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ABSTRACT

Reliability based design optimization (RBDO) algorithms typically assume a designer’s prior knowledge of
the objective function along with its explicit mathematical formula and the probability distributions of
random design variables. These assumptions may not be valid in many industrial cases where there is limited

information on variable variability and the objective function is subjective without mathematical formula.

A new methodology is developed in this research to model and solve problems with qualitative objective
functions and limited information about random variables. Causal graphs and design structure matrix are
used to capture designer’s qualitative knowledge of the effects of design variables on the objective.
Maximum entropy theory and Monte Carlo simulation are used to model random variables’ variability and
derive reliability constraint functions. A new optimization problem based on a meta-objective function and
transformed deterministic constraints is formulated, which leads close to the optimum of the original

mathematical RBDO problem.
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The developed algorithm is tested and validated with the Golinski speed reducer design case. The results
show that the algorithm finds a near-optimal reliable design with less initial information and less

computation effort as compared to other RBDO algorithms that assume full knowledge of the problem.

1. INTRODUCTION

Design optimization helps to minimize costs or maximize performances of to-be
developed artifacts and systems. Optimization algorithms normally search for the
optimal values of design variables under a group of constraints. Design variables include
controllable design variables and uncontrollable surrounding parameters [1].

Reliability based design optimization (RBDO) algorithms solve optimization
problems with random design variables and probability constraints. The majority of RBDO
algorithms operate under the assumption that users have prior knowledge of random
variable distributions and mathematical formulas of the objective function and
constraints [2]. This prior knowledge is often not available in most industrial applications.
Therefore, RBDO methodologies with insufficient information have been developed [3].
The term “insufficient information” was restrained to indicate the lack of information
about probability distributions of random variables.

In this research, the authors propose an extended scope of limited information
assumption to include both the objective function and the distributions of random design

variables, in order to address a wider range of real-world RBDO problems.
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Limited information of the objective function means the designer has limited
knowledge of the objective function and its mathematical formula. However, he/she
normally has adequate experience in the qualitative logical relationships between the
design variables, intermediate variables, and the objective function. An example of this
case is the customer satisfaction maximization problem, where the objective function is
gualitative human perception with no proved mathematical expression. However,
designers can involve focus groups and gain an understanding of the causal relationship
between design variables such as product features and the customer satisfaction
objective. The RBDO involving qualitative objective function has not been investigated in
the literature to the best of authors’ knowledge.

Limited information on random design variables’ variability means that the
probability distribution of design variables is unknown due to either limited available
historical data [4] or non-standard variability shown by historical records.

There are various approaches in literature to deal with limited information of
variable variability, including the following:

- Assume all design variables and functions of them are normally distributed.

Many RBDO algorithms have been developed based on this assumption [5,6].

- Apply interval analysis using the known range of each design variable [7-12].

- Apply possibility based design optimization where the possibility theory is

utilized to derive alternative possibility constraint formulas [4,13,14].
- Apply evidence theory where the epistemic design variables variability is

described by determining a basic probability assignment (BPA) for each
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interval of the variable range. BPA expresses the degree of evidence
supporting the claim that the variable lies in the corresponding interval [15].
- Apply Bayesian RBDO where design variables are divided into epistemic and
aleatory based on the available knowledge. A number of trials are performed
on the aleatory variable to construct a probability table. The reliability of each
constraint is then calculated for each value of the probability table [16].

In this research, the authors exploit the available information about variable
variability using Shanon’s maximum entropy theory to represent variables randomness
with bounded uniform and triangular distributions.

If constraints are expressed as functions of random and bounded design variables,
they would be random and bounded functions as well. There is no general formula for
probability distributions of functions of triangular and uniform random variables. This
problem has received limited attention in the literature probably due to the mathematical
complexity. Archived research in this area is limited to simple special cases like summing
a number of uniform random variables [17], summing two triangular random variables
[18], and the product of two triangular random variables [19]. Alternatively, the authors
in this research explore the probability distribution characteristics of constraint functions
using Monte Carlo simulation. These characteristics are used to construct constraint
functions’ approximate cumulative distribution formulae, which are used to transform
probabilistic constraints into a deterministic form.

In this research, causal graphs [20] are used to model the available knowledge of

logical relationships between design variables and the objective function. A meta-
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objective formula is derived to represent the known logical relationships. The developed
meta-objective formula combined with the transformed constraints represents a meta-
alternative deterministic formulation of the RBDO problem.

This paper is composed of five sections. In Section 2, meta-objective function
development from qualitative knowledge is described. In Section 3, transforming RBDO
probabilistic constraints into a deterministic form is explained. In Section 4, a case study
of the developed algorithm applied to Golinski gear reducer is shown. The results are
compared to a number of previously developed RBDO algorithms that assume full
knowledge of the problem. Section 5 includes the conclusion and prospective applications

of the developed algorithm.

2. Meta-objective function formulation
In this section, the proposed algorithm for deriving the meta-objective function is
explained with application to a simple example, given the qualitative logical relationships
between design variables and the objective function.

1- Logical relationship could be modeled by the strength of the causal effect
between two entities. Since we assume that there is no available quantitative
information about such a relationship, an expert’s subjective evaluation would
be used. A popular 5-level Likert scale [21-25] is employed in this research to

quantify the effect as shown in Figure 1:
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Figure 1 The 5- Level Likert scale

Where “5” indicates an extreme effect, “0” indicates no effect, and numbers in-
between indicates effect strengths between the two extremes. The positive sign indicates
a positive effect and the negative sign indicates a negative effect. It is assumed that all
effects are monotonic in the known design range similar to the typical assumption of 2-
level Design of Experiments [26].

During this step, the cause-effect relationships between variables and the
objectives are defined in the form of a causal graph [27]. A simple example explaining the
combined application of Likert scale and a causal graph is shown in Figure 2 where
designer experience indicates that x; has an extremely positive effect on x3; x, has a
strong negative effect on x3; x; has a very strong positive effect on objective Y; and x;

has a moderate positive effecton Y.
n +5

° -3

Figure 2 An example of causal graph.

2- The above-indicated effects are represented in a design matrix 4 as shown in

Figure 3 where the diagonal elements a; ; corresponding to design variables x;
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(x1 and x, in this case) are set to 1 and all other diagonal elements are set to

0. Elements a; j represent the effect of variable x; on variable x;.

X1 | X2 | X3 y

x |1]o0o| 5] 4

Figure 3 Design matrix derived from causal graph for the example.

3- Each design variable x; affects response y directly and indirectly through
paths emanating from x; leading to y. Therefore, the total effect of x; on
response Y is quantified by the sum of weight products of all paths originated
from x; leading to the response y.
For example, in Figure 2, x; affects y through two paths. Therefore, its effect=
[+4] + [(+5) X (+2)] = 14. While x, affects y through one path, its effect on Y is
[(=3) x (+2)] = —6.

Mathematically, the total effect of design variables on y could be calculated by a
sequence of matrix multiplications of design matrix A by the effect vector X until

AX =X )

Where the effect vector is set initially to be the last column of matrix 4 (corresponding to
the target response y) and it is updated at each step with the matrix multiplication result
as shown in Figure 4. From Eq. (1), the final effect vector X is A’s Eigen vector

corresponding to Eigen value 1.
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In case there is no feedback loop, the design matrix will assume a triangular form.
Therefore, it has Eigen values equal to the values of its diagonal elements [28], 0 and 1 in

this case. Consequently, the loop in Figure 4 is convergent.

Multiply design
matrix * effecet
vector

New effcet
vector

Resultant vector elements
corresponding to non-design
variables are all 0s

Figure 4 Eigen vector calculation steps.

Applying the above algorithm to our example:

1 0 5 4][4 14
0 1 =3 offo] _|[-6
0 0 0 2ff2] (o

o o o ollo 0

1 0 5 4][14 14
0 1 =3 of|-6|_|-6
00 0o 2(lo] |o
0 o 0o ollLo 0

4- The final effect vector is normalized based on the absolute values of its

elements, therefore the normalized effect vector is:
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0.7

5- Assuming the design variable ranges are known to the designer, normalized
variables x, are formulated such that the range of all normalized variables is
[0,1].

6- The meta-objective function is formulated as follows:

1 k n
, 1-x; Xi
y=—= &+ Y - 1) o
i=1

i=k+1
Where:
X, to xy, Positive effect design variables
Xr+1 to x, Negative effect design variables
a; Normalized effect (weight) corresponding to x;, where
= llall =1
n Number of design variables

Eq. (2) is constructed in a way such that y satisfies the following conditions:

- Therangeis [0,1].

- The maximum corresponds to the situation that all positive effect design
variables are at their maximum value (1) and all negative effect design
variables are at their minimum value (0).

- The minimum corresponds to the situation that all positive effect design
variables are at their minimum value (0) and all negative effect design

variables are at their maximum value (1).
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Applying Eq. (2) to the above example,

y = % (0.777%1 +0.3%2 — 1)
3)
= (0.77"% + 0.3%2 — 1)

It is to be noted that that y value is not related to the value of actual response
variable y but both of them are optimized (maximized/minimized) at the same values of
design variables under the assumed conditions. Therefore, the current approach does not
calculate the optimum objective function value but it determines the optimal design
variable settings.

The calculated meta-objective optimum value has no physical meaning. However
the meta-objective function is constructed in a way so that the function is optimized at
the same setting of design variables that optimize the actual objective function.
Moreover, since its range is in [0 1] for all problems, its global unconstrained optimum is
already known (0 in case of minimization and 1 for maximization). In the presence of

constraints, the constrained optimum will shift away from these optima, from which one

can assess the effect of different constraints on the attainable design optimum.

3. Limited information about variable variability

In this section, we explain how the triangular distribution can be used to
approximately model the probability distribution of constraint functions in case there is
limited information about design variables and parameters variability. Consequently, we
explain an algorithm for transforming the probabilistic constraints into deterministic

forms using the triangular distribution cumulative formula.

10
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RBDO constraints take the form pr(g(X) < 0) = @(—p) where B is the reliability
index [29-31]. Since design variables x;'s are random variables, g(X) would be a random
function. Precise calculation of pr(g(X) < 0) requires knowledge of g(X)’s probability
distribution which is unattainable in most practical cases.

In this research, we assume random variables are of the following two types:

- Design variables: the designer can set the variable at a desired setting.
However, the actual value changes randomly around the set value within a
known range/tolerance.

- Design parameters: they are surrounding uncontrolled parameters. However,
the designer knows the range of its variation.

According to the maximum entropy theory [32], the probability distribution which best
represents a current state of knowledge is the one with the largest entropy. Ref. [33]
stated that “the maximum entropy distribution is uniquely determined as the one which
is maximally noncommittal with regard to missing information, and that it agrees with
what is known, but expresses maximum uncertainty with respect to all other matters.”
Based on this theory, we assume random design variables follow a triangular distribution
with the mode at the set value and minimum and maximum at the lower and upper limits
respectively; we also assume that design parameters follow a uniform distribution within
the known range.

Constraint functions, in this case, would be random functions of triangular and

uniform random variables. There is no general explicit mathematical approach to deduce

11

Downloaded From: http://asmedigitalcollection.asme.org/ on 08/17/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



Downloaded From:

the probability distribution of such functions. Therefore, the authors used a Monte Carlo
simulation to investigate the characteristics of the constraint functions’ distribution.

Three symmetric triangular and two uniform random variables are generated;
x,~Tri(1,3,5) , x,~ Tri(6,7,8) , x3~ Tri(912,15), x,~ wunif(15,20) ,and
xs~unif (20,30) . The probability distributions of four arbitrary functions of these
random variables are explained in Figure 5. For each function, the maximum, minimum,
and function value corresponding to triangular variables’ modes and the mid-point of
uniform variables are indicated. The functions’ distributions reveal that:

- Functions variability is bounded and has a single mode.

- The mode is approximately at the indicated function value corresponding to

triangular variables’ modes and uniform random variables’ mid-points.

Dotplot of x1+x2+x3+x4+x5 Dotplot of x142+x242+x3% 3 +sgrt(x4*x5)

... ..
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Faxch gymbol reprasentivp to VTR obaratons fger yota rgrmers oo = DY ctmaeTerd
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log x1 +log x2 +...+log x5 Dotplot of x1+x2+x3/(x4*x5)
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Figure 5 Probability density functions of various functions of assumed random variables.
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According to the maximum entropy theory and given the above two observations,
the authors assume that constraint functions approximately follow a triangular
distribution with the following parameters:
e The minimum af is the function value corresponding to all variables with
positive effect are at their minimum value x;  and all variables with negative
effect are at their maximum value x;, .

e The maximum bf is the function value corresponding to all variables with
positive effect are at their maximum value x;, and all variables with a negative
effect are at their minimum value x; .

e The mode ¢ is the function value where all the design variables are at their

. . . . XigtXi,
mode x;_ and design parameters at their mid-point, —

These assumptions are validated by comparing the assumed triangular cumulative
distribution curve against the actual simulated cumulative distribution curve for the four
arbitrary functions as shown in Figure 6. The figure shows that the triangular distribution

is an acceptable approximation for the actual probability distribution.

13
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Figure 6 Cumulative distributions comparison between the actual and triangular distribution.

Following the standard cumulative density function for a triangular distribution,

P(G(X) < 0)can be expressed as shown in Eq. (4):

P(G(X) < 0)

( 0 0 < G(X),

(=G(X)a)? "
_ ) G600, = 600G ~ (X)) GX), <0<GX)
B (6(X))?
a GX)<0<G(X
G, —CW(CM, —Gay) CH=0=60
) 1 0> G(X),

Where G(X), and G(X), are the lower and upper limits of G (X) respectively. They are
calculated by replacing x; in G(X) by either "x; + d;" or "x; — d;" according to the
direction of effect of x; on G(X) as explained in Table 1 where d; is the half variability

range of the random variable x;.

14
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Table 1 G(X), and G(X); formulation method.

Effect of x; on G(X)
Increasing Decreasing
G(X)q x; —d; x; +d;
G(X)p x; +d; x; —d;

Assuming x;'s have a monotonic effect on G(X) within the design range, the
effect direction is determined by the constraint formula. In cases of complicated
formulas, calculating the value of constraint function corresponding to the design
variables’ upper and lower limits can determine the effect direction.

The last step is replacing each x; in G (X) formula with its equivalent in terms of X,
using Eq. (5) such that G(X) becomes a function of positive variables only. Effect
direction of any design variable would not be affected by such variable transformation in

the constraint formulas.

x;p = X, + %, (X, — X)) )

Once all constraints are transformed into the deterministic form using Eqgs. (4) and

(5), the optimization problem could be solved like traditional deterministic optimization
problems with any suitable solver.

The developed approach is motivated by following observations in cases of limited

information on design variables’ variability:

= Design variables are practically not unbounded with continuous distributions.
Their variability is typically within a pre-known expected range.
*= Some RBDO research assumes G (X) is normally distributed if all x;'s are normally

distributed [5,6]. This assumption may not be valid in all cases.

15
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= Some RBDO techniques require a starting design point which is assumed to be
reliable [34]. This assumption may not be guaranteed especially in early design
stages.

= RBDO normally involves double loop optimization, which demands intensive
computation. Recently, research shows that this drawback has been considerably
alleviated [31,34-36]. The proposed approach only involves single loop
deterministic optimization and the required computational is fundamentally

reduced.

4. Case study

Golinski speed reducer [37] as shown in Figure 7 has been used as a case study to
test many RBDO algorithms with weight minimization and physical constraints.

In this research, we assume the designer does not know the objective function
formula. We will construct the causal graph with relational weights according to assumed
logical relationship knowledge. The reliability based optimization problem will be solved
using the proposed approach. The results are compared with the reported results from

[29] which assumes full knowledge of the objective function formula.

Figure 7 Golinski speed reducer configuration.

The design variables are:

16
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X4 Gear width

X, Gear module

X3 No. of teeth of the pinion
X4 Shaft 1 length

Xs Shaft 2 length

Xg Shaft 1 diameter

X7 Shaft 2 diameter

Although x, and x5 are discrete and integer variables respectively, we assume all
the variables are continuous for simplicity with known design range and variability as

shown in Table 2 ( we use the same values given in [29] for fair comparison):

Table 2 Variables design range and variability for the speed reducer case.

Variable Design range Variability

X, [2.6,3.6] cm Tri(d; — 0.015,d;, d; + 0.015)
Xz [0.7,0.8] cm Tri(d; — 0.015,d;, d; + 0.015)
X3 [17,28] Tri(d; — 0.015,d,, d; + 0.015)
X4 [7.3,8.3] cm Tri(d; — 0.015,d;, d; + 0.015)
Xs [7.3,8.3] cm Tri(d; — 0.015,d;, d; + 0.015)
Xe [2.5,3.9) cm Tri(d; — 0.015,d;, d; + 0.015)
X7 [5.0,5.5] cm

Tri(d; — 0.015,d;, d; + 0.015)

Assuming that we don’t know the mathematical expression between the variables
and the objective, the logical relationship is represented by a causal graph shown in Figure
8. The indicated causal weights are proposed by the authors based on general mechanical

engineering knowledge. For example, it is assumed that the pinion diameter is positively

17
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strongly affected by both the pinion module, x, and the number of teeth, x5. Therefore
these two links assume +3 weight. While the pinion shaft diameter x, extremely
negatively affects the pinion mass, therefore this link weight is set to —5. We used nine
intermediate variables to express the logical relationships between the design variables

and the objective function.

[+3]
[+3] [+5]
gear. di
3] o Ppinion
mass
23] 3]

[
(5]

S0

b gear
grooves

total mass

»| Dearing 1

1*5] T\ mass
bearing 2
mass

Figure 8 Causal graph for speed reducer weight reduction problem.

The causal graph is represented by a 17 X 17 (7 design variables+ 9 intermediate

variables+ 1 objective function) design matrix as shown in Figure 9.

18
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pinion P.| gear P. | pinion | gear2 | empty | shaft1 | shaft2 |bearing1|bearing2| total

Diam. | Diam. | mass | mass |gearvol.| mass | mass | mass | mass | mas

x1 x2 x3 x4 x5 X6 xI Al 72 yl y2 y3 v4 ¥5 b y7 f

width x1 1 0 0 0 0 0 0 0 0 3 & 3 0 0 0 0 0
module x2 0 1 0 0 0 0 0 3 0 0 0 5 0 0 0 0 0
pin. no. teeth x3 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0
shaft 1 length x4 0 0 0 il 0 0 0 0 0 0 0 0 2 0 0 0 0
shaft 2 length x5 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0
shaft 1 diam X6 0 0 0 0 0 il 0 0 0 -5 0 0 5 0 5 0 0
shaft 2 diam x7 0 0 0 0 0 0 1 0 0 0 5 0 0 5 0 5 0
pinion P. Diam. 71 0 0 0 0 0 0 0 0 3 5 0 0 0 0 0 0 0
gear P. Diam. 72 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0
lpinion mass yl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
gear 2 mass y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
empty gearvol. | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5
shaft 1 mass v4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
shaft 2 mass ¥5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
bearing 1mass | y6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
bearing2 mass | y7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
total mass f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9 Design matrix for the speed reducer.
Applying the algorithm shown in Figure 4 to the design matrix yields the effect

column shown in Table 3 (the second column):

Table 3 Variable weights before and after normalization.

Variable Effect Normalized
column Weight
X1 3 0.007772
X2 155 0.401554
X3 180 0.466321
X4 4 0.010363
X5 4 0.010363
X6 20 0.051813
X7 20 0.051813
X8 0 0
0 0
X17 0 0

Normalizing the resultant effect column yields the weights shown in Table 3 as the

third column.
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Applying Eg. (2) to the resultant weights yields the following meta-objective

function:

1 s s s _»
y= ﬁ(0'0077721 "1 4040155477 + 0.466321' 7% + 0.010363"

©)
+0.010363"7*% + 0.051813" ¥ + 0.051813" %" — 1)

Where Xx; to x, are the normalized design variables formulated as shown in

Eqg. (5).

This optimization problem has 11 reliability constraints as follows [29]:

Pr{g;(X) >0] < (=)

Where: 27 1 _ 3975 —
91 = ¥ x2x, 92~ X, X2X?
193X} ) 1.93x3
9= ¥x, X 94 = XX, X2
745X, \
( 4 > +16.9 x 106
_ N\ ek — 1100
95 Q 0.1x3
745X. \
( 5 > +157.5 x 106
_ N\ ek — 850
o = 0.1X3
g7 = X1X3 — 40 X1
—5__1
Js X,
N _ 15X +19
9o = X, dio = X,

20
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L1X, +19
Xs

911 =

The reliability constraints are transformed into deterministic forms using Eq. (4).

For ease of understanding, transformation of g, constraint is shown here. All other
constraints are transformed similarly.

All of X, , X5, and X3 have a negative effect on g,. Therefore, according to Eq. (4)

and Table 1, Pr[g,(X) < 0] is written as follows:

P(g,(X) < 0)

( 0 0< gl(X)a
(=9:(X)o)? 0
@0, a®awm -y =00l
- (G, 700 <0< 6,0,
(9:1(X)p — 91(X)a)(g1(X)b - 91(X))
\ 1 0= g,(X)p
Where:
X), = 27 1
91X)a = F70015)(X, + 0.015)2(X, + 0.015)
27
g1(X) = X1X—22X3 -1
27

X)p = -1
9180 = 4 0.015) (X, — 0.015)2(X; — 0.015)

The derived deterministic meta-optimization problem with the objective function
as shown in Eq. (6) and constraints derived similarly to Eq. (7) is solved using an
evolutionary optimization algorithm. The resultant optimum normalized design variables
are transformed back to the actual design space. For comparison, the actual objective

function value corresponding to the derived optimum settings is calculated using the
21
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guantitative formula given in [29]. Table 4 summarizes the optimization results with a

comparison to the results of different RBDO methods.

Table 4 Optimization results comparison.

Design variables

X1 X, X3 X, Xz X X,
Reliability index approach | 3,038.58 | 3.577 | 0.7 17 7.3 | 7.754 | 3.365 | 5.302
Performance measure

approach+
Single loop single vector | 3,048.45 | 3.589 | 0.7 17 7.3 | 7.783 | 3.369 | 5.307
Sequential optimization
and reliability 3,040.02 | 3.578 | 0.7 17 7.3 | 7.764 | 3.366 | 5.302
assessment
Convex linearization 3,040.61 | 3.58 0.7 17 7.3 |7.764 | 3.366 | 5.302
Globally convergent
method of moving 3,045.84 | 3.591 | 0.7 17 7.3 | 7.762 | 3.367 | 5.308

asymptotes

Qualitative limited

information (this work)

RBDO technique Objective

3,039.97 | 3.578 | 0.7 17 7.3 |7.764 | 3.366 | 5.302

3,109.37 | 3.585| 0.7 |17.37| 7.3 |7.761 | 3.365 | 5.301

The results show that the developed qualitative limited information method
arrives at the similar optimal design. Note since this method assumes continuous for
X3 (the number of teeth), the optimal objective value seems a bit off. After setting this
value to 17, the objective function value is almost the same as the other methods.

The accuracy of the derived method depends on the quality of the designer
knowledge of the logical relationship between variables. In this work, we assume the
designer is rational, which means, (s)he will not assume a positive effect for a design
variable that actually has a negative effect or vice versa. The sensitivity of the proposed
method to the quality of prior knowledge and the variability of design variables are to be

investigated in future work.
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5. Conclusion
Reliability Based Design Optimization (RBDO) problems with qualitative objective
function and limited information on variable variability are solved in this study utilizing
causal graphs, design structure matrix, and maximum entropy theory concept. The
designers’ qualitative knowledge is used to develop a meta-objective function. Random
variables and constraint functions are modeled based on the maximum entropy theory as
uniform and triangular random variables with known bounds and estimated mode.
The developed algorithm is validated by a case study of the speed reducer design.
The results are compared to different RBDO techniques. The comparison shows that the
developed approach is accurate in calculating the optimum design point even when
compared to published results in the literature with known analytical objective function
and variable distributions.
The developed algorithm opens the door for the application of RBDO in situations
where only qualitative information is available. Such application thus could potentially

extend to non-engineering fields such as sociology, marketing, and so on.
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