point in the i’th cluster

lb (lb1, . . . , lbi, . . . , lbN ) as the lower boundaries of clusters (e.g. Fig. 2)
ub (ub1, . . . , ubi, . . . , ubN ) as the upper boundaries of clusters
zero), that is, the loop finds the interval that contains the solution
for θ̂. For demonstration purposes, we choose the convergence of
two θ̂i instead of all to avoid lengthy iterations. One of the future
works would be refining the initial value of lbθ or ubθ for faster
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Fig. 5. Power angle solver flow.
Fig. 6. Hourly average power factor of a sample house over a month.

convergence. Because of nonlinearity and non-convexity, (3) is
solved multiple times for each value of lbθ or ubθ . As a result, the
overall calculation speed depends on the selected range of lbθ or
ubθ and the number of iterations for each value in lbθ or ubθ . Fig. 5
illustrates the overall flow of finding the power angles.

3.3.2. Power magnitude
This section aims to find the upper bound, P̂max

i , of P̂i in (2). Our
estimator is based on a PF filter, an addition filter, and statistical
analysis. The two filters reduce the aggregation effect caused by
simultaneous load events.

The PF filter is based on the hourly average PF of the whole
house. It locates separate time frames Ti for high-, medium-, and
low-PF periods (Fig. 6) based on the boundaries from clustering.
Each Ti corresponds to the period when the aggregate PF falls
into the range of a cluster. For each load cluster identified in,
e.g. Fig. 2, only the data points that are within the corresponding
Ti are preserved. The preserved points are more likely to contain
true data points from the corresponding cluster, thus the following
statistical analysis will be less affected by the aggregation effect.

The addition filter further removes points in the medium-PF
cluster that are close to the sum of the points from the high-PF and
low-PF clusters (5). That is,

remove : υj :


d(υj, υi + υk) ≤ δ
d(υj, υi + υj + υk) ≤ δ

(5)

where d(·) is the Euclidean distance operator, υj = (pj, qj) is any
P–Q point in the medium-PF cluster, i, j, and k represent the high-,
medium-, and low-PF cluster, and δ is the cut-out threshold.

The remaining points that pass the two filters are used in the
final statistical analysis. At hourly frequency, each load cluster
typically shows a Gamma distribution with a single peak (e.g. low-
PF cluster in Fig. 7). If a large load exists, two or more peaks may
be possible or the peak may be located at a large P (e.g. high and
medium-PF clusters in Fig. 7). In this case, the peak with higher P
represents P̂max

i of the cluster. Points with higher P than P̂max
i are

possible results of aggregation effect. If the disaggregation result
of each cluster show different peak power, P̂max

i will be updated
(input d in Fig. 1).

3.4. Load disaggregation

3.4.1. Formulation
Since the disaggregation granularity is reduced to load clusters

instead of individual loads, the disaggregation problem could be
simplified as a weighted least square (WLS) problem in (6).

min : f (xi) = E2
P + E2

Q , ∀t, (6a)

EP = P − P̂, (6b)

P̂ =

N
i=1

wixi, (6c)

EQ = Q − Q̂ , (6d)

Q̂ =

N
i=1

wixi tan(θ̂i), (6e)

s.t. : 0 ≤ xi ≤ P̂max
i , (6f)

where EP and EQ denotes the error inmatching the aggregate active
and reactive power at time t , respectively, P and P̂ are the actual
and inferred aggregate active power at t , wi ∈ w is the weight of
the i’th cluster at t , xi is the active power of the i’th cluster at t ,
N is the number of clusters, Q and Q̂ are the actual and inferred
aggregate reactive power at t .

3.4.2. Finding the weights
The main error in (6) is that a false active detection of a cluster

will lead to inaccurate active states of other clusters while the
aggregate power is still equal to the aggregate measurement.
False active detection refers to a load is not turned on but the
solver mistakenly computes that it is on. The weights w provide
a supervisory solution to this problem. We estimatew based on:

• the sparsity of a cluster,
• the possible activation threshold of the i’th cluster (ai ∈ RN

[kW]),
• the aggregate power at time t (P [kW]),
• the aggregate PF at t (ϕ), and
• the temporal probability of activation of each cluster at t (Pi).

The sparsity of a cluster in this paper is defined as that the
cluster is only turned on occasionally over a month, resulting in
a Gamma distribution (Γ ) with small shape and scale parameters,
κ and ϑ (e.g. low-PF cluster in Fig. 7). If sparsity is detected in the



98 G. Zhang et al. / Sustainable Energy, Grids and Networks 10 (2017) 92–103
Fig. 7. Distribution of P in each cluster. (a) High-PF cluster with EV. (b) Medium-PF cluster with dryer. (c) Low-PF cluster.
Fig. 8. Sample decision metric for finding the weights.

i’th cluster, the activation threshold, ai, is defined in (7) as themost
frequent power.

ai =


argmax

p̂i∈p̂i
({P(p̂i) : P(p̂i) ≥ γ }), if ai > κϑ

P̂max
i /2, if ai ≤ κϑ,

(7)

where P(·) denotes the probability function, p̂i denotes all the
active components of the filtered P–Q points in the i’th cluster, p̂i is
any point in p̂i, γ denotes the cut-off threshold, and κϑ represents
the mean of Γ .

The activation of the i’th cluster depends on P . For example,
if P > ai at t , the cluster will have a higher probability of being
active. However, the power of non-sparse clusters will also affect
the inference. Therefore, ϕ and Pi are also considered to derive wi
in (6a). A sample inference algorithm for wi is provided in Fig. 8,
where ϕi is the PF range of the i’th cluster, Pon is the activation
probability threshold,woff is theweight for possible OFF states, and
won is the weight for possible ON states.

The active probability Pi at t is derived from historical data
as (8). Note that the process of finding w only applies to cases
when at least one sparse load cluster exists. For other caseswithout
sparsity,w are set to ones.

Pi =


max(p̂t

i )/ai, if max(p̂t
i )/ai ≤ 1

1, otherwise, (8)

where p̂t
i includes all the power over the training period of the i’th

cluster grouped by hour.

3.5. Updating signatures

The overall signature inference relies on the historical smart
meter data. In this paper, the signatures are updated every month
in a rolling window, which reduces seasonal effect by periodi-
cally updating the signatures. The seasonal effect can be further
accounted for by updating the signatures when major changes in
the correlation between clusters and the ambient temperature are
detected.

4. Results and discussion

The optimization problem in (3) is solved using the Genetic
Algorithm in MATLAB 2015b with both linear and nonlinear
constraints. The problem in (6) is solved using the fmincon function
inMATLABwith default settings. All the calculations are performed
on a computer with 2.26 GHz Intel Core 2 Duo processor and 8G
RAM.

4.1. Test data

The test data used in this paper is from the Pecan Street
database collected from real households in Austin, TX [23].
The database contains sub-metered data over several years.
Disaggregation algorithms can be developed and validated with
such data. Power factor of each load is assumed based on [24,25].
Note that the Pecan Street data of each house may not include all
the loads inside the house, so some load clusters may be sparse.
The test objectives of this paper are to examine the performance of
the disaggregation algorithm:

• on different houses,
• in different seasons,
• in larger scale such as residential blocks,
• in real time with signatures derived from historical data.

4.2. Load signature inference

This paper tests the performance of the algorithm on houses
with typical data shapes observed in the test data (Fig. 9). Each
shape is explained in Table 2.

4.2.1. Ground truth
The clustering process creates a PF range (ϕi) for each cluster.

The true load clusters are derived by grouping the individual loads
that have PFs within each ϕi. The true signatures are derived in
(9)–(10) where NL is the number of loads in each cluster with PF
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Fig. 9. P–Q scatter plots of the test data over two month.
Fig. 10. Signature inference results for a Type-IV house.

∈ ϕi, θ
k
i is the angle of the k’th load in the i’th cluster, and pk

L is the
time-based load profile of the k’th load over the training period.

θi =

NL
k=1

(θ k
i )/NL. (9)

Pmax
i = max


NL
k=1

pk
L


. (10)

4.2.2. Power angles
We demonstrate the results for a type-IV single-family house

in Austin, TX. Fig. 10 shows the inferred signature vector v̂i of each
cluster, indicating that θ̂i of each cluster is close to the actual angle
θi of the actual signature, vi. The details are provided in Table 3.

4.2.3. Maximum power
In Fig. 10, the length of the vectors in solid lines indicates

true Pmax
i , and that of the vectors in dashed lines shows the

inferred P̂max
i . Note that slightly larger P̂max

i helps relax the
bounds of the disaggregation problem in the later stage to avoid
infeasible solutions. Due to the simplicity of our algorithm, P̂max
i

can be adjusted based on the disaggregation results by comparing
P̂max
i and the resulted maximum values after disaggregation. If

a large discrepancy is detected, we adjust P̂max
i and re-do the

disaggregation (feedback in Fig. 1).

4.3. Load disaggregation

4.3.1. Evaluation metrics
The modified F-measure in [11] and the Mean Absolute Error

(MAE) are used in this paper. The modified F-measure approach
in [11] accounts for both binary events and power matching.
However, due to that load clusters in this paper have various ON
states, we adjust the threshold ρ in [11] as (11). In some cases
when a less frequent event with large P occurs (e.g. pool pump),
the F-measure approach may exaggerate the accuracy if σ(p+

i ) >

µ(p+

i ). Therefore, the MAE approach is additionally considered as
a supplementary measure of performance.

F-measure =
2 · Precision · Recall
Precision + Recall

, (11a)

Precision =
ATP

ATP + ITP + FP
, (11b)

Recall =
ATP

ATP + ITP + FN
, (11c)

ATP ⇔ x > 0, x0 > 0, |x − x0| /x0 ≤ ρ, (11d)
ITP ⇔ x > 0, x0 > 0, |x − x0| /x0 > ρ, (11e)
FP ⇔ x > 0, x0 = 0, (11f)
FN ⇔ x = 0, x0 > 0, (11g)

p+

i = {pi : pi > P f
i }, (11h)

ρi = σ(p+

i )/µ(p+

i ), (11i)

where ATP , ITP , FP , and FN refer to the number of classifications
that are accurate true positive, inaccurate true positive, false
positive, and false negative, x denotes the power of a cluster at
a given time from disaggregation, x0 denotes the corresponding
true power, ρ denotes the threshold for determining ATP and
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Table 2
Typical P–Q shapes.

Shape Indication

Type I Loads with high or low PF are small, or turned on in similar time periods
Type II Loads with high and low PF are both high, possibly turned on very often at the same time. Very large resistive loads are possible (e.g. EV charging)
Type III Large high-PF loads and/or large low-PF loads, possibly turned on at different time
Type IV Loads with different PF have similar power consumption and usage patterns
Table 3
Detailed results of signature inference.

Cluster 1 Cluster 2 Cluster 3

θi (degree) 2.6 11.7 14.9
θ̂i (degree) 2.6 11.8 14.6
Error in θ̂i (degree) 0.0 0.1 0.3
True Pmax

i (kW) 4.4 2.4 3.5
Inferred P̂max

i (kW) 5.6 3.3 4.2
Li (kW) 1.1 0.8 0.7
Wi (%) 32 16 53

Table 4
Disaggregation evaluation for Type-I and III data (from high to low-PF).

Type-I data Type-III data

MAE (kW) [0.06, 0.08, 0.06] [0.04, 0.07, 0.05]
F-measure (%) [90.2, 80.5, 74.7] [95.9, 45.4, 95.3]

ITP , p+

i denotes the points with P higher than P f
i , P

f
i denotes the

most frequent non-base power of the i’th true cluster, σ(·) is the
standard deviation operator, and µ(·) is the mean operator.

Compared to ρ in [11], directly using the mean and variance
of load cluster will result in exaggerated F-measure score because
of larger variance in load cluster than in single load. The new
definition of ρ targets the upper tail of the histogram of pi, which
represent relatively rare events. Eq. (11) is calculated based on the
dispersion of power in these rare events.

4.3.2. Test on typical profiles
For conciseness, this section provides the disaggregation results

for two scenarios-households without EV (Type I) and with
EV (Type III)-in this section (Figs. 11–12). Note that because
of the nature of the test data, only the data of some of the
loads in a household are available, thus resulting sparse load
clusters (e.g. medium-PF cluster in Fig. 11) and low-power clusters
(e.g. medium-PF in Fig. 12).

Figs. 11–12 indicate that sparse clusters do not necessarily
cause large error, but the overlap of peaks and the typical turn-
on power of a cluster do. For example, in Fig. 11, both the medium
and low-PF clusters are sparse. If both clusters have high turn-on
probabilities at time t (condition (c) in Fig. 8), it will be uncertain
which cluster should be ON if P > ai. The medium-PF cluster in
Fig. 12, due to low power, is affected by the small errors in the
other two clusters. On the other hand, clusters with large resistive
power could be more easily retrieved (e.g. EV load at 3-kW level
in Fig. 12). The disaggregation performance on Type-I and Type-III
data are evaluated in Table 4.

4.3.3. Seasonal effect
This section studies a set of data that contains heater and A/C

(Figs. 13–14, Table 5).
Based on Figs. 13–14, large A/C load in summer and large

heating load in winter lead to better disaggregation performance
on the corresponding clusters (low-PF cluster in Fig. 13 andhigh-PF
in Fig. 14). However, for example, a small error in the low-PF cluster
in Fig. 13 may cause large error in the medium-PF cluster (sparse).
Our solution is to remove the peaks in the medium-PF cluster that
correlate to the peaks in the other clusters after disaggregation.
Fig. 11. Disaggregation results for Type-I data (no EV load).

Fig. 12. Disaggregation results for Type-III data (with EV in High-PF cluster).

The raw results from disaggregation in the medium-PF cluster
may contain peaks that are the residuals of the other two, thus
strongly correlated to their peaks. For example, the raw results
of the medium and high-PF clusters have correlation coefficient
(r) of 0.74. After removing the erroneous peaks in the medium-
PF cluster, r is reduced to 0.08 (true r = 0.03). Note that the
mitigation is only intended to demonstrate a potential solution
on improving disaggregation performance. Future work will be
required to improve general performance in disaggregating sparse
clusters in single houses.

Fig. 14 further shows that the main errors reside in the non-
resistive loads. Especially for sparse loadswith various active states
(low peaks and high peaks in the medium-PF in Fig. 14), the
disaggregator is not able to differentiate between the medium and
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Fig. 13. Disaggregation results in summer.

Fig. 14. Disaggregation results in winter.

Table 5
Disaggregation evaluation in summer and winter (from high to low-PF).

Summer Winter

MAE (kW) [0.07, 0.08, 0.11] [0.08, 0.08, 0.09]
F-measure (%) [82.9, 46.5, 95.3] [94.9, 44.4, 89.9]

low-PF clusters with available information. Nevertheless, in the
context of hourly frequency and single house, the disaggregation
algorithm is able to identify the major seasonal loads without
referring to temperature data. The drawbacks seen in Figs. 13–14
can be avoided if dealing with an aggregation of houses (discussed
in the next section).

4.3.4. Aggregation of houses
The key advantage of the disaggregation algorithm in this paper

is the scalability beyond single houses. A scenario in the microgrid
context in [26] is considered, in which each node in the microgrid
may connect to 10–12 houses. The aggregated consumption of
10–12 houses typically has less sparsity compared to the single-
house cases. Hence, it is expected the errors due to sparsity
Fig. 15. Disaggregation results for a group of 10 houses.

Fig. 16. Online disaggregation over two weeks using the signatures derived from
the previous month.

(Fig. 14) can be reduced, and the disaggregation can be simplified
by eliminating the steps in Fig. 8.

An example of 10-house aggregation is provided in Fig. 15. The
results show theMAEs are [0.25, 0.44, 0.46] kW and the F-measure
scores are [96.0, 84.3, 93.5]%. Note that because each cluster is
always ON, we regard Pmax

i as the threshold for separating the true
negative, false negative, and false positive events in the F-measure
metric.

Depending on application, combining the disaggregation re-
sults of the medium and low-PF clusters can offset the error and
result in one larger load cluster with smaller error. For instance,
if we combine the medium and low-PF clusters in Fig. 15, we can
achieve an F-measure score of 99.9% and MAE of 0.4 kW for the
combined cluster.

4.3.5. Real-time capability
The real-time potential of our algorithm is studied for the

10-house aggregation. The real-time implementation uses the
signatures derived from the historical data in a real-time receding
window with one-month length. In this way, the load signatures
will be more accurate thanks to the most recent data. Fig. 16 and
Table 6 show the results for a period of two weeks following the
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Table 6
Disaggregation evaluation for real-time implementation (from high to low-PF).

Offline (over a month in Mar.) Online (over two weeks in Apr.)

MAE (kW) [0.23, 0.44, 0.28] [0.19, 0.42, 0.30]
F-measure (%) [94.9, 78.1, 99.0] [90.0, 72.9, 96.0]
Fig. 17. Four-cluster disaggregation results for 10-house group.

last day of March in Fig. 15. The online performance is comparable
with the offline results.

4.3.6. More clusters
This section shows the disaggregation into four clusters using

the true power angles (skipping Eqs. (3)–(4)). As mentioned
in 3.3.1, disaggregation into more than three clusters is not
suggested. The results in Fig. 17 yield F-scores of [92.0, 49.0, 69.0,
89.2]%. Despite that the true angles are used, the disaggregation
performance degrades at granular level when clusters have similar
PFs.

4.4. Sensitivity

The model for deriving the power angles in (3) is more
complicated than directly using the average angles after clustering.
This section compares the disaggregation performance with these
two options. In addition, the benefit of using the PF and addition
filters in finding the power magnitude (Section 3.3.2) will also be
discussed.

Table 7 shows the comparison between using (3) and the av-
erage power angle of each cluster for disaggregating the 10-house
aggregation. The average angle denotes the average from the raw
P–Q points in each cluster. Model (3) generally improves the per-
formance in all evaluationmethods. The improvement ismore sub-
stantial for larger scale as (3) is more consistent when dealing with
less sparse load clusters. For single houses, themaximum improve-
ment in F-score in the studied data is about 12%.

Figs. 18 and 19 show the analysis in parallel coordinates. We
simulate 100 scenarios with random errors in each power angle.
For each cluster, the absolute error evenly distributes between 0%
and 30% as the deviation from the true angle (model (3) is skipped).
Fig. 18 shows that large errors in the medium- and low-PF cluster
result in low disaggregation performance (59%–68% average
F-score). Lower errors, on the other hand, result in 81% average
F-score. Fig. 19 shows individual results in low-performance
disaggregation (<68%F-score). Errors in medium- and low-PF
angles particularly degrade disaggregation performance due to
that the medium- and low-PF clusters are more sparse in our test
data.
Fig. 18. Average disaggregation performance with various errors in power angles.

Fig. 19. Error distribution in medium and low disaggregation performance.

The PF and addition filters in Section 3.3.2 affect the MAE in
disaggregation. For the 10-house aggregation, these filters improve
the MAE by an average of 5%. For single houses, the improvement
in single clusters could reach 30%. These filters have more impact
on clusters containing fewer individual loads.

4.5. Test in real-world application

The disaggregation approach is applied to a set of real-world
aggregate data from a BC Hydro smart meter in Kootenay, BC,
Canada (bottom-left in Fig. 2). The available data is the hourly
measurement of P and Q for a single house with electric heating.
Sub-metered data of individual loads are not available.

The disaggregation results are illustrated in Fig. 20. We validate
the results based on our previous work in [27]. It infers the
usage frequency and power consumption of typical residential
loads. Fig. 20 shows that the medium-PF cluster only occasionally
consumes large power in a weekly pattern (March 27 and April
4), indicating possible dishwasher load (Table II in [27]). The low-
PF cluster corresponds to clothes washer and dryer because of
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Table 7
Model (3) vs. average power angles (data as improvement by (3) for 10-house aggregation).

F-measure (%) MAE on P (%) MAE on Q (%)

High-PF cluster 3.79 22.56 23.15
Medium-PF cluster 18.15 10.16 0.00
Low-PF cluster 7.81 18.31 16.37
Fig. 20. Disaggregation of a single house in Kootenay, BC.

its more frequent turn-ons (clothes washer, used 5–9 times a
week [27]) and occasional peaks (dryer, used for some but not all
loads of clothes washer [27]). The high-PF cluster correlating to
space heating, water heating, and range consumes the majority of
power during off-work hours, evenings, weekends, and holidays.
For example, the long duration of high-PF load started on March
28 (March 29 was Good Friday) and April 5 (Friday).

Fig. 15 also demonstrates that our algorithm could possibly
reveal the consumption of typical loads that consume large active
or reactive power. This could be achieved without the survey data
or assumptions made in [27].

5. Conclusions

This paper proposes an unsupervised residential disaggregation
algorithm that requires minimal prior knowledge of loads. The
algorithm is able to detect possible load signatures on load-cluster
level directly from the aggregate P–Qmeasured by smartmeters at
hourly frequency. Disaggregation of both P and Q are implemented
by an optimization approach bounded by the inferred signatures.
The results show that the algorithm is able to disaggregate load
clusters categorized by power factors. The algorithm is adaptive
to various composition and types of loads regardless of controlled
loading (e.g. DR and direct load control). We further examine the
seasonal effect on the disaggregation accuracy and find that large
cooling or heating loads have no adverse effect on our algorithm.
Real-time capability of our algorithm can be achieved by updating
load signatures with themost recent historical data. The algorithm
could yield improved results for small aggregation of houses, thus
extending its application in microgrids for local grid planning and
dispatch with enhanced data utilization.
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