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ABSTRACT
Dimensional Analysis Conceptual Modelling (DACM) is a framework used
for conceptual modelling and simulation in system and product designs.
The framework is based on cause–effect analysis between variables and
functions in a problem. This article presents an approach that mobilizes
concepts from the DACM framework to assist solve high-dimensional
expensive optimization problems with lower computational costs. The
latter fundamentally utilizes theories and concepts from well-practised
dimensional analysis, functional modelling and bond graphing. Statistical
design-of-experiments theory is also utilized in the framework to mea-
sure impact levels of variables towards the objective. Simplifying as well
as decomposing followed by optimization of expensive problems are the
focuses of the article. To illustrate the approach, a case study on the per-
formance optimization of a cross-flow micro hydro turbine is presented.
The customized DACM framework assisted optimization approach con-
verges faster and returns better results than the one without. A single-step
simplification approach is employed in the case study and it returns a bet-
ter average optimization result with about only one fifth of the function
evaluations compared to optimization using the original model.
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1. Introduction

Dimensional Analysis Conceptual Modelling (DACM) is a framework developed essentially for con-
ceptual modelling and simulation in engineering systems and product design aiming to simplify and
solve engineering problems. It utilizes the well-practised theory and concepts of Dimensional Analy-
sis (DA), functional modelling and bond graphing in conceptual modelling andmodel simplification
(Coatanéa et al. 2016). Moreover, the framework employs the cause–effect logical analysis that the
human mind uses in explaining the causalities between functions and factors affecting them as dis-
cussed by Kahneman (2011). The DACM framework’s initial goal was to reduce the complexity of
modelling problems and resolve issues associated with the system and product design as early as
possible in the design process. DA theory, which has been used for more than a century in the math-
ematical modelling of various engineering and non-engineering problems (Islam and Lye 2009), is
one of the useful tools in the framework. TheVashy–Buckingham� theorem, among others, is one of
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the popular dimensional analysis tools (Barenblatt 1996; Islam and Lye 2009) utilized in the DACM
framework. The theorem supports the creation of clusters of variables that are dimensionless. The
DACM framework added to this initial theorem a supplementary benefit which allows selection of
themeaningful dimensionless clusters corresponding to the objectives of the problemunder consider-
ation. This is obtained through generating causal graphs guiding the creation of dimensionless group.
The causal graphs are generated using a combination of functional modelling and causal rules from
bond graph theory (Paytner 2000). The qualitative objective of the problem under consideration is
then propagated backward in the causal network employing different techniques and concepts in the
DACM framework, such as the mathematical machinery developed by Bhashkar and Nigam (1990).
This then allows contradictions between the variables in the problem to be detected, which in turn
helps designers obtain a better understanding of the design weaknesses and find innovative solutions
mitigating the contradictions. Moreover, the use of the statistical design-of-experiments concept,
integrated into the causal graph generated, allows the DACM framework to compute the importance
levels of different paths present in the causal graph. This, hence, provides an additional approach
to decomposing and simplifying complex, high-dimensional and multi-disciplinary modelling and
simulation problems.

On the other hand, the optimization of high-dimensional and multi-disciplinary engineering
problems is becoming computationally intensive and expensive, which is the growing challenge that
designers are facing regardless of advances in computational capabilities (Wang and Shan 2006).
Therefore, new or customized approaches should be introduced in order to tackle such challenges.
With their abilities to simplify and solve engineering problems, the techniques employed in the
DACM framework could be customized to help decompose and simplify high-dimensional optimiza-
tion problems. The customized framework could, hence, be employed to contribute in the computa-
tional cost reduction effort of the optimization of such computationally intensive high-dimensional
problems.

In this study, optimization frameworks that utilize customized DACM frameworks are developed
and presented. A customized framework decomposes and simplifies models of expensive high-
dimensional optimization problems in order to help reduce the computational costs that would
otherwise be incurred. In such frameworks, the Genetic Algorithm (GA) tool, the well-known
metaheuristic global optimization tool, in MATLABő version R2014b (Gen and Cheng 2000; The
MathWorks 2014) is deployed to carry out the optimization. To illustrate the approach, a case study
on the theoretical performance optimization of a cross-flow micro hydro turbine model is presented
using its existing mathematical equations. Accordingly, the customized procedures in the DACM
framework are presented in the next section (Section 2). The dimensional analysis theory and the
causal network construction technique used in the framework for the backward propagation of qual-
itative objectives and for the variables’ impact level designation are presented in Section 3, while
Section 4 presents the proposed optimization frameworks. The details of the case study are presented
in Section 5 followed by the results and discussions in Section 6. Finally, conclusions are drawn in
Section 7.

2. Customize DACM framework

This section presents the customized procedures in theDACM framework that are utilized to simplify
as well as decompose any existing models of optimization problems. The customized procedures of
the process can be summarized in the following few fundamental steps.

Step 1: The first step of the framework is to list down and categorize the system variables based
on the variable classification approach presented in the original DACM framework, such
as: exogenous variables, independent design variables, dependent design variables, constant
state variables, constraint variables, connecting variables, performance variables and objec-
tive variable(s) (Coatanéa et al. 2016).The independent design variables are those used as
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optimization parameters, while the exogenous variables are characteristic variables, which
usually have constant values like the constant state variables. Dependent variables are inter-
mediate variables in the model expressed in terms of the independent variables and any of
the previous variable types. On the other hand, the performance variables are the crucial
variables that have direct impacts on the objective variable(s) of the problem. Constraint
variables, as the name implies, are variables that represent relations in constraint functions.

Step 2: All variables are assigned specific node shapes and/or colours based on the associated
classifications of the system variables given in Step 1.

Step 3: Causal ordering of the variables is developed based on their causal relations.
This is the fundamental step in the DACM process. The cause–effect relations between vari-
ables presented in the formof a causal graph are defined during this phase. The various causal
rules used in developing the causal graph are derived by integrating functional modelling,
bond graph (Shim 2002) and dimensional analysis metrics (Shen and Peng 2006). Unlike
the original intent of the DACM framework, which aimed to develop new models, existing
models/empirical equations can be used and the variables’ causal relations can be presented,
as in the case study in this article.

Step 4: Associated qualitative objectives of the objective variable(s) is(are) determined and back
propagated.
The qualitative objective(s) associated to the objective variable(s) are determined in this step.
The qualitative objectives determined are then backward propagated to all variables in the
causal graph built. These qualitative objectives are described by either one of the two terms,
i.e.maximizing or minimizing.

Step 5: Contradictions are identified and located.
The process in Step 4 may generate contradictions between some of the independent vari-
ables in the causal graph (Ring 2014), which means that the resulting objective propagation,
for instance, may lead to demanding that variables respond to contradictory objectives
simultaneously (Warfield and Ring 2004). Those variables with or without contradictions
are therefore identified at this stage.

Step 6: Independent variables with contradictions are identified.
Following the process in Step 5, this step dictates the separation of the independent variables
with and without contradictions. Any variable without contradiction can now be eliminated
from the variable list in the process. The first stage simplification is carried out in this step.

Step 7: The impact level of each variables towards the corresponding output objective variable(s) in
the causal graph are computed.
This step is about computing the sensitivity of variables by carrying out a virtual design of
experiment using the low and high order of magnitudes of the variables in the problem. The
effects of the different variables impacting the performance variables, and hence the objective
variable(s), are computed and the variables are ranked according to their impact level. It later
helps to select potentially the most promising design directions. This is applied to qualita-
tively analysing and computing values to identify independent variables with relatively little
effect on the objective function. Then the second stage simplification is carried out, which
removes those optimization variables with least impact on the objective(s). Note again that
removingmeans qualitatively determining the value from the given solution space of the par-
ticular variable. The model simplification process using the customized DACM framework
is summarized using the process flowchart in Figure 1.

3. Dimensional analysis, causal network construction and impact level computation

Dimensional analysis, causal network and impact level computation are the essential theory and
concepts employed in the frameworks. In the simplification process, the first two help realize the
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Figure 1. Process flowchart of DACM framework based simplification.

backward propagation of the qualitative objective of the objective function, while the causal network
and impact level computation are utilized in the decomposition process later in the framework.

3.1. Dimensional analysis

The application of DA theory is wide spanning in physics and engineering (Barenblatt 1996; Matz
and Krempff 1959; Maxwell [1873] 1892). Before carrying out any detailed modelling or simulation
of engineering problems, the complexity can be reduced by employing DA (Bridgman 1963), which
abides by the dimensional homogeneity principle. The latter principle is the most familiar princi-
ple in the theory of dimensional analysis. In the most familiar dimensional notation, for instance,
force is represented as M · L · T−2. Dimensional representations like this one are a combination of
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mass (M), length (L) and time (T). The famous expression of Newton’s 2nd law, F = m · a, with F
(force), m (mass) and a (acceleration), is constrained by the dimensional homogeneity principle. By
carrying out a dimensional check on both sides of Newton’s 2nd law, the principle can be verified.
Vashy–Buckingham’s � theorem is one of the widely used tools in dimensional analysis. It was first
stated and proved by Buckingham in 1914 (Barenblatt 1996). The theorem is employed to identify
the number of independent dimensionless variables that can characterize a given physical situation.
By grouping the variables into dimensionless primitives, the complexity of the problem can then be
simplified. Apart from that, the theorem is utilized in the framework to characterize the effect of the
factors towards the objective of the problem under consideration. According to the theorem, every
formulation that takes the form y0 = f (x1, x2, x3 . . . , xn) can take the alternative form:

π0 = f (π1,π2,π3, . . . ,πn), (1)

where πi are the dimensionless products. The form is obtained as a result of the Vashy–Buckingham
theorem. For a typical function, dimensionless numbers basically take the product form shown in
Equation (2):

πk = yi · xαij
j · xαil

l · xαim
m , (2)

where yi represents the performance variables expressed as Equation (3), αij represents the exponents
and xi represents the repeating variables.

yi = πk · x−αij
j · x−αil

l · x−αim
m . (3)

The dimensionless form of the primitive presented in Equation (2) is utilized in the DACM frame-
work. In their article, Coatanéa et al. (2016) discussed the concept of the DACM framework in
detail. In the concept, the relation between the performance and repeating variables is shown by the
sign of the exponents, αij. The signs are obtained from the partial differential equation relations, as
shown in Equation (4). The equation relations, in turn, are obtained by employing the mathemati-
cal machinery developed by Bhashkar and Nigam (1990). This means that the performance variable
(yi) increases or decreases if αij is negative or positive, respectively, with respect to the corresponding
repeating variable (xi). This concept provides a powerful approach to propagating qualitative opti-
mization objectives in the causal network and hence identifying any objective contradictions between
the variables.

δyi
δxi

= −αij
yi
xi
. (4)

3.2. Causal network construction

Causal network (graph) construction, which is based on the basic principles of functional modelling
and bond graphing, is one of the important components that the DACM framework incorporates.
It is introduced in the framework to solve the issue of selecting sensible combinations of dimen-
sionless primitives for a set of variables in a specific engineering context (Coatanéa et al. 2016).
The dimensionless primitives created using the Vashy–Buckingham theorem suffer from such fun-
damental limitation. In the framework, the causal network facilitates backward propagation of the
qualitative objectives back to the design and optimization variables. In addition, the framework uti-
lizes the network to structure the correlations between variables and to display the importance levels
of the variables in the impact level computation process. The causal networks are derived in such
a way that nodes with different shape and/or colours that represent different variable categories are
connected by links with arrowheads. The arrowheads of the links direct to those variables that are
affected by the variables at the foot nodes. Mathematical models with addition/subtraction relations
are shown by +/− signs at the intermediate positions of the links, respectively.
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Figure 2. Simple causal network (a) causal relation between force, mass and acceleration, (b) objective propagation.

In order to demonstrate the process better, consider the causal relation in the famous Newton’s
second law expression, F = m · a, discussed above. Force (F) is measured in newtons (N), mass (m)
is measured in kilograms (kg) and acceleration (a) is measured in metres per second squared (m/s2).
To understand the objective propagation principle, the dimensionless product of the relation between
F,m and a, Equation (5), is constructed, which shows how the causal network and the dimensionless
primitives are related:

πF = Fm−1a−1. (5)

A causality is not embedded in such equations but in practice engineers usually consider certain
causalities in the equations. This causality is usually influenced by how certain systems behave. For
example, if a system uses a mass displacement with a certain acceleration to generate a force, then
it embeds a certain causality associated with the function and behaviour of the system. The causal-
ity network for such behaviour is built as illustrated in Figure 2(a). Assuming an initial objective of
maximizing the force and employing the relation in the partial derivative, Equation (4), the relation
returns a result as given by Equation (6):

δF
δm

= 1
F
m

δF
δa

= 1
F
a
.

(6)

The result shows a direct relation of the objective variable and the impacting variable. Thus, the
objective propagation is straightforward, as shown in Figure 2(b). Therefore, the framework proposes
the utilization of dimensional analysis theory and its concepts in the causal graph construction, dis-
cussed above, to construct the network, hence to backward propagate the qualitative objectives of the
objective functions.

3.3. Impact level computation

Weighting impact levels of the variables towards the objective variable(s) in the system is the other
crucial procedure in the customized DACM framework-based decomposition process. It is used to
rank the impact levels of each design variables and paths on the performance/objective variables. As
discussed in Step 7 of Section 2, the impact level calculation helps to identify less important vari-
ables so that their values can be determined through qualitative evaluation. Therefore, as discussed
in Section 4, the variables are then removed from the causal network and will not be considered as
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optimization parameters, at least in the single-step optimization framework. This leads to the decom-
position of the problem variables into two clusters: important and less important variable clusters.
Design-of-experiment methodologies are employed in the sampling and impact level computation
process. In the current study, the well-known Taguchi method is utilized for the impact level calcula-
tions. This method is relatively simple to use compared to other variance methods, such as ANalysis
Of VAriance (ANOVA) (Ghani, Choudhury, and Hassan 2004; Phadke 1989). The Taguchi method
utilized follows a two-level design-of-experiment approach. For instance, assume y = f (x), where x
is a set of a total number of n input variables. Implementing the L8 two-level orthogonal array design
sample allocation method for n variables, according to the Taguchi method, the effect of any of the
variables xi (i = 1, 2, 3, . . . , n) on y is computed using the expression given in Equation (7):

Effectxi on y =
∑for xi at high level

j=0,...,t/2 y at level 2

t/2
−

∑for xi at low level
j=0,...,t/2 y at level 1

t/2
, (7)

where n is the number of variables and t is the number of experiments. The weight of the effect of xi
on y is then computed using Equation (8):

Weightxi on y = Effectxi on y∑n
k=1 Effectxk on y

. (8)

The weights computed using Equation (8) show the importance levels of each link between two
causally dependent variables in a causal network. Thus, based on the limits set by the designer, the
weights calculated are used to cluster the variables in different categories.

4. Customized DACM-framework-based optimization frameworks

This section presents the proposed optimization frameworks developed based on the theories and
concepts discussed in the previous sections. The customized DACM-framework-based optimization
frameworks providemechanisms that utilize the simplified or both simplified and decomposedmod-
els, and thereby enable the computational costs that might be incurred by the optimization process of
the original models to be reduced. The mechanisms also enable better optimization outcomes to be
returned, particularly on expensive high-dimensional problems. As described in the previous sec-
tions, some optimization/design variables are cut out from the optimization parameter list based
on their characteristics. This is done as a result of the objective propagation process and based on
their impact level towards the objective. Two different optimization frameworks that are based on the
simplified and decomposed models are presented in this section. The first framework is based on a
simplified model after the first stage simplification process, while the second framework is based on
models after the simplification process followed by the decomposition process, i.e. after the first- and
second-stage processes.

The optimization frameworks presented in this section are called (a) single-step optimization,
and (b) two-step optimization frameworks. These frameworks are summarized and highlighted in
Figures 3(a,b), respectively. The single-step optimization framework computes the optimal solution
utilizing the simplified model as a function of the variables retained from the simplification process
only, while the two-step optimization sequentially utilizes models as a function of both the variables
remaining from the simplification process as well as the less important variables cut out as a result
of the impact level computation in the second stage decomposition process. In this study, the gen-
eral optimization problem is formulated as given in Equation (9) and programmed in MATLAB’s
scripting tool. The GA optimization tool is utilized in both frameworks. Figure 3 shows optimization
flowcharts. In the flowcharts, a general optimization problem f (xu, xr) is assumed, where xu repre-
sents the important variables remained un-removed after the simplification process and xr represents
the less important variables removed in the second stage decomposition process. The upper and lower
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Figure 3. Customized DACM based optimization frameworks (a) single-step and (b) two-step.

bounds of the variables are given by xlbu � xu � xubu and xlbr � xr � xubr :

Function : Y = f (xr , xu)

Objective : Max Y

Find : (xr , xu).

(9)

During the optimization process, the GA algorithm generates an initial population from the variables’
design space, while cross-over and mutation techniques are used to generate the populations of the
next generations until they converge to the global optimum value. Unlike the two-step optimization,
the single-step optimization is expected to reduce the computational cost by a large amount. However,
in some cases, it might compromise the magnitude of the optimization results.

5. Case study: cross-flow turbine

In this study, the proposed framework is employed to enhance the theoretical performance of cross-
flow turbine design utilizing existing empirical equations based on reports presented by the master
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minds behind the original design of such a turbine type (Mockmore andMerryfield 1949). Improving
the power output is the objective of the optimization process. The power output is given as a function
of selected geometric variables.Optimization using the original and simplifiedmodels is carried out to
measure the efficiency of the proposed optimization framework. In this case, the number of function
evaluations is used to measure the performance of the methods.

The cross-flow turbine under consideration is amicro cross-flow hydro turbine. The configuration
of such turbines is designed in such a way that the water entering the inlet passes through a nozzle and
strikes the turbine’s rotor, as illustrated in Figure 4. The rotor converts the fluid power to mechanical
power. As such turbines are assumed to operate at atmospheric pressure, they are considered to be of
impulse turbine type. Thus, the theoretical power transfer computation is carried out through changes
in the fluid’s kinetic energy. There are two stages of power generation in cross-flow turbines. At the
first stage, the water jet leaving the nozzle strikes the rotor from the outer periphery and then leaves
the blade. Thereafter, it crosses the inner space until it strikes the blade again at the second stage from
the inner periphery before it exits the turbine through the outlet.

In the theoretical analysis, the fluid velocity leaving the nozzle,Vin, is calculated from a given fluid
head using Equation (10):

Vin = Cv

√
2gH, (10)

where H is the head of the fluid at the inlet of the nozzle, g is the acceleration due to gravity, and Cv

is a dimensionless constant that accounts for losses across the nozzle. As shown in Figure 5(a), the
blades in the rotor are placed around the periphery of circular discs. The size and shape of the profile
of these blades and the radial size of the supporting discs are the important design parameters of the
rotor that determine the turbine’s power generating capacity (Desai and Aziz 1994; Sammartano et
al. 2013). Once the water jet has left the nozzle, the rotor design is responsible for mechanical power
generation. The entire turbine is represented by mathematical models that are developed employing

Figure 4. T15-300a cross-flow turbine geometric model.
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Figure 5. (a) Blade profile and trajectory of the water jet crossing the turbine’s rotor; (b) velocity triangles at each point.

the concept of Euler’s turbo-machinery equation. They are derived based on the following three basic
assumptions:

• the turbine is a pure impulse turbine,
• the head difference between the inlet and exit due to the height difference is negligible, and
• the gravitational load on the stream inside the turbine is negligible.

When the water stream issued by the nozzle reaches the outer periphery of the rotor, it will have a
velocity magnitude of Vin (from Equation 10) and it makes an angle of attack α from the tangent to
the periphery. The extracted velocity triangles at points 1, 2, 3 and 4, are shown in Figure 5(b).

In the analysis, the magnitude and direction of the relative velocities are dependent on the geom-
etry of the rotor. In the derivation, it is assumed that, at the entry of the rotor, the angle that the
relative velocity makes with the tangent to the periphery should be equal to the blade angle, i.e.
β1 = β . The theoretical velocity and torque equations at the 1st and 2nd stages are then given by
Equations (11)–(18). From the velocity triangles, the velocity components of the fluid at each location
of the rotor are computed using the relations given by Equations (11)–(14):

Vu1 = Vin cosα1 (11)

Vu2 = V2 cosα2 = U2 = ωr (12)

Vu2 = U2 = U3 = Uu3, (13)

where α1 = α is the angle of attack; U2 and ω are the rotor’s peripheral and angular velocities at
its entry, respectively. Vin = V1, where V1–V4 represent the actual fluid jet velocities at locations
1–4, respectively. From the velocity diagram, and by applying the cosine law, the relation for Vu4, is
expressed by Equation (14). In this derivation, it is taken thatW4 ≈ φW1, which is based on one of
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the commonly used assumptions for the turbine type (Durgin and Fay 1984; Pereira andBorges 2014).

Vu4 = φ(

√
V2
1 + U2

1 − 2V1U1 cosα1) cosβ1 − U1, (14)

where φ is an empirical coefficient that accounts for losses inside the blades between points 1 and 4.
A study by Mockmore and Merryfield (1949) reported an approximate value of φ ≈ 0.98. The same
article used a limiting expression, Equation (15), in the design to avoid back pressure while the water
jet is cross-flowing across the rotor:

z2 + z tan2 β − tan2 β = 0, (15)

where z is the square of the radius ratio, (r/R)2, and from the study in the article, it is also indicated
that, for optimum efficiency, the value of z should fall in the range 0.6–0.69.

Based on Euler’s turbo-machinery equation, which is based on the conservation of impulse from
Newton’s 2nd law, Equation (16), the theoretical power of cross-flow turbines is computed. It was
assumed that the empirical coefficient, φ, also accounts for the loss due to the entrained fluids by
some of the blades.

F = ρQ
∫ 1

2
dv = ρQ(V1 − V2). (16)

Employing the expression in Equation (16) and multiplying it by the corresponding torque arm, the
torque transfers of the two stages are given by Equations (17) and (18):

T12 = ρQ(RVu1 − rVu2) (17)

T34 = ρQ(RVu3 − rVu4), (18)

where T12 and T34 are the torques at the 1st and 2nd stages, and ρ and Q are the density and volume
flow rates of the fluid, respectively.

The total theoretical output power, Pout, is then given by Equation (19):

Pout = (T12 + T34)ω. (19)

The independent design variables from the mathematical models are summarized in Table 1. The
minimumandmaximumbounds of the turbine diameters are obtained from the configuration design
manual of T15-300a, one of the T-series cross-flow turbine design model (ENTEC 2014; Protel Multi
Energy 2012). Considering the design geometry, roughly half of the blade’s height (±0.051m) is used
to determine the bounds from the actual value, except for the upper bound of the outer diameter. The
actual outer diameter (D= 2R) and inner diameter (d= 2r) values from the turbine design document
are 0.302 and 0.204mm, respectively. Moreover, a 10m water head at a rotational speed of 350 rpm
and a flow rate of 1m3/s are retained as initial design conditions in the entire computation.

Additionally, similar parameter values in the GA tool setting are used in all runs and the same
workstation is employed for the computation in all cases.

Table 1. Lower and upper bounds of the optimization parameters.

Variable Lower bound Upper bound

α (degrees) 15 23
β (degrees) 20 30
D (m) 0.251 0.302
d (m) 0.153 0.257
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6. Results and discussion

This section discusses the optimization results from both the original and the customized DACM
assisted optimization approach presented. After carrying out a dimensional analysis of the individual
expression equations in the theoretical analysis (see Table A1 in Appendix), the variable types are
identified and associated with node shapes and colours based on the concept in Step 2 of Section 2.
The list of variables, their category, associated nodes and colour designations are shown in Table 2.

Moreover, a causal graph example using the empirical equation of one of the dependent variables,
T12 in Equation (17), is shown in Figure 6. This graph gives a clear view of how the overall system
causal network is constructed. In the graph, T12a and T12b represent the first and the second terms in
Equation (17), respectively.

6.1. Simplification result based on customized DACM framework

Based on the procedures, the causal graph of the model is constructed and the qualitative objective is
propagated backward as shown in Figure 7. Thereafter, the independent variables with and without
contradictions are identified based on the procedures in Steps 3 and 4 of Section 2. In this case, it has
been observed that two independent variables (α,β) have no contradicting objectives. Thus, the only
two independent optimization variables remaining are the two geometric parameters (D, d), which

Table 2. Variable categories, nodal shape and colour designations.

Category List of variables Nodes and colour

Objective variable Pout
Exogenous variables g,H,Q, ρ,ω
Dependent variables Vin, Vu1, Vu2, Vu3, Vu4, Vu4a , Vu4b , T12,

T12a , T12b , T34, T34a , T34b , Ttot
Independent variables α,β ,D, d
Constant state variables Cv ,φ
Connecting variables cosα, cosβ
Constraint variable z

Figure 6. Causal graph example.
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Figure 7. Objective propagated causal graph.

Figure 8. Weighted causal graph based on the experimental design method.

show contradictions. The functions that represent the theoreticalmodel are thus simplified (1st stage).
Initial simplification of the causal graph with weighted links is illustrated in Figure 8.

Depending on the complexity of the problem, one can further simplify problems by identifying
and removing variables with little impact on the objective. The weights of the variables in the system
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Figure 9. Final simplified causal graph.

are computed by applying the Taguchi method. After carrying out impact level computation, the
remaining variables are maintained, because according to the values they are quite as important as
the others. Therefore, the final simplified causal graph from the customizedDACMapproach is shown
in Figure 9.

6.2. Optimization results based on the customized DACM simplification framework

Based on the 1st stage simplifiedmodel, the optimization process is given as a function of the remain-
ing two geometric variables only, since the variables that describe the entering fluid property have no
contradictions. The simplified optimization problem of the theoretical hydraulic power model in the
single-step optimization method has the form shown in Equation (20):

Function : Pout = f (D, d)

Objective : Max Pout
Find : (D, d).

(20)

This implies that, in this single-step optimization, the values of the two variables (α,β) are determined
qualitatively according to the propagated objectives and the values of the other two (D, d) are searched
in the optimization process from their given design spaces. The performance optimization results,
employing the global optimization tool GA in MATLAB, are illustrated in Table 3.

Table 3. Optimization results of the original model and a model from the single-step approach.

Design variables Pout Computation results

Model α β D d Targ. Val. Obj. Func. Val. No. of Func. Evals

Original 15 25.232 0.3020 0.2423 5,7891 57,891.0 10,971.8
Single step 15 30 0.3009 0.2139 57,891 63,660.1 2,132.8
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In the case study, the optimization result from the original model is used as a target value, stopping
criterion, in the single-step optimization. Keeping similar settings in all computations, the optimiza-
tion results in Table 3 are the average result values from 10 independent runs in each case. The results
show that the number of function evaluations in the single-step optimization of the simplified model
is reduced to less than one fifth of the total number of function evaluations of the original model.
Moreover, the single-step optimization returned a better objective value than the optimization result
from the original model. Some of the reasons could be that: (i) in the single-step model, the variables
without contradiction are qualitatively given the possible optimum values from the bounds based on
the propagated objectives; and (ii) the number of optimization parameters is reduced, which gives
the tool a better exploration capacity on the remaining parameters.

7. Conclusions

The article presents optimization approaches to how to simplify and decompose expensive high-
dimensional optimization problems using a customizedDimensional Analysis ConceptualModelling
(DACM) framework. It presents two different optimization frameworks that use the customized
DACM framework. It also highlights the benefits of the customized DACM assisted optimization
frameworks introduced using a case study.

In the case study, the DACM assisted optimization returned better outcomes in simplifying the
problem and reducing the number of function evaluations, thereby reducing the associated com-
putational costs. In both the original and the simplified models of the case study, the well-known
metaheuristic global optimization tool, the genetic algorithm, is employed in MATLAB. The total
number of function evaluations in the single-step optimization of the simplified model has been
reduced to about one fifth of the total number of function evaluations of the optimization of the orig-
inal model. Moreover, it returned an average objective value better than the average value obtained
from optimizing the unsimplified original model. Thus, the customized DACM based simplification
and optimization enables the associated computational costs to be reduced while returning a better
objective result. An automated framework for the approach is therefore recommended for expensive
high-dimensional optimization problems.
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A. Appendix. Variables’ nomenclatures and their dimensional analyses
Table A1 shows the nomenclature of the variables and their dimensional analyses, wherein M represents mass, L
represents length and T represents time in the dimensional analysis representation.

Table A1. Nomenclature of the variables and their dimensional analyses.

Parameters Nomenclature Dimensional analysis

Output power Pout ML2T−3

Fluid head at inlet H L
Fluid flow rate Q L3T−1

Density of fluid ρ ML−3

Torque at 1st stage T12 ML2T−1

Torque at 2nd stage T34 ML2T−1

Fluid inlet (attack) angle α –
Angle between relative velocityW and
peripherals U

β –

Second stage blade outlet angle (blade
back side tangent angle)

γ –

Outer diameter of rotor disc D L
Inner diameter of rotor disc d L
Inlet velocity Vin LT−1

Peripheral component of actual velocity V1 LT−1

Rotational speed ω T−1

Gravitational acceleration g LT−2


	1. Introduction
	2. Customize DACM framework
	3. Dimensional analysis, causal network construction and impact level computation
	3.1. Dimensional analysis
	3.2. Causal network construction
	3.3. Impact level computation

	4. Customized DACM-framework-based optimization frameworks
	5. Case study: cross-flow turbine
	6. Results and discussion
	6.1. Simplification result based on customized DACM framework
	6.2. Optimization results based on the customized DACM simplification framework

	7. Conclusions
	Acknowledgements
	Disclosure statement
	References



