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 

Abstract—Surrogate assisted Evolutionary Algorithms 

(SAEAs) are promising methods for solving high 

dimensional expensive problems. The basic idea of SAEAs 

is the integration of nature-inspired searching ability of 

evolutionary algorithms (EA) and prediction ability of 

surrogate models. This paper proposes a novel 

Evolutionary Sampling Assisted Optimization (ESAO) 

method which combines the two abilities to consider global 

exploration and local exploitation. Differential Evolution 

(DE) is employed to generate offspring using mutation and 

crossover operators. A global RBF surrogate model is built 

for prescreening of the offspring’s objective function values 

and identifying the best one, which will be evaluated with 

the true function. The best offspring will replace its 

parent’s position in the population if its function value is 

smaller than that of its parent. A local surrogate model is 

then built with selected current best solutions. An optimizer 

is applied to find the optimum of the local model. The 

optimal solution is then evaluated with the true function. 

Besides, a better point found in the local search will be 

added into the population in the global search. Global and 

local searches will alternate if one search cannot lead to a 

better solution. Comprehensive analysis is conducted to 

study the mechanism of ESAO and insights are gained on 

different local surrogates. The proposed algorithm is 

compared with two state-of-the-art SAEAs on a series of 

high dimensional problems and results show that ESAO 

behaves better both in effectiveness and robustness on most 

of the test problems. Besides, ESAO is applied to an airfoil 

optimization problem to show its effectiveness.  
Index Terms—Evolutionary algorithms, evolutionary sampling, 

high dimensional expensive problems, surrogate models.  
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I. INTRODUCTION 

REPLACING experiments and empirical formulas with computer 

simulations, such as Computational Fluid Dynamics (CFD), 

Finite Element Analysis (FEA), are becoming more and more 

popular in engineering practice. Simulation-based design and 

optimization aims at dealing with optimization problems which 

need expensive computer simulations. These kinds of problems, 

which usually do not have function expression, are called 

black-box problems. Since each simulation is often 

time-consuming (several hours, even days), it is preferred to 

have fewer number of function evaluations required for 

optimization. 

Surrogate models relieve the computational expense by 

replacing the simulations with an approximation model. 

Comparing to simulation, the cost of predicting a function 

value from a surrogate is assumed negligible. Widely used 

surrogate models include Polynomial Response Surface (PRS) 

[1], Kriging [2], Radial Basis Functions (RBF) [3], Support 

Vector Regression (SVR) [4] and Multivariate Adaptive 

Regression Splines (MARS) [5], and so on. The performance of 

different surrogate models under multiple criteria has been 

studied [6]. For simulation-based optimization, promising 

sample points are usually chosen iteratively to gradually update 

the surrogate. The process repeats until a stopping criterion is 

met. Strategies of determining promising points are called 

sampling strategies. A good sampling strategy should consider 

both global exploration and local exploitation [7]. A few 

popular sampling strategies including maximizing the expected 

improvement (EI) [8], [9], maximizing the probability of 

improvement function (PI) [9], and minimizing the lower 

confidence bound (LCB) [9], have been proved effective. In 

recent years, more methods have been proposed with novel 

ideas [10]-[15]. Besides, some researchers are interested in 

choosing more than one sample point per cycle [16]-[18]. 

These newly picked points could be simulated in parallel. If 

parallel computing resources are available, the number of 

iterations could be greatly reduced. Haftka et al. [19] stated that 

methods that provide easy parallelization or methods that rely 

on population of designs for diversity deserve more attention. 

However, most of these aforementioned strategies deal with 

small-scale problems whose dimensions are smaller than 15 

[20]. For medium-scale (20-50 design variables) and 

large-scale problems (>50 design variables), these methods will 
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not work well because it is nearly impossible to build an 

accurate surrogate model for such high dimensional problems 

with limited number of points. Shan and Wang [21] published a 

survey of modeling and optimization strategies for solving high 

dimensional problems. They integrated RBF with high 

dimensional model representation (HDMR) to develop a new 

model, RBF-HDMR [22]. Test results confirmed the efficiency 

and capability of RBF-HDMR for medium-scale problems. 

Recently, Wu et al. [23] proposed a Partial Metamodel-based 

Optimization (PMO) method using RBF-HDMR and results 

showed that PMO performs better than optimizing a complete 

RBF-HDMR. Decomposition that reformulates a problem into 

a set of sub-problems of smaller scale is also a promising 

method for solving high dimensional problems [24], [25]. 

Another popular trend is to combine EA with surrogate 

models to deal with computationally expensive problems, 

which are called Surrogate-assisted Evolutionary Algorithms 

(SAEAs) [26]-[29]. Some SAEAs focus on low-dimensional 

problems [30]]-[[32]. For example, Tang et al. proposed a 

surrogate-based PSO algorithm for expensive black-box 

problems and applied the algorithm to several engineering 

problems [30]. Vincenzi et al. proposed an improved SAEA, 

which combines the Differential Evolution with a quadratic 

surrogate and an infill sampling strategy. The performance of 

the method was carried out on benchmark functions and 

engineering applications [31], [32]. Some researchers focus on 

applying SAEAs to deal with high dimensional expensive 

problems [33]-[36]. Regis [20] built a global RBF surrogate 

model to predict promising offspring of PSO and conducted 

local search in a sub-region of the current best solution. Regis 

also proposed a SAEA which can deal with inequality 

constraints [37]. Liu et al. [38] utilized Gaussian process to 

predict offspring generated by current best samples and 

dimension reduction techniques were also used for tackling 50 

variables problems. Wang et al. [39] applied an ensemble of 

surrogates to build a global model and PSO was used to find the 

optimum of the model. The most uncertain solution was also 

searched at the same time. Besides, a local surrogate model was 

applied to accelerate the exploitation. Their results are 

outstanding on medium-scale test functions with limited 

number of function evaluations. Sun et al. combined two PSO 

methods to solve 50 dimensional (50D) and 100D problems and 

attempted to optimize 200D problems [40]. Yu et at.[41] 

proposed an surrogate-assisted hierarchical PSO (SHPSO) 

algorithm for high dimensional expensive problems. SHPSO 

uses a local RBF network to guide the selection of new samples. 

Results show that SHPSO performs better than GPEME and 

SA-COSO. 

To tackle high dimensional expensive problems, in this study, 

we propose an optimization method called Evolutionary 

Sampling Assisted Optimization (ESAO). ESAO consists of 

two major parts, the global search and local search. The global 

search employs a global RBF model to choose the best 

offspring generated by evolutionary operators (mutation and 

crossover). The local search utilizes an optimizer to search for 

the optimum of the local surrogate model which is trained with 

a certain number of current best points. The rest of the paper is 

organized as follows. Section 2 briefly introduces the related 

techniques including DE and surrogate models. Section 3 

describes the proposed ESAO in detail. In Section 4, 

comprehensive analysis is conducted to study the behavior of 

ESAO and comparison is made with other well-known SAEAs. 

An engineering application is also included to show the 

effectiveness of ESAO. Conclusions and future research are 

described in Section 5. 

II. RELATED TECHNIQUES 

A. Differential Evolution 

As one of the most powerful stochastic real-parameter 

optimization algorithms, DE has been drawing the attention 

from all over the world since its inception in 1995 [42]. Many 

researchers have proposed many different variants of the basic 

algorithm with improved performance. In general, there are 

four stages of DE, initialization, mutation, crossover, and 

selection. Mutation and crossover make the main contributions 

on searching for better candidate solutions.  

Assuming we have a population at current generation, 

1 2[ , ,..., ]Tnx x x x . Each component of x is an individual with 

dimension d, 1 2( , ,..., )d
i i i ix x x x . The mutation process can be 

expressed as 

                     1 2 3( )i i i iv x F x x                                      (1)
 

where 1ix , 2ix and 3ix are randomly chosen different individuals 

from the current population. F is a scalar number which 

typically lies in the interval [0.4, 1] [42]. There are many 

variants of mutation and we just adapt DE/best/1 to generate 

offspring in this study. For DE/best/1, the only difference from 

Eq. (1) is that 1ix is the current best solution rather than a 

random individual. 

Crossover aims to enhance the potential diversity of the 

population and is conducted after mutation. There are two kinds 

of crossover methods, exponential and binomial. We just 

introduce the latter in this study. The binomial crossover 

formula can be expressed as 

( [0,1] )j j
i i randj

i j
i

v if rand Cr or j j
u

x otherwise

   
 


       (2)

 

where j
iu is the j

th
 component of i

th
 offspring. j

ix and j
iv are 

the j
th

 component of i
th

 parent and the mutated individual. rC is 

a constant between 0 and 1. rand indicates a uniformly 

distributed random number. [1,2,..., ]randj d
 
is a randomly 

chosen index that ensures iu has at least one component of iv . 

Readers who are interested in the comprehensive introduction 

of DE can refer to [42]. 

B. Surrogate models 

Kriging and RBF are two most widely studied surrogate 

models. The main advantage of Kriging is that Kriging can 

yield an estimation of mean square errors (MSE). The accuracy 

of Kriging can be improved through adding samples in the 

region where MSE is large. A disadvantage of Kriging is that 
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training of the model is time consuming when the number of 

samples is large. RBF is another promising modeling method 

with high efficiency and accuracy. As many publications have 

introduced the two methods and their variants, we won‟t report 

them in detail. Readers who are interested in the two methods 

can refer to [7]. 

Previous studies showed that different surrogate models suit 

for different problems [43] and guidelines on model selection 

were also given. However, the dimensions of the benchmark 

functions they dealt with are smaller than 16. Their conclusions 

may not be suitable for high dimensional problems. Besides, 

engineers cannot choose a suitable surrogate model without 

knowing the property of an engineering problem beforehand. 

Some researchers proposed to construct an ensemble of 

surrogates [43], [44]. In this way, the usage of the worst 

surrogate model can be avoided and sometimes the accuracy of 

an ensemble is higher than that of all the individual models.  

III. PROPOSED ESAO METHOD 

ESAO contains two parts, the global search and the local 

search. The global search aims to search for the entire design 

space with the help of DE operators. The generated offspring 

are expected to provide a good coverage of current promising 

regions and unexplored regions. A RBF global model is built 

using all the available sample points to predict the responses of 

the offspring. The most promising offspring will be evaluated 

using the true function. In this study, RBF is used as the global 

surrogate model since it is time-consuming to train a Kriging 

model when the number of sample points is large. It is reported 

that it will take several minutes to train a Kriging model, when 

hundreds of points are involved [38]. The local search aims to 

accelerate the searching in promising sub-regions. A local 

surrogate model is built with a certain number of current best 

sample points. An optimizer is used to search for the optimum 

of the local model. The optimum will be evaluated with the true 

function. As both Kriging and RBF can be employed for the 

local surrogate models, investigations about which model 

(Kriging and RBF) is more effective for the local model should 

be done. We expect the results give some insights about the 

selection of surrogate models when dealing with high 

dimensional problems. Global Search Strategy 

Algorithm 1 shows the pseudo code of the global search. 

Database stores all the sample points and their function values. 

At the beginning of the process, Optimal Latin Hypercube 

Sampling (OLHS) [45] is used to generate the initial population. 

Mutation and crossover are conducted on the current 

population to generate a new population of the same size. All 

sample points in the database are used to train a RBF global 

model, fg, which gives predictions of the offspring. The 

offspring (xg) with the lowest prediction will be evaluated with 

the true function. If the function value of xg is better than that of 

its parent, f(xgp), xg will replace its parent‟s position. If the 

function value of xg is better than that of the current best sample 

(xb), xg substitutes xb. As xg is an expensive sample point, it will 

be added into the database and the global RBF will be updated. 

If the global search finds a better solution, this process will 

continue. Otherwise, the optimization will turn to the local 

search.  

Algorithm 1 Pseudo Code of the Global Search 

1: Database, including sample points and their function values;  

    Current population; Present best solution (xb); 
2: Repeat 

3:     Generate offspring using mutation and crossover operators  

        of DE according to Eqs. (1) and (2) on current population; 
4:     Use all the points in the database to build the RBF model, fg; 

5:     Obtain the predictions of all the offspring using fg; 

6:     Choose the offspring with the lowest prediction, xg and  
evaluate its true function value, f(xg); Save xg and f(xg) into 

the database; 

7:     if f(xg) < f(xgp) then 
8:         Replace xgp with xg and update the population; 

9:     end if 

10:   if f(xg) < f(xb) then 
11:       Replace xb with xg; 

12:   end if 

13: Until: Step 10 is not true. 

A. Local Search Strategy 

The local search aims to search for the optimum of the local 

surrogate model in sub-regions and its pseudo code is shown in 

Algorithm 2. We use τ best sample points from the database to 

train the local surrogate model. The τ best sample points will 

form a sub-space and a global optimizer (GA, DE, PSO) or 

multi-start searching algorithm [46] could be used to find the 

optimum of the local model. In this research, DE is chosen as 

the optimizer of the surrogate model, since DE operators are 

also used in the global search. However, it should be noted that 

the optimizer DE is not the same as the one in the global search. 

They are two independent instances. The DE used in the global 

search just generates offspring with evolutionary operators, 

while the DE used in the local search serves as an optimizer. 

The optimum found by the optimizer will be accepted and its 

true function value is calculated. If the newly added sample has 

a lower function value than that of the current best solution, it 

will replace xb and be added to the population in the global 

search. It has been noted that the population size in global 

search will not increase and a better solution will just replace its 

parent‟s position. When the local search finds a better solution 

than the current best solution, the new best solution will be 

added into the population in the global search. In this way, the 

size of the population will increase. The local search process 

continues when a better solution is found. As the number of 

samples for local surrogate models is stable, one of these local 

points will be eliminated and a new one joins the group. In this 

way, samples with lower function values will concentrate on 

smaller and smaller regions. If no better sample is found, the 

optimization will switch to the global search.  

To reduce the computation burden, τ is set as 2×d, where d is 

the dimension of the problem. If Kriging is set as the local 

surrogate model, it will take too much time for the training with 

3×d best samples when d is 100 or higher; while we do not 

think it is enough to train the local surrogate model with only d 

best sample points when d is 20. The lower and upper bounds of 

each dimension are the minimum and maximum of all the 2×d 

samples, respectively. Eq. (3) gives the formula to identify the 

sub-region. 
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where ilb and iub stand for the i
th

 lower and upper bounds of xi, 

respectively. jx represents one of the 2×d number of samples. 

Algorithm 2 Pseudo Code of the Local Search 

1: Database, including samples and function values; Present  

    best sample (xb).   

2: Repeat 
3:    Select τ best sample points from the database to train the 

       local model ( lf ); 

3:    Run optimizer to find the optimum of the model;  

4:    Evaluate xl using the true function and save xl and f(xl)   

into the database; 

5:    if f f(xl) < f(xb) then  

6:        Replace xb with xl; 
7:        Add xl to the population in global search; 

8:    end if 

9: Until: Step 5 is not true. 

B. Framework of the Proposed ESAO 

Fig. 1 shows the framework of ESAO. The solid arrows 

stand for the flows of the algorithm, while the dotted arrows 

represent the data flows. The explanations of the five data flows 

are given below. 

① When the function value of the best offspring is better 

than its parent, the parent will be replaced by the offspring. 

When a local search finds a better solution than the current best 

result, the better solution will be added into the population in 

the global search. 

② All sample points and their function values in the database 

will be used to train the global RBF model. 

③ Initial samples and their function values are generated 

using OLHS and they will be transferred into the database. Note 

that the initial samples form the initial population in the global 

search and this data flow just occurs once. 

④ The best offspring picked by the global RBF model and 

the optimum found through the local surrogate are evaluated 

using the true function. The sample points and their function 

values will be saved into the database. 

⑤ τ best sample points in the database will be picked to train 

the local surrogate model. 

It should be noted that the design space is normalized into [0, 

1]. For the framework, initial samples are obtained using OLHS 

and their function values are calculated with the true function. 

Then, the global and local searches are conducted. It can be 

seen that the global or local searches will continue running if 

they find a better solution. The two parts alternate when no 

progress is made. Both the global and local searches just choose 

one sample per cycle and the function value of the sample is 

evaluated with the true function. The newly chosen sample and 

its function value will be added to the database regardless if the 

function value is better than that of the current best sample. The 

sample points that are used in global and local searches will be 

updated correspondingly. 

Fig 1 Framework of the proposed ESAO 

IV. RESULTS AND DISCUSSION 

To investigate the effectiveness of ESAO, comparisons are 

conducted with state-of-the-art algorithms on various types of 

high dimensional problems. First, test problems and parameters 

used in ESAO will be explained. Second, comprehensive 

analysis is conducted for ESAO, including the effect of adding 

better samples into the population, and the contributions of the 

global and local searches in finding the optimum. We also 

compared the effect when different surrogate models act as the 

local model. Finally, ESAO is compared with two well-known 

SAEAs on the test problems. An airfoil design problem is 

followed to show the effectiveness of ESAO in engineering 

application. 

TABLE 1 PROPERTIES OF THE TEST PROBLEMS 

Problem d Optimum Property 

Ellipsoid 20, 30, 50, 100 0 Unimodal 

Rosenbrock 20, 30, 50, 100 0 Multimodal 
Ackley 20, 30, 50, 100 0 Multimodal 

Griewank 20, 30, 50, 100 0 Multimodal 

Shifted Rotated 
Rastrigin 

30, 50, 100 -330 
Very complicated 

multimodal 

Rotated hybrid 

Composition Function 
30, 50, 100 10 

Very complicated 

multimodal 

A. Experiment Settings 

The SURROGATES toolbox [47] was used for 

implementation of ESAO. Specifically, Kriging and DE are 

adopted from the toolbox. When Kriging is the local surrogate 

model, Gaussian correlation function is used. Multiquadric 

kernel function is adopted in RBF. In the global search, both F 
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and rC are set as 0.8 according to [38]. The DE used in the 

local search adopts DE/best/1 strategy, 150 population 

members, 200 maximum number of generations, 0.8 for both F 

and rC . In ESAO, the initial number of sample points is set as 

100 for 20D and 30D problems and 200 for 50D and 100D 

problems. The optimization terminates when the total number 

of function evaluations (NFE) reaches 1000 for all the test 

problems. Six series of problems with different dimensions and 

complexities are included and totally 22 problems are involved. 

The basic information of the problems is given in Table 1. The 

first four problems have four kinds of dimensions, 20, 30, 50 

and 100 and the last two have three kinds of dimensions, 30, 50 

and 100. It should be noted that a simplified name is used for 

easy understanding of a specific problem. For example, „E20‟ 

means this is a 20D Ellipsoid problem. SRR is the abbreviation 

of Shifted Rotated Rastrigin problem and RHC is the 

abbreviation of Rotated Hybrid Composition problem. Readers 

who are interested in the function expressions of the test 

problems can refer to [38]. For all test problems, 30 

independent runs are conducted to obtain statistical results.  

ESAO is compared with three well-known SAEAs, GPEME 

[38], SA-COSO [40] and SHPSO [41]. GPEME was tested with 

20D, 30D and 50D problems; SA-COSO was tested with 50D, 

100D and 200D problems; and SHPSO was tested with 30D, 

50D and 100D problems. The three methods are recently 

published promising algorithms, which deal with high 

dimensional problems with fewer NFE (<1000).  

TABLE 2 STATISTICAL RESULTS OF 22 TEST PROBLEMS OBTAINED BY EASO 

Problems Best Worst Mean Std. 

E20 1.2905E-5 2.52E-3 1.8099E-4 4.6815E-4 

E30 8.6562E-5 0.2782 0.02747 0.06964 

E50 0.1646 2.2644 0.7395 0.5549 
E100 1102.3190 1538.8248 1282.8950 134.3897 

R20 12.7925 19.2266 15.1618 1.6289 

R30 22.1577 29.4037 25.0363 1.5701 
R50 43.1221 49.2492 47.3914 1.7118 

R100 521.2047 673.2419 578.8427 44.7671 

A20 2.5980 11.2992 6.8648 3.2586 
A30 0.0780 3.9096 2.5213 0.8396 

A50 1.0571 2.4326 1.4311 0.2491 
A100 9.9664 10.7321 10.3640 0.2113 

G20 0.8645 1.0197 0.9719 0.03910 

G30 0.7860 1.0221 0.9534 0.05037 
G50 0.8518 1.0207 0.9404 0.04209 

G100 47.3461 69.2247 57.3417 5.8387 

SRR30 -35.7804 90.3323 6.3250 26.4772 
SRR50 116.2469 289.0872 198.6141 45.8253 

SRR100 662.6292 758.8105 713.4680 26.4540 

RHC30 923.3490 953.8883 931.6703 8.9417 
RHC50 940.9899 1049.9114 975.3207 37.1101 

RHC100 1321.8061 1427.1364 1372.4218 27.5390 

B. Behavior study of ESAO 

According to our practice, ESAO will have better 

performance when RBF is the local surrogate model. Therefore, 

the following analysis is based on the ESAO with RBF being 

the local model. Table 2 shows the results of ESAO on 22 test 

problems. It can be seen that ESAO can find very good results 

for 20D, 30D and 50D problems, especially for Ellipsoid, 

rosenbrock, and Griewank problems. Ellipsoid is a relatively 

simple problem, the optimum found by ESAO of 20D and 30D 

problems are very close to the true optima. Although Griewank 

problem is multimodal, ESAO finds very good results for 20D, 

30D and 50D problems. A common understanding is that the 

optimum found on higher dimensional problem is worse than 

that of lower dimensional problem with the same NFE. This 

phenomenon appears in Ellipsoid and Rosenbrock problems. 

However, Ackley and Griewank series problems are exceptions. 

When the dimension of the problem increases, the optima 

found by ESAO become smaller. According to Locatelli‟s 

research [48], it is easier to identify the global region of 

Griewank problem when the dimension increases, since the 

effect of the product of cosine components (the second term of 

Griewank function) can be neglected. The results mean that 

ESAO could identify the promising regions efficiently for 

Griewank problem. ESAO cannot find very good results for 

SRR and RHC series problems with limited NFE, since they are 

very complicated multimodal. When it comes to 100D 

problems, the results are not as well as those in lower 

dimensional problems. The standard deviations (Std.) are also 

provided, which can reflect the robustness of ESAO. It can be 

seen that the Std. are quite small for 20D, 30D and 50D 

problems, but a bit larger for 100D problems.  

TABLE 3 COMPARISON OF THE RESULTS WITH OR WITHOUT INCREASING THE 

POPULATION SIZE  

Problems 
ESAO ESAO-N 

Mean Std. Mean Std. 

E20 1.8099E-4 4.6815E-4 5.1569 4.2578 

E30 0.02747 0.06964 10.1470 4.9803 
E50 0.7395 0.5549 16.2176 13.0671 

E100 1282.8950 134.3897 1305.6326 142.7622 

R20 15.1618 1.6289 64.6682 26.3719 
R30 25.0363 1.5701 110.9915 36.1576 

R50 47.3914 1.7118 73.3485 17.4618 

R100 578.8427 44.7671 652.3402 56.7690 
A20 6.8648 3.2586 9.7798 0.9230 

A30 2.5213 0.8396 3.5972 2.8520 

A50 1.4311 0.2491 1.5830 0.1676 

A100 10.3640 0.2113 10.6266 0.2439 

G20 0.9719 0.03910 0.9631 0.0479 

G30 0.9534 0.05037 0.9620 0.0402 

G50 0.9404 0.04209 0.9542 0.0405 

G100 57.3417 5.8387 65.7568 4.5053 

SRR30 6.3250 26.4772 18.2936 32.6004 

SRR50 198.6141 45.8253 218.6177 35.5651 

SRR100 713.4680 26.4540 736.0916 51.9083 

RHC30 931.6703 8.9417 967.7603 27.8783 
RHC50 975.3207 37.1101 1021.4304 30.3683 

RHC100 1372.4218 27.5390 1385.6125 34.5613 

For ESAO, the global search combines the prediction ability 

of the RBF model and the search ability of the evolutionary 

algorithm. The global RBF model adopts all the samples in the 

database for its construction. The search ability embodies in the 

generation of offspring using evolutionary operators (mutation 

and crossover). A new idea that could enhance the search 

ability of the global search is to increase the population size 

with better solutions. Since a better solution found in the global 

search will just replace its parent‟s position, a better solution 

found in the local search will also be added into the population. 

In this way, the size of population in the global search will 

increase as iteration goes on. It should be noted that the 

mutation strategy, DE/best/1 in ESAO uses the current best 

solution to guide the generation of the offspring. When the 
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better solution is found by the local search, the mutation 

strategy will generate offspring based on the new best point in 

the global search. 

Comparison is conducted to validate the effect of adding 

better solutions into the population. The results are shown in 

Table 3. In Table 3, ESAO-N is the variant without better 

samples added into the population. The better values are 

boldfaced. It can be seen clearly that the average best values of 

ESAO are smaller than those of ESAO-N on 21 out of 22 

problems and the values are significant better on 20D, 30D and 

50D problems. This is because the global search is enhanced 

with more and more better samples added into the population. 

The global search could generate more promising offspring 

around the newest best solution. In this way, the design could 

be explored more effectively. However, it should be noted that 

the average best values are not that better on 100D problems 

because it is becoming more difficult for global search to find 

better solutions in such a high dimensional space even if better 

samples are added. On the other side, the Std. of ESAO are 

much smaller than those of ESAO-N on most of the problems. 

If not, the values of the two methods are very close. This means 

the proposed idea also increases the robustness of ESAO. From 

the comparison, we can see that ESAO can find better solutions 

with stronger robustness when adding better samples found in 

the local search into the population of the global search. 

TABLE 4 AVERAGE NFE AND NTI OF THE GLOBAL AND LOCAL SEARCH  

Problems 
Global search Local search 

NFE NTI NFE NTI 

E20 393.5 6.2 506.5 119.7 

E30 377.8 2.3 522.2 147.2 

E50 349.9 0.5 450.1 101.2 
E100 384.2 0.8 415.8 32.7 

R20 367.7 40.0 532.4 205.2 

R30 347.9 23.6 552.1 228.4 
R50 345.5 0.5 454.5 110.0 

R100 384.7 0.9 415.3 32.2 

A20 445.4 0.2 454.7 10.0 
A30 434.9 0.3 465.1 30.9 

A50 373.2 0.5 426.8 54.7 
A100 384.9 1.5 415.1 32.3 

G20 436.7 0.8 463.3 27.9 

G30 431.5 0.7 468.5 38.1 

G50 365.3 1.3 434.7 71.0 

G100 381.7 1.8 418.3 38.9 

SRR30 448.8 2.0 451.2 5.0 
SRR50 396.6 1.2 403.4 8.5 

SRR100 392.7 0.3 407.3 15.4 

RHC30 421.5 6.4 478.5 64.0 
RHC50 366.6 0.7 433.4 68.2 

RHC100 397.1 0.5 402.9 6.6 

An interesting question is that for global and local searches, 

which part makes more contributions in finding better solutions? 

Besides, how many sample points are picked by the global 

search and by the local search? Table 4 shows the average NFE 

and number of true improvements (NTI) of the two searches on 

all the test problems. It should be noted that global and local 

searches will pick 900 points for 20D and 30D problems and 

800 points for 50D and 100D problems, with the initial number 

of samples being 100 and 200 respectively. For example, the 

NFE of global and local searches are 393.5 and 506.5, 

respectively for E20, while the NTI of the two searches are 6.2 

and 119.7.  

The NFE of the global and local searches represents how 

many expensive function evaluations are called for one search. 

It can be seen that the NFE of local search is always larger than 

that of the global search, except for SRR series problems. The 

NFE of the local search is usually larger than 450 for 20D and 

30D problems and larger than 400 for 50D and 100D problems. 

The second phenomenon is that NTI found by the local search 

is much larger than that of the global search. This is reasonable 

because the goal of the global search is exploration and the 

local search aims at exploitation. The local search tries to find a 

better solution in sub-regions, while the global search makes 

sure that ESAO does not get trapped into a local optimum. The 

third observation is that NTI becomes smaller with the increase 

of dimension for both global and local searches. This indicates 

that it is more difficult to find a better solution in higher 

dimensional space. The NTI in the global search also reflects 

the results in Table 3. As the global search cannot contribute 

much in exploitation, adding better solutions into the 

population will not have obvious effect for 100D problems. 

TABLE 5 COMPARISON OF THE RESULTS WITH DIFFERENT LOCAL MODELING 

STRATEGIES 

Problems 
ESAO-R ESAO-K 

Mean Std. Mean Std. W-test 

E20 1.8099E-4 4.6815E-4 0.06718 0.1409 + 
E30 0.02747 0.06964 21.2342 13.0201 + 
E50 0.7395 0.5549 1584.7371 177.0219 + 

E100 1282.8950 134.3897 9944.5869 1123.2832 + 
R20 15.1618 1.6289 23.7772 16.9419 + 
R30 25.0363 1.5701 75.1889 38.3428 + 
R50 47.3914 1.7118 1784.6183 353.5829 + 

R100 578.8427 44.7671 5915.7172 733.1805 + 
A20 6.8648 3.2586 12.5662 2.5358 + 
A30 2.5213 0.8396 13.3111 1.6188 + 
A50 1.4311 0.2491 17.4773 0.4557 + 
A100 10.3640 0.2113 18.6595 0.1630 + 
G20 0.9719 0.03910 1.4943 0.8351 + 
G30 0.9534 0.05037 3.7251 1.4911 + 
G50 0.9404 0.04209 240.2074 31.2303 + 

G100 57.3417 5.8387 699.1255 53.0977 + 
SRR30 6.3250 26.4772 -27.1770 44.0855 - 
SRR50 198.6141 45.8253 312.9193 35.9091 + 
SRR100 713.4680 26.4540 1470.1043 118.0472 + 
RHC30 931.6703 8.9417 976.2029 37.0014 + 
RHC50 975.3207 37.1101 1033.6277 33.9043 + 

RHC100 1372.4218 27.5390 1453.0480 22.8589 + 

As discussed in the local search, both Kriging and RBF can be 

used to build the local model, since only a small number of 

points is involved. Investigation should be conducted to figure 

out which one can lead to better results for ESAO. ESAO with 

Kriging and RBF as the local model are called ESAO-K and 

ESAO-R, respectively. Other settings remain the same. Besides 

the average best values and Std., Wilcoxon rank sum tests at a 

significant level of       , are also provided, where „≈‟ 

indicates no obvious difference between ESAO-R and 

ESAO-K, „+‟ means ESAO-R significantly outperform 

ESAO-K, „-‟ means ESAO-K outperforms ESAO-R.  

The comparison results are shown in Table 5. It can be seen 

that the results obtained by ESAO-R are much better than those 

of ESAO-K, except for SRR30. The differences of the two 

variants become larger with the increase of dimension. This 

indicates that Kriging is not competitive as a local surrogate 

model. When DE searches for the optimum of Kriging, the 
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optimal solution is actually not a promising result. The reason 

that Kriging performs much worse than RBF may be that the 

parameters for Kriging‟s maximum likelihood estimation are at 

a local optimum, and the cost to obtain the global optimum of 

these parameters would be prohibitive. ESAO-K only behaves 

better on SRR30 problem, which could be attributed to 

adaptability of Kriging for this problem. It indicates that 

Kriging is suitable for some problems, even if RBF can lead to 

better results on most of the problems. As the results of 

ESAO-R are better, we will use the results of ESAO-R to 

compare with the other two methods, GPEME and SA-COSO. 

ESAO that appears in the whole paper is equivalent to 

ESAO-R. 

TABLE 6 COMPARISON OF ESAO AND GPEME ON 20D, 30D AND 50D 

PROBLEMS 

Problems 
ESAO GPEME 

Mean Std. Mean Std. 

E20 1.8099E-04 4.6815E-04 1.30eE-05 2.18E-05 

E30 0.02747 0.06964 0.0762 0.0401 

E50 0.7395 0.5549 221.0774 81.6123 
R20 15.1618 1.6289 22.4278 18.7946 

R30 25.0363 1.5701 46.1773 25.5199 

R50 47.3914 1.7118 258.2787 80.1877 
A20 6.8648 3.2586 0.199 0.5771 

A30 2.5213 0.8396 3.0105 0.925 
A50 1.4311 0.2491 13.2327 1.5846 

G20 0.9719 0.03910 0.0307 0.0682 

G30 0.9534 0.05037 0.9969 0.108 
G50 0.9404 0.04209 36.6459 13.1755 

SRR30 6.3250 26.4772 -21.861 36.4492 

RHC30 931.6703 8.9417 958.5939 25.6946 

C. Comparison with other algorithms 

The results of ESAO are compared with GPEME on 

medium-scale problems (20D, 30D, and 50D) [38]. GPEME 

uses 50 current best solutions to generate offspring. A local 

Gaussian process (Kriging) is built using 100 current best 

samples to prescreen the offspring. The one with the lowest 

prediction will be added to a database. It can be seen that 

GPEME is a local search method. Its basic assumption is that 

the current best solutions will focus on smaller and smaller 

sub-regions with better solutions found. A dimension reduction 

(DR) method is also employed to help the Gaussian process to 

find promising offspring. Results showed that DR is helpful to 

find better results in 50D problems.  

Table 6 shows the average best values and standard deviation 

found by ESAO and GPEME on 14 problems. It can be seen 

that ESAO outperforms GPEME on 10 (boldfaced data) out of 

14 problems. GPEME performs better on E20, A20, G20 and 

SRR30. For most of 30D and 50D problems, ESAO achieves 

better results. It is easy to understand this phenomenon since 

GPEME just utilizes best solutions to generate offspring. The 

offspring and the Gaussian process will gradually concentrate 

on smaller sub-regions. The mutation and crossover of current 

best samples may not help GPEME jump out of the local region 

in higher dimensional space. Besides, a local Kriging used by 

GPEME cannot effectively predict the offspring for higher 

dimensional problems. ESAO strictly generates offspring 

according to DE operations. The offspring can exploit 

promising sub-regions and explore larger space. There are 

higher possibilities that the global search finds unexplored 

region. Besides, the local search searches for the best region to 

accelerate the convergence. From the point of robustness, it can 

be seen that Std. follows the same trend with the average best 

values. If ESAO finds a smaller best value for one problem, its 

Std. is also smaller and vice versa with exception for E30, G20 

and SRR30. From the comparison on 20-50D problems, we can 

see that ESAO outperforms GPEME on most of the problems. 

TABLE 7 COMPARISON OF ESAO AND SA-COSO ON 50D, 100D AND 200D 

PROBLEMS 

Problems 
ESAO SA-COSO 

Mean Std. Mean Std. 

E50 0.7395 0.5549 51.475 16.246 
E100 1282.8950 134.3897 1033.2 317.18 

E200 1.7616E+04 1.1748E+03 1.6382E+04 2.9811E+03 

R50 47.3914 1.7118 252.58 40.744 
R100 578.8427 44.7671 2714.2 117.02 

R200 4.3185E+03 2.8440E+02 1.6411E+04 4.0965E+03 

A50 1.4311 0.2491 8.9318 1.0668 

A100 10.3640 0.2113 15.756 0.5025 

A200 14.6958 0.2193 1.7868E+01 2.2319E-02 

G50 0.9404 0.04209 6.0062 1.1043 
G100 57.3417 5.8387 63.353 19.021 

G200 572.9036 36.0425 5.7776E+02 1.0140E+02 

SRR50 198.6141 45.8253 197.16 30.599 

SRR100 713.4680 26.4540 1273.1 117.19 

SRR200 5.3891E+03 156.8544 3.9275E+03 2.7254E+02 

RHC50 975.3207 37.1101 1080.9 32.859 

RHC100 1372.4218 27.5390 1365.7 30.867 

RHC200 1.4564E+03 20.4315 1.3473E+03 2.4665E+01 

ESAO is also compared with SA-COSO on 50D, 100D and 

200D problems that are used in [40]. SA-COSO uses two 

surrogate assisted PSO algorithms for exploration and 

exploitation. Here, we also compare all the problems used in 

SA-COSO. It should be noted that only 200 best sample points 

are chosen to train the local surrogate model for 200D problems, 

since the dimension is very high. Table 7 shows the average 

best values and Std. on all the problems. It can be seen that 

ESAO performs better on 12 out of 18 problems, while 

SA-COSO behaves better on the other six. ESAO obtains better 

results on five 50D problems and the results are much better for 

the first four problems. The two methods obtain almost the 

same results on the last two 50D problems. ESAO also 

performs better for four 100D problems. It should be noted that 

ESAO finds much smaller values than those of SA-COSO on 

Rrosenbrock problem. For the 200D problems, both of the two 

methods perform better on three problems. However, 

SA-COSO seems more powerful in the last two very 

complicated problems. As for the robustness, the Std. values of 

ESAO are smaller than those of SA-COSO on most of the 

problems, which means that ESAO is more robust than 

SA-COSO. Through the comparison, we can see that ESAO is a 

stronger algorithm. However, when dealing with 200D 

problems, it is more difficult to provide reliable predictions for 

offspring in such a high dimensional space. The better samples 

found by ESAO are just from the local search. 
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TABLE 8 COMPARISON OF ESAO AND SHPSO ON 30D, 50D, AND 100D 

PROBLEMS 

Problems 
ESAO SHPSO 

Mean Std. Mean Std. 

E30 0.02747 0.06964 0.07620 0.04010 

E50 0.7395 0.5549 4.0281 2.0599 

E100 1282.8950 134.3897 76.106 21.447 

R30 25.0363 1.5701 28.566 0.4044 

R50 47.3914 1.7118 50.800 3.0305 

R100 578.8427 44.7671 165.59 26.366 

A30 2.5213 0.8396 1.4418 0.7740 

A50 1.4311 0.2491 1.8389 0.5637 

A100 10.3640 0.2113 4.1134 0.5925 
G30 0.9534 0.05037 0.9205 0.08806 

G50 0.9404 0.04209 0.9452 0.06140 

G100 57.3417 5.8387 1.0704 0.02049 

SRR30 6.3250 26.4772 -92.830 22.544 

SRR50 198.6141 45.8253 134.42 32.256 

SRR100 713.4680 26.4540 801.73 72.252 
RHC30 931.6703 8.9417 939.61 9.0177 

RHC50 975.3207 37.1101 996.60 22.145 

RHC100 1372.4218 27.5390 1419.8 38.238 

SHPSO [41] is a new surrogate-assisted evolutionary 

algorithm that deals with high dimensional expensive problems. 

A local RBF network is built with a certain number of current 

best samples. First, the RBFN learns the local details of the 

problem and a SL-PSO algorithm [49] searches for the 

optimum of the RBFN model. Second, when new particles are 

generated, RBFN can prescreen out the particles whose 

estimated values are smaller than their personal bests. 

Comparison results between ESAO and SHPSO on 18 test 

problems are shown in Table 8. It can be seen that ESAO 

performs better on ten problems, while SHPSO behaves better 

on the other eight. An obvious phenomenon is that ESAO find 

smaller function values on 30D and 50D problems (Ellipsoid, 

Rosenbrock, RHC), while SHPSO is superior on 100D 

problems. Since both ESAO and SHPSO use a local surrogate 

model built with the best samples, and search for the optimum 

of the local model, the reason that SHPSO performs much 

better may owe to the way of new particles generation. SHPSO 

only adopts the best samples to form the initial population. 

With the iteration goes on, the new particles could gradually 

aggregate in the promising region. This feature should be more 

effective in higher dimensional space. ESAO employs all the 

initial samples to form the population, the evolutionary rate of 

offspring may be slower. As for the Std., both of the two 

algorithms show robust features on nine problems. Besides, 

these Std. are not much different on most of the problems, 

expect for four 100D problems. The performance of ESAO is 

comparable with SHPSO on most of the problems. ESAO is 

more effective for 30D and 50D problems, while needs 

improvements for 100D problems. 

D. Comparison of convergence history 

Convergence history is also an important feature for an 

algorithm, besides average best values and standard deviation. 

A good algorithm can converge faster with limited NFE. Here 

we compare the convergence history of ESAO with other three 

algorithms. The x axis is the NFE and the y axis is the natural 

logarithm of objective values, except for Ackley series 

problems and SRR30. It should be noted that we do not have 

the original codes of GPEME, SA-COSO and SHPSO. We do 

not think we can reproduce their algorithms perfectly according 

to their papers. Therefore, we extract the data of the 

convergence history in the original papers. There will be some 

deviations to the original data, but the overall trend can be 

reflected for a fair comparison. It is also noted that GPEME 

performs better on 20D and 30D problems without dimension 

reduction (DR), while performs better on 50D problems with 

DR. We pick the better results of corresponding problems for 

the comparison. For SHPSO, the convergence profiles of 

Ellipsoid and RHC problems are based on true function values, 

while the other three algorithms employ the natural logarithm 

of the objective values. The extracted data of SHPSO on the 

two problems is logarithmized for the convenience of 

comparison. 

Fig. 2 shows the convergence history of five algorithms on 

all testing problems. Each row of subfigures displays a kind of 

problem with different dimensions and each column 

corresponds to different problems with the same dimension. 

Besides, the convergence trends of ESAO-K are involved. An 

obvious observation is that ESAO-R and SHPSO converge 

faster than the other three on most of the problems. This 

property is promising when fewer NFE is available for 

expensive problems. ESAO-R performs better than SHPSO on 

most of 30D and 50D problems, while SHPSO does better on 

most of 100D problems. SHPSO shows significant advantages 

on convergence speed and accuracy for the first four 100D 

problems. ESAO-R converges faster than GPEME on all the 

problems, except for three 20D and one 30D problems. 

ESAO-R also converges faster than SA-COSO, except for two 

100D problems. The reason that ESAO-R converges faster is 

due to the local search. Another finding is that ESAO-K 

converges the slowest on almost all the problems. The 

convergence trend corresponds to the results in Table 5, which 

means Kriging is not as accurate as RBF. 

In general, GPEME is more suitable for medium-scale 

problems and SA-COSO behaves better on higher dimensional 

problems. SHPSO is a very promising SAEA and shows better 

features on 100D problems. ESAO performs better than 

GPEME and SA-COSO, and is comparable to SHPSO on most 

of the problems. In a word, ESAO is a promising method for 

dealing with high dimensional expensive problems. 
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Fig. 2 Convergence history of four algorithms on all test problems
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Fig. 3 Geometry and coefficient of pressure of the initial and the best optimized 

airfoils of three algorithms 

E. Application of ESAO to an airfoil design problem 

ESAO is applied to an airfoil design problem, after it has 

shown its effectiveness on benchmark problems. The 

Class-shape Transformation (CST) method is used to 

parameterize the airfoil geometry. NACA0012 airfoil is 

selected as the baseline. Six upper and lower surface 

coefficients are selected as the design variables. Totally, 12 

variables are involved. It should be noted that the trailing edge 

thickness of upper and lower surfaces is set to zero. The design 

values of the initial airfoil are provided in Table 9. The upper 

and lower bounds are 120% and 80% respectively of the initial 

values.  
TABLE 9 VALUES OF INITIAL DESIGN VARIABLES 

Parameters x1 x2 x3 x4 x5 x6 

Values 0.1703 0.1602 0.1436 0.1664 0.1105 0.1794 

Parameters x7 x8 x9 x10 x11 x12 

Values -0.1703 -0.1602 -0.1436 -0.1664 -0.1105 -0.1794 

Xfoil [50] is used to calculate the lift and drag of the airfoil. 

The lift-to-drag ratio (L/D) could be obtained accordingly. The 

design objective is to maximize the L/D with the Mach number 

of 0.5, angle of attack (AOA) of 2 degrees and Reynolds 

number of 5e6. The constraint is that the maximum thickness of 

the optimized airfoil is larger than that of the initial design. The 

optimization problem can be formulated as Eq. (4)
 
. 

                         
0 max

0 0

max

. . 0

0.8 1.2

1,2,...,12

i i i

L D

s t t t

x x x

i

 

 



                       (4) 

The settings of ESAO are as follows. The initial number of 

points is 50 and the total number of simulations is 300. The 

number of points that used to train the local surrogate model is 

also 50. As ESAO has not been developed to deal with 

constrained problems, penalty function is used to transform the 

constrained problem into an unconstrained one. 

In addition to ESAO, GPEME and SHPSO are also included 

to optimize the airfoil problem. Since the problem just owns 12 

design variables, some modifications on GPEME and SHPSO 

need to be claimed. In GPEME and SHPSO, 100 best samples 

are included to build the surrogate model. When the number of 

samples is less than 100, all of samples in the database are used. 

Other settings of the two algorithms follow the original 

methods. For each algorithm, twenty independent runs are 

carried out and the statistical results are given. 

TABLE 10 OPTIMIZATION RESULTS OBTAINED BY THREE ALGORITHMS 

Algorithm 
L/D 

Best Worst Mean Std. 

ESAO 80.0864 77.5431 79.2765 0.8060 

GPEME 80.4762 79.4311 79.9798 0.3248 
SHPSO 80.3463 76.4967 78.9243 1.1845 

Table 10 shows the statistical results of the airfoil problem 

using ESAO, GPEME and SHPSO. All the three algorithms 

find better designs with constraints satisfied. It can be seen that 

GPEME performs the best on all the criteria. Both ESAO and 

SHPSO find some worse designs. GPEME also finds the largest 

average values, and ESAO and SHPSO hold almost the same 

performance. GPEME also has the smallest Std. In a word, the 

mean values obtained by the three algorithms are almost 

identical. GPEME performs the best, while ESAO and SHPSO 

behave almost the same.  

Fig. 3 shows the best optimized geometries of the airfoil by 

the three algorithms and the corresponding coefficient of 

pressure (Cp) along the chord. It can be seen from Fig. 3(a) that 

three optimized airfoils are almost identical. The upper surface 

raises upward, while the lower surface depresses. The small 

differences of three optimized airfoils exist in the maximum 

thickness. The enlargement in Fig. 3(a) shows the maximum 

thickness obtained by ESAO is a little larger. Fig. 3(b)-(d) give 

the Cp of the baseline and optimized airfoils. It can be seen that 

the drag is weakened for all the optimized design and the area 

of the covered region by the optimized Cp become larger, which 

means the L/D increases. Besides, three optimized airfoils 

show almost the same Cp, because of the similar outlines. 

 
Fig. 4 Convergence history of the airfoil problem using three algorithms 

Fig. 4 shows the convergence history of the L/D using three 

algorithms. It can be seen that ESAO converges the fastest at 

first until the number of simulations reaches 150 and the L/D 

does not become much better after that. GPEME finds better 

result continuously at first, and can find smaller result after 150 

simulations. SHPSO converges the slowest among the three 

algorithms. In a word, the three state-of-the-art SAEAs show 

their effectiveness on the airfoil design problem. GPEME finds 

the best results, while ESAO converges the fastest on the initial 

stage. When the computing resource is more limited, ESAO is 

preferred. 
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V. CONCLUSION 

In this study, we proposed an evolutionary sampling assisted 

optimization (ESAO) method for high dimensional expensive 

problems. ESAO considers global exploration and local 

exploitation simultaneously. The main work can be concluded 

as follows, 

⑴ A global RBF model is built with all existing samples to find 

the most promising offspring generated using mutation and 

crossover operators. A better sample will replace its parent‟s 

position. A local model is also built with a certain number of 

current best points. The global and local searches alternate 

when no better solution is found. 

⑵ The idea of adding better solution from the local search into 

the population is effective for ESAO. It is found that the local 

search will have more NFE than that of the global search. 

Correspondingly, the local search finds more NTI than that of 

the global search. RBF is more suitable to be the local model 

than Kriging, since the results of ESAO-R are much better than 

those of ESAO-K.  

⑶ ESAO is compared with GPEME, SA-COSO and SHPSO 

on 22 test problems. Results show that ESAO finds better 

results than GPEME and SA-COSO on most of the test 

problems. Compared to SHPSO, the performance of ESAO on 

100D problems should be improved. Another promising feature 

of ESAO is that ESAO converges faster than the GPEME and 

SA-COSO on most of the test problems, and is comparable with 

SHPSO. Finally, ESAO is applied to a 12 variable airfoil design 

problem to prove its effectiveness. 

The evolutionary sampling method used in the proposed 

algorithm is not limited to DE. It provides a framework and 

sheds some lights on the behavior and dynamics of the 

algorithm elements for future development. Next research will 

test the evolutionary operators of PSO instead of DE.  
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