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An Adaptive Aggregation-Based
Approach for Expensively
Constrained Black-Box
Optimization Problems
Expensive constraints are commonly seen in real-world engineering design. However,
metamodel based design optimization (MBDO) approaches often assume inexpensive
constraints. In this work, the situational adaptive Kreisselmeier and Steinhauser (SAKS)
method was employed in the development of a hybrid adaptive aggregation-based con-
straint handling strategy for expensive black-box constraint functions. The SAKS method
is a novel approach that hybridizes the modeling and aggregation of expensive con-
straints and adds an adaptive strategy to control the level of hybridization. The SAKS
strategy was integrated with a modified trust region-based mode pursuing sampling
(TRMPS) algorithm to form the SAKS-trust region optimizer (SAKS-TRO) for single-
objective design optimization problems with expensive black-box objective and constraint
functions. SAKS-TRO was benchmarked against five popular constrained optimizers and
demonstrated superior performance on average. SAKS-TRO was also applied to optimize
the design of an industrial recessed impeller. [DOI: 10.1115/1.4040485]

Introduction

In engineering, computer simulations such as finite element
analysis and computational fluid dynamics (CFD) are commonly
used for product and process design. However, simulation model-
ing is often complex and computationally expensive. Using vehi-
cle crash-worthiness modeling as an example, in 2001 Gu stated
that “it takes about 36 h for single simulation in SGi Origin 2000”
[1]. Duddeck in a 2008 publication stated that “a single crash
computation on 8 or 16 CPUs require currently about 12–20 h”
[2].

Optimization of finite element analysis and CFD simulations is
inherently black-box as the objective and/or constraint functions
are output by the simulation, making exact gradient information
not readily available or unreliable due to numerical noise. This
largely prevents the use of classical gradient-based optimization
algorithms that use the finite differencing method to estimate gra-
dients. This is especially the case for optimization problems where
the constraints are also outputs of the same simulation for the
objective function, which increases the number of simulation runs
needed to compute the gradients via finite differencing. Optimiza-
tion of such simulation-based problems is also expensive as the
simulation itself is typically computationally expensive, and simu-
lation runs are needed to compute the objective and/or constraint
functions. Expensive black-box optimization is especially chal-
lenging, because the computational cost of the functions makes
large numbers of function evaluations impractical and the lack of
gradient information makes efficient convergence to good
solutions challenging. While a variety of evolutionary and
nonsurrogate-based global optimization methods [3–6] have been
applied to address these problems, metamodel-based design opti-
mization (MBDO) methods such as mode pursuing sampling
(MPS) [7], trust region-based MPS (TRMPS) [8], and efficient
global optimization (EGO) [9] have demonstrated good perform-
ance on expensive black-box optimization problems. MBDO
methods use surrogate models such as Kriging and the radial basis
function (RBF) to approximate black-box functions, thereby

reducing the number of required calls to the black-box functions
during optimization [10]. Current MBDO methods can solve rudi-
mentary constrained problems if the search space is not highly
constrained and the constraints are not computationally expensive
to evaluate. However, when the constraint functions are outputs of
the black-box simulation, MBDO methods such as MPS, TRMPS,
and EGO perform poorly as they require extremely high numbers
of constraint evaluations [11]. Efficient constraint handling strat-
egies are needed when solving expensively constrained problems.

A standard constrained single objective optimization problem
has the following mathematical formulation:

min
x

f xð Þ

s:t: gi xð Þ � 0; hj xð Þ ¼ 0

i ¼ 1;…;m; j ¼ 1;…; p

(1)

where x are the design variables; f is the objective function; gi are
inequality constraints; hj are equality constraints. Just as there is a
broad range of constrained problems, the constraint handling
methods in the field are very diverse. Some of the most popular
categories of constraint handling methods are penalty functions
[11–18], repair methods [19,20], separation of objectives and con-
straints [21–24], constraint aggregation [25–28], and surrogate
modeling of constraints [29–32]. For more detailed surveys of
constraint handling methods, consult Refs. [33] and [34]. Penalty
functions transform constrained problems into unconstrained
problems by allowing the algorithm to sample and retain infeasi-
ble solutions, while applying a penalty onto the objective function
value based on the constraint violation. These techniques typically
relax the problem and prevent optimization algorithms from
becoming trapped by infeasible regions [34]. Penalty methods
encourage algorithmic search toward feasible areas by augment-
ing the objective function value of design points with a penalty
value for points with violated constraints. Exterior penalty meth-
ods are relatively easy to implement and can be applied in a wide
variety of algorithms. Kazemi et al. [11] developed a static pen-
alty method that allows the user to predefine a penalty value.
Michalewicz and Attia [14] incorporated the concept of simulated
annealing with penalties by tuning the penalty coefficients accord-
ing to constraint violation and increasing the penalty values over
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time. The drawback of penalty methods is the calculation of the
penalty to be applied. Penalty values should not be too large, or
the objective space will be too distorted for effective optimization
over the objective. If penalty values are too small, they will not be
effective at encouraging algorithms to discover feasible regions.
Adaptive penalty methods address this problem by situational
adaptation of the penalty factors [15–17], but general performance
for expensive black-box problems is lacking [31]. Repair methods,
on the other hand, are typically used for combinatorial problems
[34] or problems where domain knowledge can be applied in the
design of effective repair heuristics. Separation of objectives and
constraints is effective for problems with few constraints, but with
large numbers of constraints the method quickly becomes limited
by the ability of the multi-objective algorithm in handling large
numbers of objectives. In fact, obtaining good performance on
problems with four or more objectives is an active and challenging
area of research [35]. A more scalable approach is one proposed
by Camponogara and Talukdar [23], where a two-objective prob-
lem is formulated with one objective being the original objective
function and the second objective being a function that aggregates
all constraints. Constraint aggregation has shown promise, with
the Kreisselmeier and Steinhauser (KS) function [36] being com-
monly used and demonstrating good performance [25].

Currently, there is a lack of MBDO methods that are designed
to handle expensive inequality constraints. A common technique
is to use surrogates to model each expensive constraint. Kleijnen
et al. used Kriging [29], Regis used RBF surrogates [30], and
Rashid et al. applied multiquadric RBF [31]. Rashid et al. stated
that “to improve the process for constrained optimization, each
expensive nonlinear constraint must be individually modeled
alongside the objective function” [31]. By modeling each con-
straint individually, the feasible and infeasible spaces can be more
accurately approximated. While it is simpler to model every
expensive constraint, it is premature to assert that no other method
is capable of efficiently optimizing problems with expensive con-
straints. A common alternative is to model all the constraints
using a single surrogate (constraint aggregation) or to apply penal-
ties to the objective function. Basudhar et al. developed a support
vector machine-based strategy integrated with the EGO method to
model the boundary of the feasible space [32]. Holmstr€om et al.
used a penalty function to encourage the optimizer to search
toward feasible areas [18].

The motivation of this work is to develop an adaptive
aggregation-based MBDO method that can optimize high-
dimensional expensively constrained black-box problems and adap-
tively reduce the number of constraints being modeled, thereby
eliminating inactive constraints dynamically. The constraint han-
dling method uses the KS function as the aggregation method and
is combined with an adaptive strategy to form the situational adapt-
ive Kreisselmeier and Steinhauser (SAKS) method. The SAKS
method combined with a modified TRMPS global optimizer forms
the SAKS-trust region optimizer (SAKS-TRO). SAKS-TRO is then
compared to a set of popular constrained optimizers on a suite of
benchmark functions with inequality constraints and applied to the
design of an industrial recessed impeller.

Kreisselmeier and Steinhauser Function

The KS function, developed by Kreisselmeier and Steinhauser
[36], is a continuous aggregation function with the following
formulation:

KS g xð Þ½ � ¼ 1

q
ln
Xn

i¼1

eqgi xð Þ
" #

(2)

where g xð Þ are the constraint values at x design points, and q is a
shape parameter. KS is a conservative envelope function that
tends to stay above the maximum constraint value for each design
point. q controls the degree of conservatism of the KS function,

with a smaller q generating more conservative estimates. Some
useful properties of the KS function summarized by Poon and
Martins are [25]:

(1) KS x;qð Þ � max gðxÞ½ � for all q > 0
(2) limq!1 KS x; qð Þ ¼ max gðxÞ½ �
(3) KS x;q2ð Þ � KS x; q1ð Þ for all q2 > q1 > 0
(4) KS x;qð Þ is convex if and only if all constraints are convex

These properties state that the KS function is always greater or
equal to the maximum constraint value and that increasing q
makes the KS function more closely follow the constrained space.
The KS function also does not change the convexity of the con-
strained space [25]. These properties indicate that the KS function
can conservatively envelope the feasible space and aggregate any
number of constraints into one function. Figure 1 shows the shape
of the KS function given different values of q. For larger values of
q, the curves at the corners of the feasible space are narrower.

Radial Basis Function Surrogate

The chosen surrogate method for this work is an RBF, which is
constructed using a linear combination of approximating functions
using the original function values and distances to the center
points xi [37,38]. The RBF surrogate is a good and computation-
ally inexpensive general purpose approximator that can perform
well with a small number of center points [39]. A variety of differ-
ent u :ð Þ kernels and distance metrics can be used [37], each with
different properties. We use a variant composed of a sum of thin
plate splines and a linear polynomial based on success with prior
work [40]

f̂ xð Þ ¼
Xn

i¼1

bi x� xij j2log x� xij j þ P xð Þ

Xn

i¼1

bip xð Þ ¼ 0;P xð Þ ¼ pa ¼ p1; p2;…; pq½ � a1; a2;…; aq½ �T (3)

where xi are the evaluated center points; and b and a are the
resultant coefficients of the model fitting process. P xð Þ is the lin-
ear polynomial where q ¼ d þ 1, with d being the number of
variables.

Situational Adaptive Kreisselmeier and Steinhauser

Method

The SAKS method takes advantage of the smooth and conserv-
ative enveloping properties of the KS function combined with a

Fig. 1 Kreisselmeier and Steinhauser function of two inequal-
ity constraints for increasing q
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RBF surrogate to construct aggregated constraint functions that
reduce the number of surrogate models required. The smoothness
of the KS function makes it suitable for modeling with surrogate
models, and its conservativeness helps to ensure feasibility of can-
didate designs. The SAKS method is composed of three main
components, as follows:

(1) classification of constraints for aggregation;
(2) construction of RBF surrogates using KS-aggregated

constraints;
(3) situational adaptation of KS function conservativeness.

One of the differences between SAKS and other existing con-
straint handling methods for MBDO is that SAKS hybridizes the
two strategies of individual constraint modeling and constraint
aggregation. In each iteration, SAKS classifies constraints for
either individual modeling or aggregation based on constraint vio-
lation of historical candidate expensive points as follows:

gindf g1
¼ gf g; gaggf g1

¼ Ø

gindf gi
¼ gviolf gi�n;i�nþ1;…;i�1

2 gf g
gaggf gi

¼ gf gn gindf gi

(4)

where gf g is the full set of expensive inequality constraints;

gindf gi
is the set of expensive inequality constraints that are to be

individually modeled in the ith iteration, gviolf gi�n;i�nþ1;…;i�1
is

the set of violated expensive inequality constraints for the last n
iterations, and gaggf gi

is the set of expensive inequality constraints

that are to be aggregated in the ith iteration. This classification
scheme ensures that the historically more troublesome constraints
are modeled individually using the surrogate while inactive and
irrelevant constraints are aggregated. At the beginning, the strat-
egy is more conservative by individually modeling all expensive
inequality constraints. As the optimization progresses, gindf gi

shrinks as it becomes clearer which constraints are more difficult.
To demonstrate this, some sample optimization results using the
SAKS-TRO algorithm are collected for the P116, P118, and Beam
problems (see the Appendix for problem details). Figure 2 shows
the dynamic constraint classification process for the three con-
strained problems over multiple iterations. Cons # stands for con-
straint number, and each row represents the aggregation status of
an inequality constraint at the specified iteration numbers. At the
beginning all constraints are modeled independently but as the
optimization progresses more constraints are aggregated.
The classification is also determined dynamically according to the

immediate circumstances and is reflected in the constantly chang-
ing aggregation status of the constraints.

To determine an appropriate value for n, the number of inde-
pendently modeled constraints was tracked over many iterations
for two problems. Figure 3 shows the effect of different values of
n on the aggregation pattern across iterations for the P106 prob-
lem, and Fig. 4 shows the same comparison for the P118 problem.
The results indicate that a smaller value of n is associated with
more aggressive aggregation in general. However, even a small
value of n can result in many constraints being independently
modeled as the optimization progresses, as can be seen after itera-
tion 81 in Fig. 3 with a spike in the number of independent con-
straints for n¼ 5. This shows that the dynamic nature of the
aggregation method can mitigate the effects of the selection of n.
n is set to 10 in this work as a reasonable tradeoff between aggre-
gation and independent modeling.

Next, the set ĉf gi of RBF surrogates is constructed where
ĉindf gi is the set of individually modeled RBF surrogate con-

straints, and ĉi
agg is the RBF surrogate of the KS aggregate of

gaggf gi
, all at the ith iteration. Due to the nature of function aggre-

gation gagg xð Þ
� �

i
, which represents the constraint values of

gaggf gi
at x, needs to be normalized to prevent bias

gj
agg;norm xð Þ ¼

normalized to �1; 0½ �; if gj
agg xð Þ � 0

normalized to 0; 1ð �; if gj
agg xð Þ > 0

(
(5)

Fig. 2 Constraint classification for the P116 (left), P118 (middle), and beam (right) problems
(filled 5 independent, blank 5 aggregated)

Fig. 3 Comparison of aggregation level across iterations for
P106 given different n values
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where gj
agg xð Þ is the output of the jth function in gaggf gi

.

gagg;norm xð Þ
� �

is the set of outputs for all gaggf gi
, which is then

aggregated into a single function using the KS method. Raspanti
et al. [41] recommend that a different formulation of the KS func-
tion be used instead of Eq. (2) to avoid numerical errors associated
with the use of large values of q

KS g xð Þ½ � ¼ gmax xð Þ þ 1

q
ln
Xn

i¼1

eq gi xð Þ�gmax xð Þð Þ
" #

(6)

where gmax xð Þ is the maximum constraint value at design point x.
Substituting g xð Þ for gagg;norm xð Þ

� �
, Eq. (6) can then be modified

to

KS gagg;norm xð Þ
� �� �

¼ gmax xð Þ þ 1

q
ln
Xn

j¼1

eq gj
agg;norm xð Þ�gmax xð Þð Þ

" #

gmax xð Þ ¼ max gagg;norm xð Þ
� �� �

(7)

The resultant KS values, KS gagg;norm xð Þ
� �� �

, represent the maxi-

mal normalized constraint violation, with values above 0 meaning
the points are predicted to be in an infeasible region.

KS gagg;norm xð Þ
� �� �

is then used to construct ĉi
agg based on Eq. (7).

Poon and Martins [25] recommend a value of 50 for q, but in this
work q is situationally adapted at each iteration as follows:

qkþ1 ¼
(

2 � qk if g xkð Þ
� �

� 0 or xk ¼ Ø

0:5 � qk if any g xkð Þ
� �

> 0

1 � q � 8192

(8)

where k is the current iteration, and xk�1 is the previous iteration’s
candidate design. Because q is a parameter that controls the con-
servativeness of the KS aggregation, this control strategy allows
the algorithm to become more conservative when repeated itera-
tions fail to identify feasible designs. The range of 1–8192 gives
the q term an adaptation range of 13 steps between the min and
max values. The parameter will also become less conservative
when the algorithm successfully finds feasible designs. One of the
drawbacks of function aggregation is a potential reduction in pre-
dictive accuracy of the constraint space, because the output of
constraint function aggregation is used for modeling with the RBF
surrogate. The surrogate may not be able to predict feasibility as
well with the aggregated functions compared to individual model-
ing of the constraint functions. This situational adaptive strategy
mitigates this drawback by using conservative constraint bound-
ary modeling to reduce the impact to modeling accuracy of func-
tion aggregation. One issue with the adaptation scheme presented
in Eq. (8) is that while larger values of q allow the KS function to

approach the constraint boundary, the KS function never coincides
with the actual boundary. This can pose a problem with designs
that are at or very close to the constraint boundary as even a large
q value can cause the KS function to predict infeasibility for a
promising design when it is feasible. To address this, the second
term in Eq. (7) is set to zero when the value of q reaches the maxi-
mum value.

Another consideration with the KS function formulation is the
variability of the second term in Eq. (7) with larger numbers of
aggregated constraints. In theory, very large values are possible
which can potentially make the KS function too conservative.
Since the maximum and minimum values of gj

agg;norm xð Þ and
gmax xð Þ are 1 and �1, respectively,

0 < eq g
j
agg;norm xð Þ�gmax xð Þð Þ � 1 (9)

Taking the limit of the ln term to infinity we get

lim
n!1

KS gagg;norm xð Þ
� �� �

¼ gmax xð Þ þ 1

q
lim

n!1
ln
Xn

i¼1

eq gj
agg;norm xð Þ�gmax xð Þð Þ

" #
¼ 1 (10)

However, from Eq. (9), we know that the inner term of the ln
function can only be large if there are a large number of con-
straints. Specifically

Xn

i¼1

eq g
j
agg;norm xð Þ�gmax xð Þð Þ ¼ s � number of constraints (11)

Let s represent the expression inside the ln function, as shown in
the equation above. Since ln increases sublinearly relative to the
magnitude of s, the magnitude of the output of the ln expression
decelerates as s increases in magnitude. For example, given two
values of q and number of aggregated constraints, respectively,
computation of the ln term results in the values shown in Table 1.
The conservative behavior of KS exhibits significant variation by
varying the two terms, which makes the adaptive behavior of q in
this work more appropriate than defining a static value.

The advantages of the SAKS method are that it models con-
straints individually only when it needs to, which reduces
unnecessary surrogate modeling of inactive or unimportant con-
straints, and situationally adapts the conservativeness of the KS
aggregator to compensate for the drawbacks of function aggrega-
tion in MBDO.

Situational Adaptive Kreisselmeier and

Steinhauser–Trust Region Optimizer

This work integrates the SAKS method with a modified
TRMPS global optimizer to form the SAKS-TRO algorithm.
TRMPS is a global optimization method for problems with expen-
sive black-box functions that relies on stochastic sampling and
surrogates to perform optimization. TRMPS [8] is shown to have
very competitive performance on unconstrained global optimiza-
tion problems, requiring comparably few objective function evalu-
ations to obtain good solutions.

Fig. 4 Comparison of aggregation level across iterations for
P118 given different n values

Table 1 Effect of varying q and number of aggregated con-
straints on ln(.) term

Number of aggregated constraints

q 10 100

1 2.302 4.605
10 0.2302 0.4605
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Review of Trust Region-Based Mode Pursuing Sampling. At
the beginning of the TRMPS algorithm, a small set of design
points is randomly generated and evaluated using the black box.
At each iteration, a linear spline RBF surrogate is constructed
using expensive points contained within the regions exclusively
covered by each of the trust regions. The linear spline RBF surro-
gate is formulated as follows:

f̂ xð Þ ¼
Xm

i¼1

ai x� xik k (12)

where m is the number of points in yf g; ai is the weight of the
function or the objective function value of point xi; and the set of
points xi are the expensive points used to build the model. Sample
points that are located within the trust regions are fitted onto the
corresponding surrogate. At the end of each iteration, the trust
regions are resized, and the expensive points are resorted into the
appropriate trust region. The trust regions are also always centered
at the expensive design with the lowest function value.

Trust region-based mode pursuing sampling maintains two trust
regions S (TRS) and B (TRB) throughout the optimization, where
in each iteration a surrogate modeling and discriminative sam-
pling process (or, an MPS process [7]) occurs within the bounda-
ries of each trust region. The two trust regions adapt in size to
balance exploitation and exploration to more efficiently sample
the problem space. If the search improves through the discovery
of a better optimum point, then S expands to avoid being trapped
into a local minimum region and B contracts to exploit the promis-
ing region. If the search does not improve in a certain number of
iterations, S contracts to exploit the promising region and B
expands to better explore the search space.

The strategy of the MPS process in each trust region is to use
uniform random sampling to generate a small set of expensive
points which are then used to create a surrogate of the objective
function. In a discriminative sampling process [42], many “cheap”
points have their fitness values approximated using the surrogate.
The cheap points are then used to selectively pick new expensive
points, which are added to the old set of expensive points. The
most promising subregions of the search space are identified and a
quadratic model constructed in each subregion. Local optimiza-
tion is performed in each subregion by using the quadratic model
as the objective function. The quadratic approximation model is
built for the region around the current optimum point (referred to
as the current function mode) and is expressed as

q ¼ b0 þ
Xn

i¼1

bixi þ
Xn

i¼1

biixi
2 þ

X
i<j

Xn

j¼1

bijxixj; (13)

where b are model coefficients. The model coefficients are calcu-
lated using the coordinate values of the points in the fitting region
by solving the following equation for b:

xTxð Þb ¼ xTy (14)

The entire process iterates until certain stopping criteria are met.

Process of Situational Adaptive Kreisselmeier and
Steinhauser–Trust Region Optimizer. The TRMPS algorithm is
complementary to the SAKS method, because both aim to reduce
the computational cost of surrogate modeling while maintaining
efficient optimization. In TRMPS, the trust regions dynamically
reduce the spatial coverage of RBF surrogates, which allows the
RBF surrogates to be more accurate within the bounds of the trust
regions while also limiting the number of design points used to
construct the surrogate models. The trust regions help to limit the
possibility of choosing new samples in infeasible space, and thus
work in tandem with the situational adaptation strategy of SAKS
to dynamically adjust conservativeness and maximize the chance
of exploring within the feasible space.

Situational adaptive Kreisselmeier and Steinhauser-trust region
optimizer retains the overall strategy of TRMPS with a few key
modifications. First, the quadratic model construction and local
optimization steps are removed. This was done to reduce the per-
iteration cost of the algorithm from four to only two expensive eval-
uations sampled in two regions. While the local optimization pro-
cess is useful for optimization without expensive constraints [7], it
is much less effective for optimization with expensive constraints.
With expensive constraints, additional quadratic approximation
models must be constructed for each of the expensive constraints,
which further lowers accuracy and reduces the probability of the
local optimization process finding an improved design. Further-
more, eliminating the quadratic model construction and local opti-
mization steps and instead dedicating expensive evaluations to the
main optimization process with the SAKS constraint handling
method proved to be a more efficient use of limited resources.

Second, the linear spline RBF surrogate is replaced with the
chosen RBF variant of this work shown in Eq. (3). The sum of
thin plate splines was used in the RBF-HDMR metamodeling
method and demonstrated good generalized performance [40].

Third, a new mode is added for the case where a feasible design
is not available after initial sampling. In this scenario, rather than
constructing a surrogate of the objective function, the constraint
surrogates are used to evaluate the fitness of candidate designs. Of
the predicted constraint values, feasible entries are filtered, and
the rest is summed to form a constraint-penalizing merit function,
as follows:

ccandidate ¼
(

ĉj xð Þ if ĉj xð Þ � 0

0 if ĉj xð Þ < 0

f̂ ccandidateð Þ ¼
X

ccandidate

(15)

where ĉj xð Þ is the predicted value of the jth constraint surrogate in
the set ĉf gi. This merit function is used to guide the sampling;
once a feasible design has been found, the algorithm reverts to the
original behavior.

Situational Adaptive Kreisselmeier and Steinhauser–Trust
Region Optimizer Algorithm. We define sets of points yf g,

ySf g, and yBf g, where ySf g; yBf g � yf g and ySf g \ yBf g ¼ Ø. By

adding elements to either ySf g or yBf g or any other sets of expen-

sive points, we imply automatic addition of the same elements to
yf g unless yf g already contains those elements. Furthermore, every

set of points has a corresponding set of objective and constraint
function values where actions on the set of points are mirrored on
the sets of objective and constraint function values. Thus, yf g,

ySf g, and yBf g have corresponding sets of function values fyf g,
fySf g, fyBf g, and cyf g, cySf g, and cyBf g. We also define the best

design of the ith iteration as yi, and qi
S and qi

B are the conservative-
ness parameters for TRS and TRB at the ith iteration, respectively.

Step 1: Initial Sampling.
Sample nip uniform random points yf g in the design space, and
evaluate yf g with the black box function to obtain function values

fyf g.
For each pt in yf g,

If pt is within TRS, place pt in ySf g,
Else if pt is within TRB, place pt in yBf g.

Set qS
1 ¼ qB

1 ¼ 50.

Step 2: Constraint Classification.
Classify the expensive constraint functions according to Eq. (4)
using the constraint function values of yi.

Step 3: Constraint Surrogates Construction.
Construct the RBF surrogates ĉindf gi according to Eq. (3) using
expensive points ySf g in TRS. Construct the aggregate RBF surro-
gate ĉi

agg by first aggregating constraint values using Eqs. (5) and
(7), then building the RBF model with Eq. (3) and expensive
points ySf g.

Journal of Mechanical Design SEPTEMBER 2018, Vol. 140 / 091402-5



Step 4: Mode Selection.
If a feasible point is present, go to step 5, else, go to step 7.

Step 5: Surrogate Point Accumulation.
Sample a relatively large number of uniform random points, e.g.,
n0s ¼ 5000, in TRS and fit the ones that satisfy the cheap con-
straints onto the ĉindf gi and ĉi

agg surrogates. The points that satisfy
the constraint surrogates ĉindf gi and ĉi

agg are added to the point set
xSf g. This process is repeated until a good number of (e.g., 500)

feasible samples have been accumulated in xSf g.
Step 6: Objective Surrogate Construction.

Construct the RBF surrogate f̂ of the objective function using
Eq. (3) and expensive points ySf g.

Go to step 8.

Step 7: Constraint-Penalizing Merit Function.
Sample n0s ¼ 5000 uniform random points in TRS and fit the ones
that satisfy the cheap constraints onto the ĉindf gi and ĉi

agg surro-
gates. Use Eq. (3) to compute candidate point fitness values.

Step 8: Contour Selection.
Use the discriminative sampling procedure [8] to select a design
xSi from xSf g. Evaluate xSi with the black box to obtain results fxSi

and cxSi
. Place xSi in ySf g.

Step 9: Update SAKS Conservativeness.
Using cxSi

, update qS
iþ1 according to Eq. (8).

Step 10: B region.
Perform steps 2–9 for TRB.

Step 11: Region Updates.
If the search is improved at this iteration, RB ¼ RB � kreduction,
RS ¼ RS=kreduction.

Else if no improvement for stall iterations, RS ¼ RS � kreduction,
RB ¼ RB=kreduction.

ySf g; yBf g ¼ Ø

For each pt in yf g,
If pt is within TRS, place pt in ySf g,
Else if pt is within TRB, place pt in yBf g.

i ¼ iþ 1

Step 12: Convergence Criteria.
If either the max nfe (number of function evaluations) or mini-
mum fval (function value) criteria is met, then stop. Otherwise, go
to step 2.

Figure 5 is an illustration of the algorithm.

Benchmark Process and Results

Test Methodology. The SAKS-TRO was compared to five dif-
ferent constrained optimization algorithms on a suite of nine dif-
ferent constrained benchmark problems. The five benchmark
algorithms are CONMIN [43], SDPEN [44], KSOPT [26],
COBYLA [45], and ALPSO [46], the implementations of which
are obtained from the pyOpt project [47]. The constrained bench-
mark problems range from 3 to 30 variables with between 3 and
29 constraint functions and are commonly used in the research lit-
erature. See the Appendix for details on each of the benchmark
problems. Each of the algorithms was run with each of the bench-
mark problems 30 times to minimize the effect of random varia-
tion and starting point location on algorithm performance. For the
deterministic algorithms (CONMIN, SDPEN, COBYLA, and
KSOPT), the starting point was randomly generated for each run.
All deterministic algorithms have been set to use complex step
sensitivity where gradients are needed. To test the constraint han-
dling efficiency of the algorithms, all constraints are considered to

be computationally expensive in addition to the objective func-
tion. In this work, NFE is the total number of function evaluations,
with each function evaluation computing the results for all
functions.

CONMIN. CONMIN implements the method of feasible direc-
tions for linear or nonlinear constrained optimization problems
[43]. At each iteration, the algorithm determines a feasible direc-
tion and selects a step size that leads to improvement in the objec-
tive function.

SDPEN. SDPEN is a derivative-free sequential penalty approach
for nonlinear constrained optimization problems. The algorithm
extends the sequential penalty approach by leveraging a line
search method to replace the use of derivatives and connects the
updating of the penalization parameters to the line search. “The
algorithm uses a sequence of approximate minimizations of a
merit function where penalization of constraint violation is pro-
gressively increased” [44].

KSOPT. KSOPT uses the KS function to envelope all con-
straint functions and the objective, which converts the constrained
problem into an unconstrained optimization problem [26]. At each
iteration, the Davidon–Fletcher–Powell (DFP) algorithm is used
to minimize the KS envelope function.

COBYLA. COBYLA is a derivative-free approach that uses a
series of linear approximations to model the objective and con-
straint functions [45]. The method uses a trust region to manage
algorithm convergence. At each iteration, the linear approxima-
tions are solved, and the candidate design is evaluated with the
actual objective and constraint functions. The method has been
limited to a maximum of 30,000 function evaluations during test-
ing as COBYLA often exceeds this limit.

ALPSO. The augmented Lagrangian particle swarm optimizer
(ALPSO) uses the augmented Lagrange multiplier approach to
handle constraints, which is combined with the basic particle
swarm optimizer for nonlinear constrained optimization [46]. The
swarm size and hood size parameters have been set to 10, which
has resulted in better performance for this algorithm in our
testing.

Benchmark Results

Table 2 shows the success rate of each algorithm in achieving
feasibility and reaching the target objective value for each prob-
lem, while Table 3 contains the results for efficiency of each algo-
rithm for each problem for successful runs. In Table 3, blank
fields indicate a failure to achieve any success in the given prob-
lems and criteria. This could be due to a programmatic failure, as
is often the case with KSOPT, or performance issues. This is
shown clearly in Table 2, where programmatic failures are indi-
cated with a “-.” In general, SAKS-TRO both achieves feasibility
and reaches the target objective faster than CONMIN, COBYLA,
KSOPT, SDPEN, and ALPSO. SAKS-TRO also can achieve fea-
sibility and reach the target 100% of the time, while the other four
algorithms are not always successful.

In the PV problem, SAKS-TRO achieves feasibility much faster
than the other algorithms. It also quickly achieves the target
objective. None of the other algorithms could reach the target
objective, although all are successful in reaching feasibility.
COBYLA consumed an average of 18,389 NFEs and reached the
maximum NFE limit in half of all instances. CONMIN, KSOPT,
SDPEN, and ALPSO all converged automatically without reach-
ing the target objective. CONMIN consumed an average of 2419
NFEs, KSOPT used 143.6 NFEs, SDPEN used 218.4, and ALPSO
used 8272. All four of these algorithms consumed more NFEs
than SAKS-TRO without reaching the target. In the Spring
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problem, CONMIN performed well and was almost as fast as
SAKS-TRO in reaching feasibility. It also reached the objective
target almost as fast and with much less variability than SAKS-
TRO, although it failed to reach the target objective on a few
runs. SDPEN performed well in the successful runs, but failed to
reach the target objective most of the time. ALPSO and COBYLA
performed poorly. KSOPT was not able to optimize the problem
at all due to an exception we consistently encountered when run-
ning the compiled code.

In P106, SAKS-TRO was fastest followed by CONMIN,
although CONMIN could achieve feasibility in less than half of
runs and rarely reached the objective. COBYLA’s reliability was
similar to CONMIN’s, although it was much less efficient at
reaching the targets. ALPSO was very reliable, achieving over
90th percentile for both feasibility and objective targets, but con-
sumed many function evaluations. KSOPT and SDPEN performed
poorly, with the former achieving feasibility less than a quarter of
the time and never reaching the objective target and the latter
never achieving feasibility at all.

In P113, COBYLA was slightly faster than SAKS-TRO on
average in reaching the objective target, but was slower to reach
feasibility and failed to reach the objective target in a few runs.
CONMIN was as fast as SAKS-TRO in reaching feasibility, but

could only do so in half the runs and was much slower in reaching
the objective target. KSOPT was reliable, but was slow in reach-
ing the targets. SDPEN was efficient but only reached the objec-
tive target 1/10 of the time, and ALPSO was reliable but generally
inefficient.

In P116, only the SAKS-TRO and CONMIN algorithms suc-
ceeded to find feasible solutions. CONMIN was only able to reach
feasibility 13.3% of the time, and in these runs CONMIN was also
able to reach the objective target. KSOPT consistently encoun-
tered fatal exceptions, and COBYLA, SDPEN, and ALPSO were
unable to find feasible solutions.

In P117, COBYLA outperformed SAKS-TRO by a large mar-
gin in reaching the objective targets, but was slower to reach fea-
sibility. KSOPT was much less efficient than both COBYLA and
SAKS-TRO, while ALPSO struggled to reach the objective target.
CONMIN was unable to reach the objective target at all.

In P118, SAKS-TRO was fastest followed at a distance by
COBYLA. SDPEN also performed similarly to COBYLA except
it was much less reliable at reaching the objective target. CON-
MIN and ALPSO were both an order of magnitude slower than
SAKS-TRO, COBYLA, and SDPEN. CONMIN also struggled to
reach feasibility, and KSOPT was again unable to run due to fatal
exceptions.

Fig. 5 Situational adaptive Kreisselmeier and Steinhauser-trust region optimizer flowchart

Table 2 Reliability (success rate) of each algorithm

SAKS-TRO CONMIN COBYLA KSOPT SDPEN ALPSO

Problem
% runs
feasible

% runs got
target

% runs
feasible

% runs
got target

% runs
feasible

% runs
got target

% runs
feasible

% runs got
target

% runs
feasible

% runs
got target

% runs
feasible

% runs
got target

PV 100 100 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0
Spring 100 100 100 90 96.7 76.7 — — 86.7 33.3 100 43.0
P106 100 100 48.1 11.1 50.0 7.69 24.1 0.0 0.0 0.0 96.7 93.3
P113 100 100 50.0 46.7 100 93.3 100 76.7 100 10.0 100 73.3
P116 100 100 13.3 13.3 0.0 0.0 — — 0.0 0.0 0.0 0.0
P117 100 100 100 0.0 100 100 100 100 100 0.0 100 20.0
P118 100 100 26.7 13.3 100 100 — — 100 63.3 100 23.3
Beam 100 100 50.0 0.0 16.7 6.7 6.7 0.0 100 100 100 63.3
CP15 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.3 13.3
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For the beam problem, SDPEN was the fastest by a large mar-
gin. SAKS-TRO came next, followed by ALPSO which failed to
reach the objective target close to 40% of the time. COBYLA
struggled to find feasible solutions, and KSOPT and CONMIN
were unable to reach the objective target at all.

For the CP15 problem, the tight constraints caused CONMIN,
COBYLA, KSOPT, and SDPEN to fail to find feasible solutions.
Although ALPSO found feasible solutions in most runs, it only
occasionally reached the target objective while taking over an
order of magnitude more NFEs than SAKS-TRO.

Overall, SAKS-TRO demonstrated the highest reliability by
always reaching feasibility and the objective targets. SAKS-TRO
was also generally the fastest, except for the P117 and beam prob-
lems where COBYLA and SDPEN significantly outperformed it,
respectively. This shows the potential of hybrid constraint aggre-
gation methods to perform well and demonstrates that it is not
always necessary to model all constraint functions individually to
achieve good performance on constrained problems.

Design of an Industrial Recessed Impeller. As part of this
work, SAKS-TRO is applied to optimize the design of an indus-
trial recessed impeller for use in slurry pumping applications.
Slurry pumps are a type of centrifugal pump that are commonly
used in the oil and gas, mining, and power generation industries.
Slurry is a semiliquid mixture where solid particles are suspended
in liquid. Because of the presence of solid particles, slurry pump
design is very different from the design of clear water pumps [48].
With slurry, there is more wear on the impeller and other pump
components, which means that the blades need to be thicker to
prolong life and prevent them from breaking. The blades also
need to be fewer and spaced farther apart to allow larger solid par-
ticles to pass through. These and other challenges have made the
design of slurry pumps a “science [that] is mixed also with a good
sprinkling of art and a designer’s know-how” [49]. Until recently,
design of slurry pumps has relied primarily on engineers’ knowl-
edge and experience, and physical prototyping and testing [48].

In this work, we used CFD to simulate a full model of the impeller
and volute [50]. ANSYS BLADEMODELER was used to build the impel-
ler and volute geometry. BladeModeler allows specific turbomachi-
nery parameters to be set and then modified, such as blade angles
and thickness at varying radius values. ANSYS MESHING was used to
generate a mesh of the fluid domain of the impeller and volute. To
reduce the cost of computation, the mesh quality was set to achieve a
balance of simulation time and accuracy and precision of the results.

The mesh was found to give precise results although not as accurate
as physical testing. However, the level of accuracy was acceptable
for optimization and the overall trends of the simulation outputs
were accurate. ANSYS CFX was used to setup and run the simulation.
Only a single vane of the impeller was simulated to reduce the cost
of computation. This is a common practice to leverage the symmetry
of the impeller to reduce simulation complexity and significantly
speed up computation. The single vane was contained in a rotating
simulation domain with a steady-state interface to the volute which
was contained in a stationary simulation domain Fig. 6. That is, the
simulation was essentially a snapshot of the flow with the vane at a
specific position relative to the volute. CFX simulations were run at
three different volumetric flow rates of fluid through the pump to
obtain a rough performance curve of the impeller and volute. One
flow rate was at approximately the best efficiency point (BEP) where
efficiency is at maximum. For the other flow rates, one was much
lower and the other much higher than the BEP flow rate. Model anal-
ysis was performed on a machine configured with an Intel Core i7
6800K hexacore processor with 32 GB of RAM, and computation
speed was further accelerated to an average of 25 min per run via
parallel processing using Open MPI.

The objective of the optimization is to maximize the head-rise
to shutoff (head drop) of the pump while keeping the head at shut-
off and efficiency at different flow rates within certain bands.
Head is the ability of the pump to raise water to a certain height
while shutoff is the lowest pump flow rate. The head drop is the
difference in head between the shutoff (lowest) and the highest
flow rates. Head drop is the objective because with a flat head
curve, the slurry pump can easily run at higher flow rates with
lower efficiency without being noticed, because the desired head
is still being achieved. Also, pump components can be damaged

Table 3 General efficiency benchmark results

SAKS-TRO CONMIN COBYLA KSOPT SDPEN ALPSO

Problem
NFE to
feasible

NFE to
target

NFE
to feasible

NFE to
target

NFE to
feasible

NFE to
target

NFE to
feasible

NFE to
target

NFE to
feasible

NFE to
target

NFE to
feasible

NFE to
target

PV Mean 5.8 45.7 36.9 — 51.7 — 15.4 — 39.8 — 11.6 —
STD 0.9965 11.5345 29.232 — 41.8677 — 10.997 — 45.0526 — 10.875 —

Spring Mean 6.6 92.8 9.1034 95.9615 41.0357 743.909 — — 29.64 116.2 7.9655 535.385
STD 1.6938 77.6137 7.5467 25.1531 136.0312 973.634 — — 29.4164 50.607 7.1788 279.164

P106 Mean 44.8 781.333 51.857 2935 5466.69 19,312.5 266.57 — — — 2284 8358
STD 15.5484 526.395 15.256 857.603 3609.24 10,116.6 176.98 — — — 1659.7 2814.3

P113 Mean 68.2 253.767 70.467 1531.3 80.448 194.37 253.069 1657.4 86.931 305 320.03 2085.2
STD 38.7088 117.1606 23.814 888.18 53.9349 104.635 94.884 1174.5 23.463 282.501 216.88 649.98

P116 Mean 104.667 402.333 109.75 9009 — — — — — — — —
STD 52.8382 254.6607 39.508 10,774.9 — — — — — — — —

P117 Mean 16.667 407.6 57.6 — 86.833 197.818 151.4 1688.1 61.9667 — 214.4 1665.1
STD 1.2954 321.3382 37.206 — 19.099 57.0926 70.8435 1238.9 12.5711 — 142.03 1065.2

P118 Mean 35.857 167.821 2840.4 9823.5 250.933 392.875 — — 359.933 390.684 2936.1 7442.9
STD 23.4848 205.1056 4624.7 7704.4 74.8612 96.9549 — — 166.246 129.80 1810.4 3366.4

Beam Mean 20.467 269.9 67.0 — 130.2 200.5 18.5 — 43.1 49.125 56.6 440.42
STD 7.9122 82.6594 36.553 — 131.696 226.98 24.749 — 10.9398 7.21 89.674 162.038

CP15 Mean 106.647 502.765 — — — — — — — — 4960.2 6605.0
STD 119.4262 440.4862 — — — — — — — — 2512.3 2130.3

Fig. 6 Fluid domain geometry (left) and single vane mesh
(right)
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when the flow rate is too high. Thus, a steeper head curve helps
ensure the pump is run as intended and reduces the wear damage
on pump components. While maximizing the head drop, the effi-
ciency of the pump and the head at shutoff cannot be too low so
that the performance of the pump can be maintained. Inequality
constraints were used to constrain the efficiency at the mid and
high flow rates as well as the head at shutoff within acceptable
performance bounds. Constraints are also placed on the output tor-
que to ensure they are positive, as the CFD model sometimes out-
put erroneous results when the torque values are at 0 or below.
Also, the head at all flow rates were constrained to be within rea-
sonable bounds as there were cases of head values being
extremely high, which were anomalies of the low-fidelity simula-
tion model as the head values obtained on the same designs using
the high-fidelity model were quite low. Since head, efficiency, and
torque values are all output from the CFD simulation, these con-
straints are all computationally expensive. In addition, nine math
constraints were added to constrain the input parameters to reduce
the incidence of meshing and solver failures due to bad geometry.
We defined 12 input parameters representing different geometric
features of the impeller blades, such as vane shape and vane thick-
nesses [51]. Eight of the parameters define various aspects of the
vane angle and shape, two parameters define the vane thickness,
and the last two parameters control the blade height and number
of blades. Due to confidentiality, the input parameters and operat-
ing velocities are generalized and values are expressed relative to
nominal. The following shows the full optimization definition for
this engineering problem:

f xð Þ¼� HL�HHð Þ
g1;2 xð Þ! 99% of BHS�HL� 101% of BHS

g3 xð Þ¼EH � 83% of BBEP

g4;5 xð Þ¼ 94% of BBEP�EM � 103% of BBEP

g6!11 xð Þ¼ 0�H at all flow rates� 2 �BHS

g12;13;14 xð Þ¼ torque at all flow rates� 0

g15!23 xð Þ¼ various mathematical constraints on input parameters

(16)

where BHS is head at shutoff of the baseline design, BBEP is the
BEP of the baseline design, HL and HH are the head at the low and
high flow rates, and EM and EH are the efficiency at the mid and
high flow rates. In total, there are 12 input parameters, one expen-
sive objective, 14 expensive inequality constraints, and nine cheap
constraints.

Due to the high computational cost of the CFD simulation, the
optimization was limited to 300 simulation calls which took
150 h. SAKS-TRO took 25 simulation calls before reaching feasi-
bility. Figure 7 shows the head curve comparison between the
SAKS-TRO result and the baseline design. It shows that the opti-
mized design has a 75% larger head drop than the baseline while
maintaining head values that are close to the baseline for the low
and medium flow rates. Figure 8 shows the efficiency curve com-
parison and shows that the optimized design tracks very closely to

the efficiency curve of the baseline design aside from a small drop
in efficiency at the high flow rate.

A modified version of the optimized design was prototyped by
Hevvy Pumps and the performance improvement was validated
via physical testing using a full-size pump and a clearwater tank.
Figure 9 shows the constraint aggregation performance for SAKS-
TRO during the impeller optimization for the 14 expensive
inequality constraints. At the beginning of the optimization all
constraints were aggregated. From 10 iterations to 100 iterations,
the first five constraints are primarily independently modeled,
which shows their importance to the optimization. The other nine
expensive constraints are always aggregated, which indicates that
they are rarely violated. The pattern of aggregation demonstrates
the usefulness of the SAKS adaptive aggregation strategy for
practical expensive constrained optimization.

Final Remarks

This work proposed a SAKS method as a novel expensive con-
straint handling strategy. The method combines the KS envelope
function with RBF modeling to form a hybrid adaptive constraint
aggregator that can effectively explore expensively constrained
spaces without needing to individually model each expensive con-
straint function all the time. The trust region-based mode pursuing
sampling (TRMPS) algorithm was modified to improve con-
strained exploration and was combined with the SAKS method to
form a new SAKS-TRO single-objective constrained optimizer
for expensively constrained black box problems. The SAKS-TRO
method represents a significant departure from earlier MBDO
methods [31] for expensive constrained optimization with the
novel hybrid constraint aggregation approach. The method was
benchmarked against five other constrained optimizers and was
also used to optimize the design of a slurry pump impeller.

Fig. 7 Head drop comparison between KS-TRO optimum and
baseline

Fig. 8 Efficiency comparison between KS-TRO optimum and
baseline

Fig. 9 Constraint classification for impeller optimization (blue
5 independent, white 5 aggregated)
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The benchmarks show that SAKS-TRO performs well com-
pared to CONMIN, COBYLA, KSOPT, SDPEN, and ALPSO.
SAKS-TRO demonstrates a high level of reliability and is gener-
ally faster in the benchmarks. The results also show that a con-
straint aggregation approach when properly applied can be
effective in reducing the need to model all expensive constraints
individually using metamodels. Such aggregation is useful in
cases where there are expensive constraints that are not as tight or
as significant in determining feasibility. The results indicate that
SAKS-TRO is a promising algorithm for high-dimensional expen-
sive constrained optimization.
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Appendix: Benchmark Problems

Pressure Vessel. The pressure vessel design problem is a four-
variable problem with three constraints [7,52]. The cylindrical
pressure vessel is constructed from rolled steel plate (carbon steel
ASME SA 203 grade B) that are joined welding two forged end

caps onto a cylindrical shell. All welds are single-welded butt
joints with a backing strip. The pressure vessel should store
750 ft3 of compressed air at a pressure of 3000 psi. There are four
design variables: radius (R) and length (L) of the cylindrical shell,
shell thickness (Ts), and spherical head thickness (Th), all of
which are in inches

min F ¼ 0:6224TsRLþ 1:7781ThR2 þ 3:1661T2
s Lþ 19:84T2

s R

Subject to g1 ¼ Ts � 0:0193R � 0

g2 ¼ Th � 0:00954R � 0

g3 ¼ pR2Lþ ð4=3ÞpR3 � 1:296E6 � 0

R 2 ½25; 150�; Ts 2 ½1:0; 1:375�;
L 2 ½25; 240�; Th 2 ½0:625; 1:0�

(A1)

The target objective value is 7200.

Spring. The spring minimization problem, obtained from Ref.
[53], involves specifying the dimensions of a coil spring to with-
stand axial loading. The objective is to minimize the weight of
the spring subject to deflection, stress, surge wave frequency, and
diameter constraints. The tension/compression coil spring design
problem is a three-variable problem with four constraints [53],
where a load is applied axially

f xð Þ ¼ x3 þ 2ð Þx2x2
1

g1 xð Þ ¼ 1� x3
2x3

71875x4
1

� 0

g2 xð Þ ¼ x2ð4x2 � x1Þ
12566x3

1ðx2 � x1Þ
þ 2:46

12566x2
1

� 1 � 0

g3 xð Þ ¼ 1� 140:54x1

x2
2x3

� 0

g4 xð Þ ¼ x2 þ x1

1:5
� 1 � 0

x1 2 0:05; 0:2½ �; x2 2 0:25; 1:3½ �; x3 2 2; 15½ �

(A2)

x1 ¼ d, the wire diameter in inches, x1 ¼ D, the mean coil diameter in inches, x3 ¼ N, the number of active coils, g1 is the deflection
constraint, g2 is the stress constraint, g3 is the surge wave frequency constraint, and g4 is the outer diameter constraint. The target objec-
tive value is 0.013.

Heat Exchanger Design (P106). The P106 is an eight-variable test problem with six constraints [54] and takes the following form:

f xð Þ ¼ x1 þ x2 þ x3

g1 xð Þ ¼ 0:0025 x4 þ x6ð Þ � 1 � 0

g2 xð Þ ¼ 0:0025 x5 þ x7 � x4ð Þ � 1 � 0

g3 xð Þ ¼ 0:01 x8 � x5ð Þ � 1 � 0

g4 xð Þ ¼ 100x1 þ 833:33252x4 � x1x6 � 83333:333 � 0

g5 xð Þ ¼ x2x4 þ 1250x5 � x2x7 � 1250x4 � 0

g6 xð Þ ¼ 1; 250; 000þ x3x5 � x3x8 � 2500x5 � 0

x1 2 1e2; 1e4½ �; x2; x3f g 2 1e3; 1e4½ �; fx4; x5; x6; x7; x8g 2 10; 1e3½ �

(A3)

The target objective value is 8000.

Wong No. 2 (P113). The P113 is a ten-variable test problem with eight constraints from Hock and Schittkowski [54] and takes the
following form:
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f xð Þ ¼ x2
1 þ x2

2 þ x1x2 � 14x1 � 16x2 þ x3 � 10ð Þ2

þ 4 x4 � 5ð Þ2 þ x5 � 3ð Þ2 þ 2 x6 � 1ð Þ2 þ 5x2
7

þ 7 x8 � 11ð Þ2 þ 2 x9 � 10ð Þ2 þ x10 � 7ð Þ2 þ 45

g1 xð Þ ¼ �105þ 4x1 þ 5x2 � 3x7 þ 9x8 � 0

g2 xð Þ ¼ 10x1 � 8x2 � 17x7 þ 2x8 � 0

g3 xð Þ ¼ �8x1 þ 2x2 þ 5x9 � 2x10 � 12 � 0

g4 xð Þ ¼ 3ðx1 � 2Þ2 þ 4ðx2 � 3Þ2 þ 2x2
3 � 7x4 � 120 � 0

g5 xð Þ ¼ 5x2
1 þ 8x2 þ ðx3 � 6Þ2 � 2x4 � 40 � 0

g6 xð Þ ¼ x2
1 þ 2ðx2 � 2Þ2 � 2x1x2 þ 14x5 � 6x6 � 0

g7 xð Þ ¼ 0:5 x1 � 8ð Þ2 þ 2 x2 � 4ð Þ2 þ 3x2
5 � x6 � 30 � 0

g8 xð Þ ¼ �3x1 þ 6x2 þ 12 x9 � 8ð Þ2 � 7x10 � 0

x 2 �10; 10½ �

(A4)

The target objective value is 40.

Three-Stage Membrane Separation (P116). The P106 is a 13-variable test problem with 15 constraints [54] and takes the following
form:

f xð Þ ¼ x11 þ x12 þ x13

g1 xð Þ ¼ x2 � x3 � 0

g2 xð Þ ¼ x1 � x2 � 0

g3 xð Þ ¼ 0:002x7 � 0:002x8 � 1 � 0

g4 xð Þ ¼ 50� x11 � x12 � x13 � 0

g5 xð Þ ¼ x11 þ x12 þ x13 � 250 � 0

g6 xð Þ ¼ 1:262626x10 � 1:231059x3x10 � x13 � 0

g7 xð Þ ¼ 0:03475x2 þ 0:975x2x5 � 0:00975x2
2 � x5 � 0

g8 xð Þ ¼ 0:03475x3 þ 0:975x3x6 � 0:00975x2
3 � x6 � 0

g9 xð Þ ¼ �x5x7 þ x1x8 þ x4x7 � x4x8 � 0

g10 xð Þ ¼ �1þ 0:002 x2x9 þ x5x8 � x1x8 � x6x9ð Þ þ x5 þ x6 � 0

g11 xð Þ ¼ �x2x9 þ x3x10 þ x6x9 þ 500x2 � 500x6 � x2x10 � 0

g12 xð Þ ¼ �x2 þ 0:9þ 0:002ðx2x10 � x3x10Þ � 0

g13 xð Þ ¼ �x4 þ 0:03475x1 þ 0:975x1x4 � 0:00975x2
1 � 0

g14 xð Þ ¼ �x11 þ 1:262626x8 � 1:231059x1x8 � 0

g15 xð Þ ¼ �x12 þ 1:262626x9 � 1:231059x2x9 � 0

x1; x2; x3f g 2 0:1; 1½ �; x4 2 1e� 4; 0:1½ �; x5; x6f g

2 0:1; 0:9½ �; x7; x8f g 2 0:1; 1e3½ �; x9 2 500; 1000½ �;

x10 2 0:1; 500½ �; x11 2 1; 150½ �; fx12; x13g 2 0:0001; 150½ �

(A5)

The target objective value is 130.

Colville No. 2 (P117). The P117 is a 15-variable test problem with five constraints [54] and takes the following form:

f xð Þ ¼ �
X10

j¼1

bjxj þ
X5

j¼1

X5

k¼1

ckjx10þkx10þj þ 2
X5

j¼1

djx
3
10þj

gj xð Þ ¼ 2
X5

k¼1

ckjx10þk þ 3djx
2
10þj þ ej �

X10

k¼1

akjxk � 0; j ¼ 1;…; 5
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a ¼

�16 2 0 1 0

0 �2 0 0:4 2

�3:5 0 2 0 0

0 �2 0 �4 �1

0 �9 �2 1 �2:8

2 0 �4 0 0

�1 �1 �1 �1 �1

�1 �2 �3 �2 �1

1 2 3 4 5

1 1 1 1 1

2
66666666666666666664

3
77777777777777777775

; b ¼

�40

�2

�0:25

�4

�4

�1

�40

�60

5

1

2
66666666666666666664

3
77777777777777777775

c ¼

30 �20 �10 32 �10

�20 39 �6 �31 32

�10 �6 10 �6 �10

32 �31 �6 39 �20

�10 32 �10 �20 30

2
6666664

3
7777775
; d ¼

4

8

10

6

2

2
6666664

3
7777775

x 2 0; 10½ �

(A6)

The target objective value is 100.

QLR-P1-2 (P118). The P118 is a 15-variable test problem with
29 constraints [54] and takes the following form:

f xð Þ ¼
X4

k¼0

�
2:3x3kþ1 þ 0:0001x2

3kþ1 þ 1:7x3kþ2

þ 0:0001x2
3kþ2 þ 2:2x3kþ3 þ 0:00015x2

3kþ3

	
g1 to 8 xð Þ ! 0 � x3jþ1 � x3j�2 þ 7 � 13

g9 to 16 xð Þ ! 0 � x3jþ2 � x3j�1 þ 7 � 14

g17 to 24 xð Þ ! 0 � x3jþ3 � x3j þ 7 � 13

j ¼ 1;…; 4

g25 xð Þ ¼ x1 þ x2 þ x3 � 60 � 0

g26 xð Þ ¼ x4 þ x5 þ x6 � 50 � 0

g27 xð Þ ¼ x7 þ x8 þ x9 � 70 � 0

g28 xð Þ ¼ x10 þ x11 þ x12 � 85 � 0

g29 xð Þ ¼ x13 þ x14 þ x15 � 100 � 0

x1 2 8; 21½ �; x2 2 43; 57½ �; x3 2 3; 16½ �; x3kþ1

2 0; 90½ �; x3kþ2 2 0; 120½ �; x3kþ3 2 0; 60½ �
k ¼ 1;…; 4

(A7)

The target objective value is 730.

Cantilever Beam Design (Beam). The beam problem is a 30-
variable test problem with 21 constraints and involves minimizing
the tip deflection of a stepped cantilever beam subject to con-
straints. This problem is a modified version of the problem
included in Refs. [55] and [56], which was first proposed in
Ref. [57].

For testing the proposed algorithm, a cantilever beam with d ¼
10 steps is chosen with a P ¼ 50kN force on the tip. E ¼ 200GPa
and rallow ¼ 35� 107Pa are selected as the properties for the used
material. For each beam step, there exist three variables for the
optimization: width (bi), height (hi), and length (li) of the beam
step. Therefore, 30 input variables exist in this minimization prob-
lem and are arrayed in the following order:

X ¼ b1; h1; l1; b2; h2; l2;…; b10; h10; l10½ � (A8)

The objective is to minimize the tip deflection (d), expressed as
the summation of all the deflections [58]

d ¼
ðld

0

Px2
d

EId
dxd þ

ðld�1

0

P xd�1 þ ldð Þ2

EId�1

dxd�1 þ � � �

þ
ðl1

0

P x1 þ l2 þ l3 þ � � � þ ldð Þ2

EI1

¼ Pl3d

3E
bdh3

d

12

� 	þ P

3E
bd�1h3

d�1

12

� 	 ld�1 þ ldð Þ3 � ld
3

h i

þ � � � þ P

3E
b1d3

1

12

� 	 l1 þ l2 þ � � � þ ldð Þ3 � l2 þ l3 þ � � � þ ldð Þ3
h i

¼ P

3E

Xd

i¼1

12

bih
3
i

Xd

j¼i

lj

0
@

1
A

3

�
Xd

j¼iþ1

lj

0
@

1
A

3
0
B@

1
CA

2
64

3
75

(A9)

where P is the concentrated load, E is the material elasticity mod-
ulus, and Ii is the moment of inertia about the neutral axis. There
are “2� d þ 1” constraints in the problem, where d is the number
of steps. First, the bending stress in all d steps should be less than
the allowable bending stress (rallow). The constraints for each step
beam can be described as

6P
Pd
j¼i

lj

bih2
i

� rallow i ¼ 1; 2;…; d (A10)

In addition, the aspect ratios (AR) of all cross sections make
another set of d constraints that can be shown as

hi

bi
� AR i ¼ 1; 2;…; d (A11)

where AR is the aspect ratio. The last constraint is that the total
length of the cantilever beam should be more than a specified
value

Xd

i¼1

li � Lmin (A12)

Lmin is the minimum required length that is expected for the beam.
In brief, the minimization problem can be rewritten as

d ¼ f Xð Þ ¼ P

3E

X10

i¼1

12

x3i�2x2
3i�1

X10

j¼i

x3j

0
@

1
A

3

�
X10

j¼iþ1

x3j

0
@

1
A

3
0
B@

1
CA

2
64

3
75

(A13)

Subject to

6P

x3i�2x2
3i�1

X10

j¼i

x3j � rallow

x3i�1

x3i�2

� AR i ¼ 1; 2;…; 10

X10

j¼1

x3j � Lmin

i ¼ 1; 2;…; 10

(A14)
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AR ¼ 25 and Lmin ¼ 6m are selected as the aspect ratio and mini-
mum length for the beam. The following bounds are selected for
the variables:

0:01 m < bi < 0:05 m

0:30 m < hi < 0:65 m

0:50 m < li < 1:00 m

i ¼ 1; 2;…; 10

(A15)

The target objective value is 0.0120.

CP15. A new test problem with 15 variables and 11 constraints
[59] is introduced in this work with the following form:

f xð Þ ¼ x1ðx2 þ x3Þ
g1 xð Þ ¼ 5000x10 þ 25; 000x11 � 500x4 � 2000x5 � 0

g2 xð Þ ¼ 5000x12 þ 25; 000x13 � 500x6 � 2000x7 � 0

g3 xð Þ ¼ 5000x14 þ 25; 000x15 � 500x8 � 2000x9 � 0

g4 xð Þ ¼ x12 þ x13 � x14 � x15 þ 1000 � 0

g5 xð Þ ¼ x10 þ x11 � x12 � x13 þ 1000 � 0

g6 xð Þ ¼ �x2 þ x4 þ x6 þ x8 � 0

g7 xð Þ ¼ �x3 þ x5 þ x7 þ x9 � 0

g8 xð Þ ¼ x1ð5000x10 þ 25; 000x11 þ 5000x12

þ 25; 000x13 þ 5000x14 þ 25; 000x15Þ � 10� 1010 � 0

g9 xð Þ ¼ �x1ð5000x10 þ 25; 000x11 þ 5000x12

þ 25; 000x13 þ 5000x14 þ 25; 000x15Þ þ 8� 108 � 0

g10 xð Þ ¼ �x1

X5

i¼0

x10þi þ 450; 000 � 0

g11 xð Þ ¼ x1

X5

i¼0

x10þi � 500; 000 � 0

x1 2 10; 50½ �; x2 2 21600; 144000½ �;
x3 2 3600; 24000½ �; x4; x6; x8f g 2 1e3; 144000½ �;
x5; x7; x9f g 2 1e3; 24000½ �;

x10 2 500; 3000½ �; x11 2 1e3; 5000½ �;
x12 2 500; 4000½ �; x13 2 1e3; 6000½ �;
x14 2 500; 5000½ �; x15 2 1e3; 7000½ �

(A16)

The target objective value is 6.8� 106.
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