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With the increasing design dimensionality, it is more difficult to solve multidisciplinary
design optimization (MDO) problems. Many MDO decomposition strategies have been
developed to reduce the dimensionality. Those strategies consider the design problem as
a black-box function. However, practitioners usually have certain knowledge of their
problem. In this paper, a method leveraging causal graph and qualitative analysis is
developed to reduce the dimensionality of the MDO problem by systematically modeling
and incorporating the knowledge about the design problem into optimization. Causal
graph is created to show the input–output relationships between variables. A qualitative
analysis algorithm using design structure matrix (DSM) is developed to automatically
find the variables whose values can be determined without resorting to optimization.
According to the impact of variables, an MDO problem is divided into two subproblems,
the optimization problem with respect to the most important variables, and the other with
variables of lower importance. The novel method is used to solve a power converter
design problem and an aircraft concept design problem, and the results show that
by incorporating knowledge in form of causal relationship, the optimization efficiency is
significantly improved. [DOI: 10.1115/1.4042342]
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1 Introduction

Multidisciplinary design optimization (MDO) has been widely
applied in engineering to improve the performance of complex
systems, which are often high-dimensional problems. When the
dimensionality increases, the optimization search space grows
exponentially, which makes sampling in the vast space intractable.
With the high-fidelity simulation models, such as computational
fluid dynamics and finite element analysis involved in MDO, the
computational cost of finding an optimal solution rises signifi-
cantly. Therefore, reducing the dimensionality of the problem is a
natural strategy to tackle this challenge. One of the strategies is to
decompose the complex system into several subsystems of lower
dimension [1]. Different decomposition strategies, including con-
current subspace optimization (CSSO) [2], collaborative optimiza-
tion (CO) [3], and bilevel integrated system synthesis (BLISS)
[4], have been developed in the last decades. These methods have
been employed in many different engineering applications [5–9].
However, the number of discipline function calls in those methods
is still large. In Ref. [7], CO and CSSO were tested with several
numerical benchmarks and the results show that even for low-
dimensional problems, CO and CSSO need thousands of disci-
pline function calls. BLISS was used to solve an aircraft concept
design problem. For different variations of BLISS methods,
although the number of system analysis was reduced to be around
10, the number of total discipline calls is around 400 and espe-
cially BLISS/RS2 required more than 1000 discipline calls [4].
For MDO problem with time-consuming simulation models, the

cost of running an optimization using such distributed MDO strat-
egies is often unacceptable.

A common feature of existing decomposition strategies is that
they usually treat the design model as a black-box function, which
means that the designer or practitioner does not know any
information about the design problem. In practice, however, prac-
titioners usually have some knowledge of the design problem but
this knowledge is not utilized when solving MDO problems.
Generally, in order to perform MDO, one needs to gather the fol-
lowing information: variables involved in the problem and the
input–output relationships between them, the unit of each variable
and sometimes the mathematical functions of the problem. By
analyzing the existing knowledge about an MDO problem, some
hidden valuable information can be extracted, which can help to
reduce the dimensionality of the optimization problem. For exam-
ple, if one can find that the objective is a monotonic function with
respect to some design variables in a simply bounded design
space, the values of such design variables can be determined and
the dimensionality of the optimization problem can thus be
reduced. Therefore, how to systematically incorporate knowledge
and information of the design problem into optimization becomes
an interesting research topic in order to improve the efficiency of
MDO. This paper develops an approach for extraction and exploi-
tation of latent knowledge for solving MDO problems.

The dimensional analysis concept modeling (DACM) frame-
work [8,9] was developed to gather and organize knowledge asso-
ciated with an engineering problem during the conceptual design
phase. In this paper, the causal graph techniques of the DACM
framework are employed to capture the hidden information sup-
porting reduction of the dimensionality of MDO problems. The
variables and objectives of the optimization model are identified
before optimization but there is no mathematical expression of the
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input–output relationship. A causal graph is constructed based on
practitioners’ understanding of the MDO problem, which illus-
trates the cause–effect relationship between variables and objec-
tive(s). It has been defined in Ref. [8] that variables without
contradictions are those variables having a monotonic effect on
the objectives, whose values can be determined at its lower or
upper bounds. On the other hand, variables with contradictions
are those influencing an objective through different routes in the
causal graph with conflicting effects. For instance, increase of
these variables may cause the increase of the objective via one
route but the drop of the objective via another route. In this work,
a qualitative analysis algorithm is developed to separate these two
groups of variables. The values of variables without contradictions
can be determined without resorting to optimization. Thus, the
dimensionality of the original problem can be reduced. A design
structure matrix (DSM) [9]-based method is developed to auto-
matically find the variables leading to no contradiction. A second
simplification of the MDO problem is conducted to separate
between the variables influencing significantly on the MDO prob-
lem and variables having a limited impact on the MDO problem.
The impact of each variable is calculated and used to divide the
entire optimization problem into two subproblems, one with
important variables and the other with less important variables. As
a result, the dimensionalities of both subproblems are reduced as
compared with the original problem. Note that if all the design
variables contain contradictions and are deemed important, the
proposed method cannot reduce the dimensionality of the
problem.

This paper is organized as follows: Details of the proposed
dimension reduction method are described in Sec. 2. A numerical
problem is employed to present the process of the dimension
reduction method. The proposed dimension reduction method is
applied to a power converter design problem and an aircraft con-
cept design problem in Sec. 3. Section 4 concludes the paper and
discusses about future research.

2 Dimension Reduction Method

A causal relationship-assisted dimension reduction method is
developed in this section. By building a causal graph,
input–output relations between variables in the numerical model
are illustrated. Dimensional analysis with qualitative analysis
provides a method to detect source of contradictions. This is sup-
porting the reduction of dimensionality before performing optimi-
zation. The DSM, constructed according to the causal graph, is
employed to automatically find the variables leading to no contra-
diction. Calculation of the impact of variables helps to divide the
optimization problem into subproblems. The details of the pro-
posed method are described in this section.

2.1 Overall Process. The overall process of our proposed
dimension reduction method includes constructing causal graph,
performing qualitative analysis, removing variables, calculating
the weight of each link, simplifying causal graph, and performing
two-stage optimization. The steps of the method are described as
follows:

Step 1. Construct a causal graph based on cause–effect relation-
ship. A causal graph is an oriented graph showing the causal rela-
tions between variables. Figure 1 is an example of a causal graph.
In the graph, the nodes represent variables, the arrows give the
input–output relations, and labels “þ1” and “�1” represent how
the input influences the output. For example, “þ1” on the arrow
from A to C means that C increases when A increases. It should
be noted that the input and output in one link should have mono-
tonic relation. This can be achieved by defining design space care-
fully. Additionally, the more elaborate the causal graph is, the
simpler the causal relations will be in each link and the easier it
will be to achieve monotonic relations for each link. Also, values
of the variables in an engineering problem are usually larger than
zero, which helps to avoid nonmonotonic links to some extents.

Coatanea et al. [8] give a process of constructing a causal
graph. First, all the fundamental variables are listed and located in
a functional structure that represents the functional flow of the
system. Then, the causal rules are employed to define the causality
for each variable. Finally, all the variables are linked together to
form the causal graph. The causal graph should not miss important
links, and this requirement can be satisfied if the designers are
familiar with the design problem. Once the causal graph is con-
structed, the links in the causal graph can be checked by giving a
perturbation on each design variable. If the causal graph can
reflect the changes on each intermediate variable and objective,
the causal graph can be regarded as correct.

Step 2. Perform a qualitative analysis. The causal graph is used
to detect variables with or without contradictions. By multiplying
the labels on the arrows of one route, the relation between the
input and the final output of the route can be detected. For the
example in Fig. 1, if multiplying “þ1” on the arrow from A to C
by the “þ1” on the arrow from C to F, the multiplication result is
“þ1,” which means that F is monotonically increasing with
respect to A. If all the relations between design variables and the
objectives are calculated, contradictions of the variable can be
found according to the multiplications. In Fig. 1, A influences F
via C or D (i.e., �1 via D and þ1 via C). A is generating a contra-
dictory influence on F if we consider both routes and
multiplications.

On the other hand, F is a monotonically increasing function
with respect to B no matter if it traverses through D or E. There-
fore, A has a contradiction and B is a variable without contradic-
tions. The vector of design variables is represented as x. After
qualitative analysis, the design variables can be divided into two
parts, variables with contradictions (xc) and variables without con-
tradictions (xuc). This qualitative analysis can be performed by
checking the causal graph manually. However, in optimization, all
the steps are desired to be executed automatically. Thus, a DSM-
based qualitative analysis method is proposed to fulfill the require-
ment and will be described in Sec. 2.2 in more detail.

Step 3. Determine values of xuc and remove them from the
causal graph and the set of design variables. After qualitative anal-
ysis, the way design variables in xuc influence the objective can be
confirmed. Thus, xuc can be regarded as a constant variable set at
its lower (or upper) bounds. Taking Fig. 1 as an example, B has
no contradiction and thus decrease of B leads to the decrease of
the objective F. If a minimum F is desired, B should be set at its
lower bound value. Thus, the optimal value of B is determined
before optimization. Now, the design variable set of the optimiza-
tion problem becomes xc only. Variables without contradictions
can thus be removed from the causal graph and from the optimiza-
tion variable set.

Step 4. Calculate the weight of each link. The causal graph can
be further simplified by considering the weight of each link. In
this step, following the DACM methodology, the Taguchi method
is used to calculate the weight of each link [8]. Section 2.3
describes the approach in detail. Before calculating the weights,
the range of every variable, including design variables and state

Fig. 1 Causal graph example
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variables, is required. There exist two methods to determine those
ranges. First, for engineering problems, the recommended range
of variables can be found from references and it can be used in the
sensitivity analysis. Second, the range can be determined by sam-
pling a certain number of random points and calculating the
responses of the samples. The maximal and minimal values can
be used as the upper and lower bounds, respectively.

Step 5. Simplify the causal graph according to calculated
weights. The link whose weight is lower than a threshold is
regarded as a low importance link and is removed from the causal
graph. The threshold can be selected according to the weights
obtained from step 4. The main principle of threshold selection is
that the threshold should not be too high to miss important links,
nor too low to be ineffective. A higher threshold will let one
regard more variables as unimportant variables then may increase
the number of iterations in the two-stage optimization, and remov-
ing more variables from the important variable set may reduce the
accuracy of the optimization. Generally, the threshold is no larger
than 15%. In this paper, 10% is selected based on the different
case studies that we have tested during the development of the
approach. It provides a good balance between number of iterations
and accuracy of the optimization. The value can be adjusted if
needed.

After removing those deemed less important links, some varia-
bles may not affect the objective at all. Those removed variables
are represented by xun. On the other hand, contradictions of some
variables (represented by xunc) may disappear due to removal of
the less important links. Then, in a similar way to step 3, values of
such variables can be determined according to the qualitative
analysis. Thus, the design variables xc (variables with contradic-
tions) can be divided into two parts, the kept variables with con-
tradictions xke, and less important variables xre, which includes
both xun and xunc.

Step 6. Use a two-stage optimization process to obtain the final
optimal solution. The original optimization problem is divided
into two subproblems: one with respect to xke and the other with
respect to xre.

Then the two optimization problems are optimized separately.
Results of the two optimization problems are combined together
to form the final optimal solution. Details of the two-stage optimi-
zation process are shown in Sec. 2.4.

2.2 Qualitative Analysis Based on Design Structure
Matrix. The qualitative analysis process is designed to find the
variables without contradictions and it has to be executed auto-
matically for optimization. Thus, a novel DSM-based qualitative
analysis method is developed in this section.

In the DSM-based qualitative analysis, two matrices, [A] and
[A1], are built according to the causal graph, where [A] shows the
input–output relations between each pair of variables and [A1]
gives [A] and direction of each link. For both [A] and [A1], the
first rows (columns) refer to design variables, the last row (col-
umn) is for the objective, and the intermediate variables are in
between. [A] and [A1] are n-by-n matrices, where n is the number
of entities including design variables, intermediate variables, and
the objective. For convenience and consistency with DACM
nomenclature, we refer to these entities as variables with the
understanding that the global objective is located in the last row
(column) for both [A] and [A1]. Matrix [A] uses “1” to represent
the links between two variables. If i is the input of j, then aij ¼ 1;
otherwise, aij ¼ 0. In matrix [A1], the number “þ1” and “�1” are
used to represent the relationship between the input and output. If
variable j decreases with i increasing, aij ¼ �1; otherwise,
aij ¼ þ1. We assume that the optimization problem is a single
objective problem. Thus, the last column of [A] and [A1] shows
the objective and its direct inputs. It is also possible to consider a
multi-objective problem. By checking the absolute values of ele-
ments in the last column of [A1] and [A], variables without con-
tradictions can be detected. Details of DSM-based qualitative

analysis method are shown as follows: Sec. 2.5 gives a numeric
example for better explanation.

Assume that the number of design variables is nVar and the
number of intermediate variables is nInt, then n ¼ nVarþ
nIntþ 1, for a single objective problem.

Step 1. Find coupled variables. In practice, if a “1” appears
under the diagonal in DSM, one can recognize that there is a feed-
back link. However, these feedback links do not necessarily repre-
sent a loop and those links that do not represent loops should be
moved above the diagonal to simplify the DSM. This can be
accomplished via a simple strategy modifying [A]. The rows of
[A] are checked one-by-one. If there is a “1” element under the
diagonal, i.e., aij ¼ 1; i > j, variable j is re-ordered to be before i.
The number of “1” elements under the diagonal (i.e., nf) is
counted after one movement, which is compared with the smallest
number of “1”s under the diagonal (nf*). If nf < nf �, nf � ¼ nf
and the sequence of the variables is recorded. If the value of nf �

does not change for a given time (i.e., five iterations), the modifi-
cation will stop and the sequence with the smallest number of
feedback is used to reconstruct [A] and [A1] and to obtain [A’]
and [A1’]. The location of the “1” element under the diagonal is
used to give the coupled variables. For example, if aij ¼ 1 and
i > j, then variables i and j are coupled. The coupled variables are
stored in a 2-by-nf � matrix FB, each column of which is shown as
one pair of coupled variables.

Step 2. Calculate the number of links in the longest route. To
detect the contradictions of the ith design variable, all the routes
from ith design variable to the objective should be identified. The
longest route should be determined and the other shorter routes
are checked at the same time. In some cases, the coupling rela-
tions make it difficult to find the longest route because of the pres-
ence of the feedback loop. Thus, the longest route is considered in
this paper to be obtained by going through each feedback link
once and only once.

The number of links in the longest route contains two parts: one
is the number of links (nNoC) in the longest route without feed-
back and others are the number of links (nCi; i ¼ 1; 2; :; nf �) in all
loops. Summing nNoC and nCi; i ¼ 1; 2; :; nf � together, the final
number of links (nMax) can be obtained as follows:

nMax ¼ nNoCþ
Xnf �

i¼1

nCi (1)

To count the number of links in the route without feedback, the
“1” elements under the diagonal in [A’] are turned to “0” to obtain
matrix [Anoc]. Warfield [10] used the number of multiplications
to represent the links between two variables. It reported that multi-
plying matrix [A] by itself k times and if ai;n is nonzero, it means
that variable i influences the objective through a route with kþ 1
links. [Anoc] is multiplied by itself, and when the objective col-
umn contains nonzero elements, the number of multiplication
(mNoc) is recorded. After multiplying n� 1 times, the largest
mNoc gives the number of links, i.e., nNoC¼mNocþ 1.

After multiplying a DSM matrix itself several times, if nonzero
elements exist in the diagonal of the DSM matrix, it means there
is at least one loop in the problem and a nonzero element means
that this variable goes through the loop once and back to itself.
Therefore, once a loop has been detected, by counting the times of
multiplications before nonzero elements appear in the diagonal,
the number of links in the loop can be identified [10].

For the ith coupling loop, the two coupled variables are FB1;i

and FB2;i. The variables from FB1;i to FB2;i are used to construct a
small DSM with one coupling loop, [Ci]. Between FB1;i and FB2;i,
there are nL ¼ FB2;i � FB1;i links. The matrix [Ci] is multiplied
by itself nLþ 1 times, and when c1;1 ¼ cnLþ1;nLþ1 ¼ 1, the number
of multiplication (mCi) is recorded. After nLþ 1 times of multipli-
cation, the largest mCi gives the number of links in the coupling
loop, i.e., nCi¼mCiþ1.
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Step 3. Find the variables without contradictions. After obtain-
ing the number of links nMax, matrices [A’] and [A1’] are multi-
plied by themselves ðnMax� 1Þ times to check the
contradictions.

In general, at the kth multiplication, if ak
i;n (i ¼ 1;…; nVar) is

nonzero, which means that variable i has impact on the objective
through kþ 1 links, the absolute value in the objective column

jak
i;nj and ja1k

i;nj are compared. The value jak
i;nj shows that there are

ak
i;n

��� ��� routes from variable i to the objective, which contain (kþ 1)

links. If jak
i;nj 6¼ ja1k

i;nj, it means that there is at least one route

through which the objective changes in directions as compared
with other routes. Thus, the variable i has contradictions. If

jak
i;nj ¼ ja1k

i;nj for all the multiplications, the sign of nonzero a1k
i;n

in every multiplication is checked. If the signs of a1k
i;n are differ-

ent, that means through different routes, the objective changes in
directions. Therefore, the variable i has contradictions. Otherwise,

if the sign of a1k
i;n are the same for all the multiplications, variable

i has no contraction. After multiplying [A’] and [A1’] by them-
selves nMax times, variables without contradictions can be picked

out. The sign of a1k
i;n indicates the relations between variable i

and the objective. Assuming that the objective is to be minimized,

if the sign of a1k
i;n is “þ,” it means that the variable i should be set

at the lower bound value; otherwise, the upper bound value should
be selected.

2.3 Weight Calculation. For the impact of each design vari-
able on the objective is different, a practitioner often focuses on
important variables. By selecting important variables, the problem
dimensionality can be reduced further. Thus, the weight of each
link in the causal graph is calculated in the proposed method, and
the original optimization problem is divided into two subproblems
according to weights of the links. Several methods have been
developed to calculate the weights, including analysis of variances
[11], principle component analysis [12], and so on. Taguchi
method [13,14], one of the design of experiment tools, offers a
simple and systematic approach to calculate the impact of each
input on the output. In this paper, a two-level Taguchi approach to
compute impact is selected to calculate the weight of each link
Assume that an equation is as follows:

y ¼ f xð Þ; x ¼ fx1; x2;…; xtg (2)

There are t inputs of y in Eq. (2): y can represent for example an
intermediate variable and xi represent the variables influencing y.
First, the sample points are generated according to the Taguchi
orthogonal arrays. In this paper, it is assumed the boundary of
design variables and the intermediate variables are appropriately
selected so that the output is monotonic or nearly monotonic with
respect to each input. Therefore, a two-level Taguchi design has
the capability to capture the impact of each input. The two-level
Taguchi orthogonal array selected is shown in Table 1.

“1” means that the variable takes the value of the lower bound
and “2,” the upper bound. For the equation shown in Eq. (3), eight
sample points are generated according to Table 1 and the
responses are calculated at each sample. The symbol i represents
the columns of the table. The effect of xiði ¼ 1; 2;…; nVarÞ to y
can be calculated as follows:

effectxi�y ¼

Xfor xi at level high

j¼1 to m

yLevel2

m=2
�

Xfor xi at level low

j¼1 to m

yLevel1

m=2
(3)

where m is the number of experiments. In this case, m¼ 8. Then,
the effect is normalized by Eq. (4) and the normalized effect is the
weight of link xi to y.

weightxi�y ¼
Effectxi�yXn

k¼1

Effectxk�y

(4)

For problems of variables equal to or less than seven, as shown in
Table 1, only eight samples are needed. One sample corresponds
to one system analysis, or a complete simulation of the whole sys-
tem. With these samples, one can perform the Taguchi computa-
tion of weights for each link, and thus the added cost of function
evaluations is eight. For problems of larger scale, the added
expense is determined by the specific orthogonal array that one
chooses. The size of the orthogonal array is dependent on the
number of variables in the problem. Note that although only the
influence of each single input is calculated, the cross effect of
the inputs is considered in Taguchi method because the sampling
array is designed to consider the cross effect by employing as
small number of sample points as possible.

Each link represents the influence of a variable on another vari-
able and instead of calculating the importance of a variable to the
final objective, the weight of every single link in the causal graph
is estimated. By removing the links with low importance, the
causal graph can be simplified. Then, another qualitative analysis
is performed on the simplified causal graph to find variables with-
out contradictions as well as variables that have no links to the
objective. Optimal values of these variables can thus be deter-
mined and removed from the set of important optimization
variables.

2.4 Two-Stage Optimization Process. After the second sim-
plification, design variables are divided into two parts, the impor-
tant variables xke and the less important variables xre. Then, two
optimization problems are constructed shown as Eqs. (5) and (6)
and optimized sequentially

Problem 1

find xke

min f ðxke; xre; xucÞ
s:t: gðxke; xre; xucÞ � 0

xlb
ke � xke � xub

ke

(5)

Problem 2

find xre

min f ðxre; xke; xucÞ
s:t: gðxre; xke; xucÞ � 0

xlb
re � xre � xub

re

(6)

In both problems, xuc is fixed at the value determined by the quali-
tative analysis. When optimizing problem 1, xre, xunc are fixed at
the determined values, while the value of xke is fixed at the

Table 1 The Taguchi orthogonal array for t 5 7

Column

Experiment number 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2
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optimal solution obtained from problem 1 when optimizing prob-
lem 2. In the following tests, MATLAB function fmincon(.) is
employed to solve the optimization problem. Other optimization
methods can also be used to solve the subproblems. The stopping
criterion is checked at the end of each problem. If the optimum is
not found yet after optimizing problem 2, the sequential optimiza-
tion process will be performed again. For the purpose of compar-
ing the efficiency with other methods, we need to fix the quality
of the solution. Therefore, if the relative difference between the
optimal results from problem 1 (or problem 2) f �1 ðor f �2 Þ and the
given optimal results f � is less than a given tolerance (i.e., 10�4),
the optimization process terminates. The relative difference is
defined as follows:

e ¼ j f
� � f �1 j

f �
(7)

The sequential optimization method may be stuck into a subopti-
mum when dealing with multimodal problems. In the proposed
decomposition method, it should be noted that the unimportant
variables include two categories, the variables without contradic-
tions and the variables having less impact on the objective. For
the variables without contradictions, the optimal solution can be
accurately determined according to the qualitative analysis results.
By separating the rest of variables into unimportant and important
variables using knowledge also reduces the risks of falling into a
suboptimum.

2.5 Numerical Example. A simple numerical problem is
employed in this section to explain how the proposed method
works. The expression of the problem is as follows:

Find x ¼ ½A;E;H; I�
min G ¼ 10DF�2 þ 100C2

where;F ¼ 2C1:8D�2E�2:2H2:5

D ¼ 2I�1:5 � C4

C ¼ 0:5E0:3B�1:2

B ¼ 2AD

s:t: 1 � A;E;H; I � 2

(8)

Step 1. The causal graph (Fig. 2) is constructed according to
Eq. (8). The design variables are drawn at the left side and the
objective is located at the right side. As shown in the causal graph,
a coupling loop involved B, C, and D exists in the problem. The
labels “þ1” and “�1” are assigned above the arrows according to
each equation. Take the equation C ¼ 0:5E0:3B�1:2 as an example,
C increases when E increases or when B decreases. Thus, a “þ1”
is located above the arrow from E to C and a “�1” is added above
the arrow from B to C.

Step 2. Qualitative analysis based on design structure matrix is
performed to find the design variables without contradictions. The
two matrices [A] and [A1] are constructed as shown in Tables 2
and 3. The first four columns refer to design variables and the last
column G shows the objective. For example, B is the output of A
and the input of C, the elements (A, B) and (B, C) are “1” in [A].
The labels “þ1” and “�1” above the arrows in the causal graph
are used to construct [A1]. The process of DSM-based qualitative
analysis is presented step-by-step.

Step 2.1. The coupled variables are found in this step. As shown
in Fig. 2, there is one loop involving B, C, and D. In Table 2, non-
zero elements exist under the diagonal (boldfaced). For detecting
the loop, the sequence of the columns in matrix [A] is changed.
First, the element (D, B) is detected and to remove the “1” under
the diagonal, variable D is moved to the front of B. Then, the
modified [A] (named as [A’]) is shown in Table 4, and the number
of “1”s under diagonal is one in the modified matrix, i.e., nf � ¼ 1.
Repeating this step five times, the nf � does not change during the
repeating process. Thus, the new sequence of the variables and
objective is

Seq ¼ ½A;E;H; I;D;B;C;F;G� (9)

The modified [A’] and [A1’] are listed in Tables 4 and 5. There is
one loop (“1” in boldface) detected through this step and the pair
of the coupled variables are D and C.

Fig. 2 Causal graph of a numerical example

Table 2 Matrix [A] for the numerical example

A E H I B C F D G

A 0 0 0 0 1 0 0 0 0
E 0 0 0 0 0 1 1 0 0
H 0 0 0 0 0 0 1 0 0
I 0 0 0 0 0 0 0 1 0
B 0 0 0 0 0 1 0 0 0
C 0 0 0 0 0 0 1 1 1
F 0 0 0 0 0 0 0 0 1
D 0 0 0 0 1 0 1 0 1
G 0 0 0 0 0 0 0 0 0

Table 3 Matrix [A1] for the numerical example

A E H I B C F D G

A 0 0 0 0 þ1 0 0 0 0
E 0 0 0 0 0 þ1 �1 0 0
H 0 0 0 0 0 0 þ1 0 0
I 0 0 0 0 0 0 0 þ1 0
B 0 0 0 0 0 �1 0 0 0
C 0 0 0 0 0 0 þ1 �1 þ1
F 0 0 0 0 0 0 0 0 �1
D 0 0 0 0 11 0 21 0 þ1
G 0 0 0 0 0 0 0 0 0

Table 4 Modified matrix [A’] for the numerical example

A E H I D B C F G

A 0 0 0 0 0 1 0 0 0
E 0 0 0 0 0 0 1 1 0
H 0 0 0 0 0 0 0 1 0
I 0 0 0 0 1 0 0 0 0
D 0 0 0 0 0 1 0 1 1
B 0 0 0 0 0 0 1 0 0
C 0 0 0 0 1 0 0 1 1
F 0 0 0 0 0 0 0 0 1
G 0 0 0 0 0 0 0 0 0
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Step 2.2. The number of links in the longest route is counted in
this step. The “1” element in (C, D) in matrix [A’] is turned to be
“0” to construct the matrix [Anoc] (as shown in Table 6). [Anoc]
is multiplied by itself eight times and at the first, second, third,
and fourth times, the objective column contains nonzero element.
Thus, nNoC ¼ 5.

In the example, only one coupling exists, so one matrix [C] is
built. As shown in Table 4, “1” showing the feedback appears in
the element (C, D). Thus, variables from D to C in Table 4 (i.e.,
D, B, and C) are used to construct the matrix [C], which is shown
in Table 7. In matrix [C], the two coupled variables, D and C, are
located at the first and third columns, so nL ¼ 3� 1 ¼ 2. [C] is
multiplied by itself three times and at the second multiplication,
c1;1 ¼ cnLþ1;nLþ1 ¼ 1, which means nC¼ 3. Thus, the total num-
ber of links (nMax) in the longest route is nMax ¼ nNocþ nC
¼ 5þ 3 ¼ 8. As one can see from Fig. 2, the longest path is A-B-
C-D-B-C-D-F-G with eight steps.

Step 2.3. The variables without contradictions are detected in
this step because nMax ¼ 8, [A’] and [A1’] are multiplied by
themselves seven times. Table 8 illustrates that for the four design
variables, the values in the objective column in [A’] and [A1’]
after each multiplication.

In Table 8, G is the element value in the objective column in
[A’] while G1 gives the values in the objective column in [A1’] in
every multiplication. As shown in Table 8, the absolute values of
G and G1 are the same for every variable in every multiplication.
Now, if checking the first and second multiplications for variable
E, it can be found that in the first multiplication, G1 has the sign
“þ” while in the second multiplication, G1’s sign is “�”, which
means that through two steps the increasing of E can increase G
while the increasing of E may decrease G when going another
route with three links. Therefore, a contradiction exists in variable
E. The same applies to A and I when checking the second and the
third multiplications. On the other hand, for H, only at the first
multiplication, the values in (H, G) and (H, G1) are nonzero and
the absolute values are the same, which means that H only influen-
ces objective G through one route with two links. Therefore, H
has no contradiction. Thus, A, E, and I are variables containing
contradictions while H is without contradictions, i.e., xuc ¼ H and
xc ¼ ½A;E; I�.

Step 3. After qualitative analysis, one variable (H) is found
without contradictions. Since the sign of element ðH;G1Þ is “�,”
H should be set at the upper bound value because G is to be mini-
mized. The other three variables (A, E and I) will go through the
next steps.

Step 4. The weight of each link is calculated using the Taguchi
method. The objective function G ¼ 10DF�2 þ 100C2 is taken as
an example to show the process. Because D, F, and C are interme-
diate variables, their ranges are decided by calculating the
responses of 50 random sample points. In this case, the ranges of
D, F, and C are [0.7140, 1.9848], [0.0026, 0.8635], and [0.0525,
0.3388]. Next, the Taguchi table is constructed as shown in
Table 9 and the response of each sample is constructed.

By calling Eqs. (3) and (4), the weight of the three inputs links
(i.e., D to G, F to G, and C to G) are 24.2%, 51.6%, and 24.2%,
respectively. Using the same method to calculate the weight of all
the links and using the weight to replace the “1” element in
matrix [A], the weighted matrix [Aw] is constructed as shown in
Table 10.

Step 5. The causal graph is simplified according to the weight
and the variable sets, xke and xreare detected in this step. In this
case, the threshold is selected as 10%. Comparing the weights of
each link with the threshold, the links E -> C and C -> D are
removed and the simplified causal graph is shown in Fig. 3.

From Fig. 3, it can be found that the coupling loop is decoupled
because the link between C and D is cut. In the simplified graph,

Table 5 Modified matrix [A1’] for the numerical example

A E H I D B C F G

A 0 0 0 0 0 þ1 0 0 0
E 0 0 0 0 0 0 þ1 �1 0
H 0 0 0 0 0 0 0 þ1 0
I 0 0 0 0 þ1 0 0 0 0
D 0 0 0 0 0 þ1 0 �1 þ1
B 0 0 0 0 0 0 �1 0 0
C 0 0 0 0 21 0 0 þ1 þ1
F 0 0 0 0 0 0 0 0 �1
G 0 0 0 0 0 0 0 0 0

Table 6 Matrix [Anoc] for the numerical example

A E H I D B C F G

A 0 0 0 0 0 1 0 0 0
E 0 0 0 0 0 0 1 1 0
H 0 0 0 0 0 0 0 1 0
I 0 0 0 0 1 0 0 0 0
D 0 0 0 0 0 1 0 1 1
B 0 0 0 0 0 0 1 0 0
C 0 0 0 0 0 0 0 1 1
F 0 0 0 0 0 0 0 0 1
G 0 0 0 0 0 0 0 0 0

Table 7 Matrix [C] for the numerical example

D B C

D 0 1 0
B 0 0 1
C 1 0 0

Table 8 Element values in the objective column in [A’] and [A1’]

Multiplication No. 1 2 3 4 5 6 7

G G1 G G1 G G1 G G1 G G1 G G1 G G1
A 0 0 1 �1 2 2 1 1 1 �1 2 2 1 1
E 2 2 2 �2 1 �1 1 1 2 �2 1 �1 1 1
H 1 �1 0 0 0 0 0 0 0 0 0 0 0 0
I 1 1 1 1 1 �1 2 2 1 1 1 �1 2 2

Table 9 Taguchi sampling table of objective function

Inputs

Experiment number C D F G

1 0.0525 0.714 0.0026 1056213
2 0.0525 0.714 0.0026 1056213
3 0.0525 1.9848 0.8635 26.89465
4 0.0525 1.9848 0.8635 26.89465
5 0.3388 0.714 0.8635 21.05431
6 0.3388 0.714 0.8635 21.05431
7 0.3388 1.9848 0.0026 2936106
8 0.3388 1.9848 0.0026 2936106
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the variables without contradictions are detected through a quali-
tative analysis. In this case, variable E is found without contradic-
tions and the objective G decreases with E decreasing. Therefore,
the kept variables needed to be optimized xke ¼ ½A; I� and the less
important variable xre ¼ E.

Step 6. The two-stage optimization problem is constructed as
follows:

Problem 1

find xke ¼ ½A; I�
min G ¼ f ðxke;E;HÞ
1 � xke � 2

where;E ¼ 1;H ¼ 2

(10)

Problem 2

find xre ¼ E

min f ðxre; xke;HÞ
1 � xre � 2

where; xke ¼ ½A�; I��;H ¼ 2

(11)

The optimal value f � ¼ 7:9735 is set to be the stopping criterion
value. MATLAB function fmincon(.) is employed to perform the
optimization and the results are shown in Table 11. The starting
point of the original problem is randomly generated in the design
space. For the two-stage optimization problem, the starting
points of the two stages are the same as that in the original

problem. For example, if the starting point in the original problem
is x0 ¼ A0; I0;E0;H0½ � ¼ ½1:2; 1:3; 1:4; 1:5�, then the starting point
for problem 1 will be xke;0 ¼ A0; I0½ � ¼ ½1:2; 1:3� and the starting
point for problem 2 will be xre;0 ¼ E0 ¼ 1:4. Since the optimal
value is reached at the first stage optimization, the second stage
optimization is not run in this case. f � is the optimal value and SA
stands for system analysis. The optimization is repeated 11 times
so the median is an actual tested value. The median number of SA
is shown in Table 11. The optimal value and the optimal points
are the results in the run with the median number of SA.

As shown in Table 11, the number of system analysis for the
two-stage optimization is 41, including eight system analyses in
weight calculation, which is 45% of the number of analysis used
in optimization of the original problem. That is because the four-
dimensional problem is reduced to a two-dimensional problem.

To test the influence of the threshold, the threshold is selected
as 15%. Then, link A -> B is removed from Fig. 3 as well, which
means A has less impact on the final objective. Thus, the kept var-
iables xke ¼ I and the less important variable xre ¼ ½A;E�. Using
fmincon(.) function to optimize the decomposed problem, the
results are shown in Table 12.

As shown in Table 12, the number of SA when using 10%
threshold is smaller than that with 15% threshold. When using
10% as threshold, after optimizing the important variable xke the
optimum is reached and the optimization process is terminated.
However, when selecting 15% as threshold, optimizing xke cannot
reach the target value because one of the important variable A left
as an important variable. As a result, the unimportant variable xre

needs to be optimized, which increases the number of SA. There-
fore, missing important variables will lead to more function calls.
To avoid remove important variables mistakenly, a smaller thresh-
old is preferred, i.e., 10%.

3 Engineering Case Studies

3.1 Power Converter Design Problem. A power converter
design problem [15,16] is used to test the performance of the pro-
posed dimension reduction methodology. The design problem has
six design variables, as shown in Table 13. The upper and lower
bounds defined in Ref. [16] are used in this paper. The objective
of the problem is to minimize the weight of the power converter
as shown in Eq. (12). The formulation of the problem is defined as
follows and all constant values are taken from [15]

miny1 ¼ Wc þWw þWcap þWhs (12)

Table 10 Weighted matrix [Aw] for numerical example

A E H I B C F D G

A 0 0 0 0 15.0% 0 0 0 0
E 0 0 0 0 0 3.6% 25.5% 0 0
H 0 0 0 0 0 0 25.6% 0 0
I 0 0 0 0 0 0 0 96.1% 0
B 0 0 0 0 0 96.4% 0 0 0
C 0 0 0 0 0 0 27.3% 3.9% 24.2%
F 0 0 0 0 0 0 0 0 51.6%
D 0 0 0 0 85.0% 0 21.6% 0 24.2%
G 0 0 0 0 0 0 0 0 0

Fig. 3 Simplified causal graph for the numerical example

Table 11 Optimization results of the original problem and
decomposed problem

x� f � # of SA Variance of # of SA

Original [1.365,1,2,2] 7.9735 91 [60,131]
Decomposed [1.365,1,2,2] 7.9735 41 [38,48]

Table 12 Comparison of two thresholds (10% and 20%)

Threshold x� f � # of SA Variance of # of SA

10% [1.365,1,2,2] 7.9735 41 [38,48]
15% [1.365,1,2,2] 7.9735 55 [41,65]

Table 13 Design variables in power converter design

Variables Name Description
Lower
bound

Upper
bound

x1 Cw Core center leg
width (m)

0.001 0.1

x2 Turns Inductor turns 1.0 10
x3 Acp Copper size (m2) 7.29� 10�8 1.0� 10�5

x4 Lf =PINDUC Inductance (H) 1.0� 10�6 1.0� 10�5

x5 Cf Capacitance (F) 1.0� 10�5 0.01
x6 ww Core window

width (m)
0.001 0.01
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where, Wc ¼ DIy6ðZP1 þ y7Þ
�� ��, ZP1 ¼ 2ð1þ K2Þx6, Ww ¼

ðXMLTÞ
�� ðDCÞx2x3j, XMLT ¼ 2x1ð1þ K1ÞFC, Wcap ¼ DK5x5j j,
and Whs ¼ PO

KH ð 1
y2
� 1Þ

��� ���.
Electrical design state analysis duty cycle

y3 ¼
EO

y2EI

2 XNð Þ

� � (13)

Minimum duty cycle

y4 ¼
EO

y2EIMAX

2 XNð Þ

� � (14)

Inductor resistance

y5 ¼
XMLTx2ðROÞ

x3

(15)

Core cross-sectional area

y6 ¼ K1x2
1 (16)

Magnetic path length

y7 ¼
p
2

x1 (17)

Inductor value

y8 ¼
ðEOþ VDÞð1� y3Þ

y6x2ðFRÞ (18)

Loss design state analysis:

y2 ¼
PO

PQþ PDþ POFþ PXFR
(19)

The proposed dimension reduction method is employed to
solve the six-dimensional multidisciplinary design optimization

problem. It is to be noted that this problem entails mathematical
expressions, which are used to build the causal graph as shown in
Fig. 4. In most engineering problems, one does not have equations
and thus should use their knowledge to construct a causal graph.
By employing the qualitative analysis, it can be found that all var-
iables contain contradictions. To further simplify the causal graph,
the less important links are removed according to the weights
and two-stage optimization is constructed as shown in Eqs. (20)
and (21).

Problem 1:

find xke¼ x1; x2; x5½ �T

min y1 ¼ f xke; xreð Þ
xlb

ke � xke � xub
ke

(20)

Problem 2:

find xre ¼ x3; x4; x6½ �T

min y1 ¼ f xre; xkeð Þ
xlb

re � xre � xub
re

(21)

When optimizing problem 1 for the first time, the design variables
xre are fixed at the given value determined by the qualitative
analysis. According to the previous qualitative analysis results,
the upper bounds of x3 and x4 and the lower bound of x6 should be
selected. In this case, x3 ¼ 1e�5, x4 ¼ 1e�5, and x6 ¼ 0:001.

The MATLAB function fmincon(.) is employed to optimize the
two problems. The starting point is generated randomly in the
design space for the original problem. The starting points for
the problems 1 and 2 in the two-stage optimization are the same
as the starting point for the original problem. The original problem
with six design variables is optimized first. The optimal result of
the original problem is used as the stopping criterion for the two-
stage optimization. Both optimizations are repeated 11 times and
the median number of SA and the optimal results in that run are
shown in Table 14.

For the two-stage optimization, after optimizing problems 1
and 2 once, the optimal value reaches 0.9866. The number of SA
in the two-stage optimization is 210 including eight system analy-
ses in sensitivity analysis, which is only 23% of that used in the

Fig. 4 Causal graph of the power converter problem
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original optimization. The significant reduction of SA is due to
the reduction of dimensions. In the original problem, six design
variables need to be optimized. Although all the variables contain
contradictions at the beginning, three variables with weak contra-
dictions are selected from the original design variable set in the
second simplification and the six-dimensional problem are divided
into two lower-dimensional problems with three variables each.
The reduction of the dimensions improves significantly the opti-
mization efficiency. Although the description seems tedious, the
qualitative analysis and dimension reduction are automatically
conducted using the developed algorithm and code.

To illustrate the efficiency of the proposed method, the decom-
posed problem is compared with the original problem with the
same number of function evaluations. In this case, the number of
function calls is fixed at 250 for both problems. Note that for the
decomposed problem, the maximum number of function calls for
problem 1 is set as 250. If problem 1 optimization is terminated
before 250 function calls, problem 2 will continue to run to reach
to 250 function evaluations. This test is also repeated 11 times for
both methods and the results are shown in Table 15.

When fixing the number of function evaluations, optimizing
decomposed problem can obtain better results than optimizing the
original problem. For the original problem, using 250 function
calls cannot obtain the optimal results. However, for the decompo-
sition problem, problem 1 usually needs about 200 SAs to find the
optimal solution for the important variables. Then, around 50
function evaluations are used in problem 2 to obtain the final opti-
mal results. To summarize, using the proposed dimension reduc-
tion method can help to achieve better results when the number of
function evaluations is fixed.

3.2 Aircraft Concept Design Problem. The aircraft concept
design problem [4] is used to test the performance of the proposed
method. There are ten design variables (listed in Table 16) and
three coupled disciplines (structure, aerodynamics, and propul-
sion). The objective of the problem is to maximize the range
computed by the Breguet equation. The causal graph is shown in

Fig. 5. By employing the proposed method, it can be found that
variable h has no contradiction and the upper bound of h is
desired. Then, the original problem is divided into two optimiza-
tion problems,

Problem 1

find xke ¼ ½M;T; SREF; t=c;K; x;Cf �T

max Rðxke; xre; xucÞ
s:t: gðxke; xre; xucÞ � 0

xlb
ke � xke � xub

ke

(22)

Problem 2

find xre ¼ ½k;AR�T

max Rðxre; xke; xucÞ
s:t: gðxre; xke; xucÞ � 0

xlb
re � xre � xub

re

(23)

When optimizing problem 1 at the first time, the design variables
xre and xuc are fixed at the given values that are determined by the
qualitative analysis. In this case, h¼ 60,000 and AR ¼ 2:5. For k,
because it has no impact on the objective, k is set to be the initial
number 0.25. The details of how the proposed method performs in
the aircraft concept design can be found in authors’ conference
paper [17].

The MATLAB function fmincon(.) is employed to optimize the
two problems. The starting points are selected randomly in the
design space. The original problem with ten design variables is
optimized first. The optimal result of the original problem is used
as the stopping criterion in two-stage optimization. Each optimi-
zation is run 11 times and the results are shown in Table 17.

As shown in Table 17, it can be found that after decomposition,
the two-stage optimization reaches the same optimal value with
210 function evaluations, which is half of the function calls used
in the original optimization. In the original problem, ten design
variables need to be optimized. After employing the causal knowl-
edge to analyze the problem, one can find that there exists one
monotonic variable. Then, the ten-dimensional problem turns to
be a nine-dimensional problem. After simplification, the nine-
dimensional problem is divided into two problems with seven and
two variables, respectively. The reduction of the dimensions
improves significantly the efficiency of the optimization.

Then, the two-stage optimization is compared with the original
optimization with a fixed number of SA. In this case, the maxi-
mum function evaluations are set to be 180 for both optimizations.
Each optimization is run 11 times and the median results are
shown in Table 18. It can be found that with the fixed number of
function evaluations, the result of the two-stage optimization is
much better than the optimal value obtained from the original
problem.

Table 14 Optimization results for the power converter problem

x� f � # of SA Variance of # of SA

Original [0.003,3.605,1� 10�5,1� 10�5,8� 10�5,0.001] 0.9864 887 [636,1442]
Decomposed [0.003,3.586,1� 10�5,1� 10�5,1� 10�4,0.001] 0.9866 210 [186,557]

Table 15 Comparison of optimization results with a fixed number of SA for the power converter problem

x� f � Variance of f � # of SA

Original [0.0028,3.618,9� 10�6,8� 10�6,1� 10�4,0.001] 1.0024 [0.9887,1.0222] 250
Decomposed [0.0030,3.384,1� 10�5,1� 10�5,1� 10�4,0.001] 0.9865 [0.9864,0.9893] 250

Table 16 Design variables in aircraft concept design

Variables Description Lower bound Upper bound

1 M Mach number 1.4 1.8
2 T Throttle setting 0.1 1.0
3 SREF Wing surface area (ft2) 500 1500
4 AR Aspect ratio 2.5 8.5
5 t=c Thickness/chord ratio 0.01 0.09
6 k Wing taper ratio 0.1 0.4
7 K Wing sweep (deg) 40 70
8 x Wingbox x-section area (ft2) 0.9 1.25
9 h Altitude (ft) 38,000 60,000
10 Cf Skin friction coefficient 0.75 1.25
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4 Conclusion

This work proposed a dimension reduction method using causal
graph and qualitative analysis, and this method is used to solve an
MDO problem to improve the optimization efficiency. Causal
graphs are constructed to show the input–output relationships
between variables. To find the variables without contradictions
automatically, a novel DSM-based qualitative analysis method is
developed. Then, the values of the variables without contradic-
tions can be determined before optimization and the dimensional-
ity of the problem can be reduced. Taguchi method is employed
to calculate the weight of each relationship and the original prob-
lem is divided into two subproblems, one with important variables
and the other with less important variables. Thus, the number of
variables in each subproblem is reduced compared with the origi-
nal problem. Finally, the two subproblems are optimized sequen-
tially to obtain the optimal solution. The proposed method is
employed to solve a power converter design problem and an air-
craft concept design problem from literature, and the results are
compared with those obtained by optimizing the original problem.
With the same optimal value, the efficiency of the proposed

method is significantly higher as compared to optimizing the orig-
inal problem. On the other hand, with the same number of func-
tion calls, the proposed method arrives at a better optimal
solution. Nevertheless, the method can reach its limit if in the
optimization problem all variables have contradictions and no
simplifications can be made with the approach developed in the
article. It is to be noticed that the only added function calls by the
proposed method are for the weight calculation; the total number
of these calls is limited according to the problem dimension and
corresponding orthogonal array. Other steps of the proposed
method are only the analyses of the causal graph with matrix oper-
ations. The associated cost of those operations is negligible and
the operations are automated. Thus, the dimension reduction
method can be performed as a pre-analysis before launching the
optimization.

This paper offers a novel way to reduce the dimensionality of
MDO problems and support decomposition of the problem by sys-
tematically incorporating the knowledge of the design problem in
form of causal–effect relationships between variables. Those
causal graphs are used in a preprocessing stage to support the opti-
mization process and to improve the optimization efficiency.

Table 17 Optimization results of aircraft concept design

x� f � # of SA Variance of # of SA

Original [1.4, 0.265, 1500, 2.5, 0.09, 0.1, 70, 0.9, 60,000, 0.75] 4459 453 [420,724]
Decomposed [1.4, 0.265, 1500, 2.5, 0.09, 0.1, 70, 0.9, 60,000, 0.75] 4459 210 [166,231]

Fig. 5 Causal graph of the aircraft concept design problem

Table 18 Comparison of optimization results with a fixed number of SA for the aircraft problem

x� f � Variance of f � # of SA

Original [1.4, 0.366, 870, 2.5, 0.09, 0.14, 70, 0.9, 50535, 0.75] 1885 [951,4413] 180
Decomposed [1.4, 0.263, 1500, 2.5, 0.09, 0.1, 70, 0.9, 60,000, 0.75] 4458 [4458,4459] 180
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Future work will develop other ideas leveraging this work to
define and capture other type of knowledge and optimization
approaches to contribute to design optimization.
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