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Knowledge-Based Design of
Artificial Neural Network
Topology for Additive
Manufacturing Process
Modeling: A New Approach
and Case Study for Fused
Deposition Modeling

Additive manufacturing (AM) continues to rise in popularity due to its various advan-
tages over traditional manufacturing processes. AM interests industry, but achieving
repeatable production quality remains problematic for many AM technologies. Thus,
modeling different process variables in AM using machine learning can be highly benefi-
cial in creating useful knowledge of the process. Such developed artificial neural network
(ANN) models would aid designers and manufacturers to make informed decisions about
their products and processes. However, it is challenging to define an appropriate ANN
topology that captures the AM system behavior. Toward that goal, an approach combin-
ing dimensional analysis conceptual modeling (DACM) and classical ANNs is proposed
to create a new type of knowledge-based ANN (KB-ANN). This approach integrates
existing literature and expert knowledge of the AM process to define a topology for the
KB-ANN model. The proposed KB-ANN is a hybrid learning network that encompasses
topological zones derived from knowledge of the process and other zones where missing
knowledge is modeled using classical ANNs. The usefulness of the method is demon-
strated using a case study to model wall thickness, part height, and total part mass in a

fused deposition modeling (FDM) process. The KB-ANN-based model for FDM has the

same performance with better generalization capabilities using fewer weights trained,
when compared to a classical ANN. [DOI: 10.1115/1.4042084]
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1 Introduction

Major technological and industrial advancements in manufac-
turing (e.g., additive manufacturing (AM), cloud computing,
nanomanufacturing, and advanced materials) have brought about
great paradigm shifts in the way products are designed and manu-
factured. Additive manufacturing research has enabled the growth
of innovative techniques and functional products, framing AM as
a feasible alternative to subtractive and formative techniques [1].
AM processes are being adopted at an ever-increasing pace for
mainstream manufacturing. Particularly, polymer extrusion tech-
nology, such as fused deposition modeling (FDM) are among the
most well researched and most widely used AM processes. The
FDM process involves successive melting, extrusion, deposition,
and solidification of thermoplastic polymer melts [2]. Typical
FDM equipment consists of a material delivery system or extru-
sion system, heating system, build plate, and filament feeder. The
process begins with the generation of layer profile information
using a rapid prototyping (RP) software for any given 3D CAD
model. The FDM equipment then deposits semiliquid molten
polymer beads onto a heated build plate following the layer infor-
mation provided from the RP software [2]. This process remains a
source of innovation; new technologies are being developed using
this approach for metal printing using a metal and polymer matrix,
for example, see Refs. [3] and [4]. The FDM process involves
storage of thermal energy in the molten material, distribution of
this energy into the part through a thermal conduction process,
and energy dissipation from the part by convection cooling. The
redistribution of the thermal energy ensures the bonding between
layers. Several methods exist for thermoplastic delivery in the
process, namely, use of liquefiers for self-extruding filament, fluid
metering rotary pumps, and high-pressure plunger systems [5,6].
The liquefier-based material delivery method is dominant in most
FDM machines. In this research, material delivery using a lique-
fier, which employs a self-extruding filament, is modeled.

For FDM parts, the cross section of a deposited layer is shaped
through the direct flow of polymer melt between the previous
layer and the printing nozzle. This results in shapes having the
form of flattened ellipsoids. Since the 1980s, process models have
been developed for understanding the complex phenomena taking
place in FDM, such as thermal transfer, layer creation, and bond-
ing processes [7,8]. Existing research on FDM modeling has
focused on the cooling of single and multiple filaments, thermal
behavior of the liquefier, analysis of melt front location, degree of
cooling in the nozzle and impact of its design on operational sta-
bility, temperature distribution across different part design config-
urations, and impact of the build file [5,8,9]. This available
knowledge provides a set of dispersed submodels supporting the
understanding of localized phenomena, but does not provide an
overall system perspective nor a global process model of FDM.
Thus, it raises two main questions for qualification of FDM tech-
nology in mainstream manufacturing: (i) are the part requirements
achievable with current FDM technology? and (ii) what are the
optimal manufacturing parameters that need to be selected to
achieve required part specifications? Further, existing localized
models cannot be used effectively in closed-loop control of FDM
machines. Thus, metamodeling approaches can be evaluated for
effective modeling and control of FDM processes [10].

Artificial neural networks (ANN) have been widely used as a
modeling strategy to approximate complex functions. In this con-
text, ANNs can be considered as one type of metamodeling
approach [11-14]. ANNs are utilized in numerous domains and
form the backbone of deep learning algorithms. The main chal-
lenge of developing and implementing an ANN is that it demands
a large number of training data. Moreover, the architecture of an
ANN is problem-dependent, and it requires extra training to
explore and progressively generate a suitable architecture via the
weights allocated to each of the edges [15]. After training, ANNs
are often difficult to interpret. Hence, ANNs have lost their luster
as a metamodeling approach over the past two decades [16]. This
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is specifically the case when a limited amount of training data is
available, or if the system to be modeled is subject to large vari-
ability due to its complexity. Deep learning approaches can be
used for such large complex systems but the duration of the train-
ing can be extremely long (up to several years) and extremely
costly [16—18]. The amount of training data required sometimes
implies the need of resources often only available in large compa-
nies. In addition to data challenges, an ANN topology has to be
specified before the training, and available system knowledge is
often not considered in designing such topologies. However, in
engineering design and manufacturing, one needs to understand
system behaviors in detail in order to produce better systems or
products.

Toward this goal, a methodology to design a modular ANN
topology by integrating existing knowledge is proposed in this
research. The modular ANN is composed of zones where system-
related knowledge is available and synapses/weights of neurons in
the ANN can be precomputed without training. In addition,
detected zones where knowledge about the system is insufficient
to precompute weights, classical ANNs are trained using experi-
mental data. This proposed methodology is applied to an FDM
process to elucidate how the topology of a modular ANN is
derived. The approach helps to understand how a modular ANN
structure composed of a mixture of known zones with precom-
puted weights and unknown zones requiring training can improve
the performance of ANNs compared to the classical ANN
approach. The existing process knowledge is integrated into this
research using the dimensional analysis conceptual modeling
(DACM) framework [19]. The DACM framework recently has
been applied in various engineering domains, including reverse
engineering, early stage design, multidisciplinary optimization,
and in this research is applied to artificial intelligence. This con-
joint modeling approach, combining DACM and classical ANNSs,
results in a new type of modular knowledge-based ANN (KB-
ANN), differing greatly from existing KB-ANN methods. The
expected outcome of this article is to benefit from the existing
knowledge of a system and encode this knowledge in the form of
causal graphs linking different variables of a system. Specifically,
in this research, variables are termed as neurons and causal graphs
generated using DACM are considered as an ANN. Training
datasets from experiments are required only for the zones in the
KB-ANN where existing knowledge is limited, nonexistent, or
difficult to extract. For zones with sufficient pre-existing knowl-
edge, the training process is replaced by precomputed weights for
neurons using the DACM methodology. This conjoint experimen-
tal and modeling approach using KB-ANN is used to predict wall
thickness, height, and mass of a part produced using the FDM pro-
cess. The developed KB-ANN model is compared to a classical,
fully connected ANN model under prescribed performance
metrics.

The research is organized as follows: Sec. 2 describes the
experimental procedure used in the study and the approaches con-
sidered to encode knowledge for designing the ANN topology.
Section 3 presents the case study and the application of the devel-
oped methodology for the case study. Section 4 discusses the key
results of the study, and Sec. 5 concludes the work and briefly
describes future development efforts.

2 Background

2.1 Design of Experiments. Performing experiments by
varying one-factor-at-a-time is cost intensive. Thus, design of
experiments (DOE) proposes a set of principles to maximize the
efficiency of experiments by minimizing the number of experi-
ments to be conducted. One of those principles is the use of facto-
rial experiments. Full factorial DOE explores all the possible
combinations of factors and levels [20]. In AM, the number of
factors influencing the part quality is potentially large, and it is
impractical and difficult to explore all the potential combinations
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of these possible factors. Sampling, which is the use of a subset of
the experimental space, is consequently required to explore this
space at an acceptable cost [21,22]. Currently, there are multitude
of sampling methods available to explore the experimental space,
such as stratified sampling, probability sampling, and sequential
sampling [20,22-25]. In this research, DOE plays a role in collect-
ing training datasets for zones of nonexistent knowledge. Thus,
the sampling method must explore the experimental space in those
zones to ensure good generalization for the ANN training.
Plackett—-Burman design or Taguchi’s orthogonal arrays are pro-
ven to be useful in evaluating a small number of sample points
considering interaction between the studied variables [20,26,27].
However, the Taguchi method has come under scrutiny due to its
many weaknesses in terms of confusing signal-to-noise ratio sta-
tistics, nonadaptive and nonsequential approach to experimenta-
tion, and ignorance of randomization, and old data analytical
approaches [28]. Hence, some of the classical Taguchi tools such
as signal-to-noise ratio are not utilized in this study. Nevertheless,
randomization is considered via the selection of Taguchi tables,
and the analytics are developed as part of the KB-ANN approach.
The Taguchi method is employed in this study mainly for its
simplicity. In addition, optimizing the experimental design for
AM is not the central idea of the study, but such optimization
could further improve the accuracy of the developed process mod-
els in this research.

2.2 Metamodeling Using Artificial Neural Networks. Several
metamodeling approaches, such as Kriging models, polynomial
models, and neural network models, exist in the literature for
modeling complex systems. A metamodeling approach using
ANNSs can provide numerous advantages for the FDM process and
AM, in general. ANN enables the development of global predic-
tive models integrating numerous parameters. Furthermore, ANNs
can support the implementation of a closed-loop control system to
improve part quality and process repeatability. In other metamod-
eling approaches, such as Kriging or Gaussian process regression,
modeling is performed as black boxes built over a designed set of
experiments. This means that existing knowledge of the process
or system (e.g., process physics) is not used. The current effort is
using this untapped knowledge of the process or system to enable
a gray box or white box metamodeling approach. The proposed
approach differs from classical surrogate methods in using exist-
ing knowledge; thus, the number of required experiments is
reduced. The experiments are not used to train the entire model,
but to train only parts of the model. Through knowledge extrac-
tion and management, we can limit the need for experimental data
sets by integrating the existing system knowledge available for
the observed process into the ANN [19,29]. Nevertheless, existing
knowledge in the literature is represented in multiple forms and
lacks interoperability [30]. For this reason, the DACM framework
is utilized to integrate different knowledge to be coherent with
each other, and to visualize the cause—effect relationships in the
form of causal graphs.

2.3 Dimensional Analysis Conceptual Modeling Frame-
work. Coatanea et al. [19] developed a method to extract and
encode knowledge associated with system architectures, equa-
tions, and measuring units. The encoded knowledge is represented
in the form of causal graphs. DACM can be an efficient approach
to the creation of surrogate models and for adaptively training an
ANN. Modeling starts with designation of the system boundary
and definition of the model’s objectives. Functional representation
is used to represent the sequence of functions taking place in the
system of interest. Those sequences of functions describe the dif-
ferent behavior of the observed system. DACM transforms the ini-
tial function model into a generic functional model formed around
a limited set of fundamental functions and uses the causal rules
extracted from bond graph theory [31-33]. The dimensional anal-
ysis (DA) is applied to each node of the graph to form behavioral
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Fig.1 Visual representation of the DACM framework

equations. A color pattern is applied to different variables to high-
light their design nature. The primary result of this modeling is a
colored hypergraph with a list of governing equations for the sys-
tem of interest. The model can then be used for qualitative or
quantitative simulations, and to search for contradicting variables
during optimization. Figure 1 visualizes different steps in the
DACM Framework; the process ends when a computable model
of the system of interest is available with the required level of
detail.

Generic functions represented by bond graph organs are used as
an intermediate level between the classical functional models
and the final causal graphs [32,33]. To facilitate the systematic
assignment of variables to the generic functional representation,
regardless of the energy domain, all variables are classified into
five generalized categories, namely, flow, effort, momentum, dis-
placement, and connecting [34].

The mathematical relationship between generic variables
describes how the variables relate to each other. The sequence of
functions in the functional model provides initial insight into the
global causality. Mapping functions to the generic functional ele-
ments enables the extraction of the causality among the variables
characterizing those functions. Table 1 summarizes the causal
rules in the DACM approach. Figure 2 represents a causal extrac-
tion algorithm used to automate the DACM modeling process.
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Table 1 Causality for generic functions and associated bond graph elements [52]

Bond graph element Schematic view

Bond graph element Schematic view

Source of effort (Se) fixed effort-out causality

Capacitor (C) fixed effort-out causality

Resistor (R) preferable effort-out causality (Resistive)

Transformer (TF) maintain incoming causality
(two-port element)

Effort junction (JE) or (0) (multiport element)
er=e=e=esfi+hHr+f3+f1=0

Source of flow (Sf) fixed flow-out causality f
Inertia (I) fixed flow-out causality

Resistor (R) preferable flow-out causality
(Conductive)

Gyrator (GY) switch incoming causality
(two-port element)

Flow junction (JF) or (1) (multiport element)
fi=fh=f=fi es+ert+es+e,=0

First, the algorithm checks if a generic functional organ is defined
for each functional box. Then, the algorithm explores each func-
tional box of the model from start to end, to verify that there is no
conflict in the coherence of the generic functional representation
in terms of causality.

Finally, according to categories of assigned variables and using
the causal rules (Table 1), the cause—effect relationships between
variables are established [19,35]. The causal graph generated
using DACM is used to define the topology of ANNs during pro-
cess modeling.

2.4 Empirical Learning Using Artificial Neural Networks.
Machine learning methods are empirical learning techniques.
Empirical learning systems inductively generalize from specific
examples. They usually require little theoretical knowledge about
the problem domain. This advantage is compensated by the need
for a large training data set. ANNs have proven to be equal, or
superior, to other empirical learning systems over a wide range of
domains, when evaluated in terms of their generalization ability
[36,37]. ANNSs are usually comprised of layers (k) with nodes (j),
where each node sums up i weighted outputs of the nodes from
the previous layer as per the following equation:

Sjk = Ziwi/,kxi,k—l + Wo (D

In Eq. (1), s; represents the weighted sum of node j at layer &,
w;; represents the weight of ith output at node j, w,, ; represents the
initial weight of layer £ at the first node. This summation is passed
through a nonlinear activation function, the output of which acts
as input for the next layer. A common choice for the activation
function is the sigmoid function, which is also called the continu-
ous unit step function

1

1+ exp(—Sjk) 2)

h(Sj,k) =

The computational power attributed to these networks origi-
nates from these nonlinear functions A(s; ;) of the weighted sums.
However, the nonlinearity also makes it difficult to mathemati-
cally analyze these networks at a deeper level and requires a large
set of training data to capture the desired relationship. In ANNSs, a
state p; of a neural network can be uniquely described by {w; ...
w,}, where w; represents a weight within the network. During the
training process, the network goes through a subset of the state
space (p) continuously improving the model performance. The

021705-4 / Vol. 141, FEBRUARY 2019

hypothesis for the following investigation is that the total number
of states p and the total number of weights n of an ANN can be
reduced by incorporating prior knowledge about the system. Thus,
this approach can increase the efficiency of the model, while
reducing the computational cost.

The initial weights allocated to the network can greatly affect
how well ANNs can learn [38]. The initial weights allocated is
also the central source of the well-known vanishing gradient prob-
lem associated with ANNs [39], which is present when training
ANNs with gradient-based learning methods and backpropaga-
tion. According to Hochreiter et al. [39], in such methods, each of
the ANN’s weights receives an update proportional to the gradient
of the error function with respect to the current weight in each
iteration of training. In some cases, the gradient will be vanish-
ingly small, preventing the weight from changing its value. In the
worst case, this may completely stop the ANN from training. This
problem is more likely when too many hidden layers of neurons
are used in an ANN. Some heuristic rules can be used to constrain
the potential size of an ANN [40]. This implies that ANN designs
must be small in terms of the number of inputs, number of out-
puts, size of hidden layers, and number of hidden layers.

2.5 Artificial Neural Network-Based Process Modeling.
Artificial neural networks with numerous architectures and train-
ing algorithms are utilized in process modeling and forecasting
output variables. ANNs with the assistance of data standardiza-
tion, data preprocessing, and model performance optimization
have become a key enabler in modeling different processes. The
main advantages of ANNs in modeling when compared to other
process modeling methods are, (i) its ability to handle noisy and
ambiguous data, (ii) lower cost of implementation than other
approaches, (iii) and their suitability for accurate representation of
dynamic problems [41,42]. However, it is only possible to per-
form black box modeling using classical ANNs, resulting in lim-
ited information about the hidden layers and relations between the
layers. This lack of process information during ANN topology
design can result in overfitting models due to the empirical nature
of ANNSs [42]. Thus, research must be focused on designing ANN
architectures that are transparent and require less computation to
improve cost-effectiveness.

2.6 Relevance of Designing an Artificial Neural Network
Topology for Manufacturing. In manufacturing, several prob-
lems are associated with capturing and using existing knowledge.
This knowledge can be efficiently used to reduce the size and
complexity of engineering models and be applied to the design of
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ANN topologies. Dimensional analysis offers a way to reduce
problem dimensionality by combining variables. For example,
inputs of an ANN can be combined into dimensionless groups.
This transformation directly affects the number of weights to be
trained and, intuitively, should have a positive effect on ANN per-
formance. Similarly, the DACM method generates causal graphs
that can be seen as elementary ANN topologies. Such ANNs can
quickly grow in size and face the problems presented above, such
as, vanishing gradient issue and overfitting. For this reason, a
modular approach to model the target variables is presented. For
example, causal graphs such as the one presented in Appendix A
can be seen as an ANN topology having multiple zones. For zones
where sufficient process knowledge is available, weights can be
precomputed without the need for training datasets. A small por-
tion of the causal graph in Appendix A is shown in Fig. 3 as an
example of a knowledgeable zone. The bubbles in the figure

Journal of Mechanical Design

Af=(m/4). df?

VFR=FFR. Af
1

Fig. 3 Knowledgeable zone in the causal graph with precom-
puted weights

represent different variables within a knowledgeable zone. The
precomputed weights are shown on the connectors between these
variables.

For the zones where knowledge is nonexistent, a combination
of modules consisting of classical ANNs are modeled. The
modules are smaller ANNs that can be trained separately.
The intermediate blue nodes represent, in an explicit manner, the
locations where sensors could be implemented in the AM process
to collect data required to train the local ANNSs. If sensing in these
locations is not possible, the intermediate data will need to be
simulated or otherwise predicted. The central concept of a
knowledge-based ANN remains, i.e., to use existing knowledge of
a specific problem to develop a topology supporting faster training
and better performance using smaller datasets [43]. This approach
is a “hybrid learning system” because it combines empirical learn-
ing and domain theory learning [44]. Experimental training exam-
ples are used for empirical learning and domain theory learning is
completed by encoding existing knowledge.

As described above, a KB-ANN is a hybrid-learning network
that uses both theoretical knowledge and empirical data to con-
struct a model of a physical system. Knowledge extraction and
encoding in a KB-ANN can enable superior interpolation and
extrapolation to estimate unmeasurable parameters. The main aim
of the KB-ANN is to apply, transfer, and translate pre-existing
knowledge into a hybrid neural network [45]. This allows for con-
solidation of knowledge to develop a global model of the system.
Traditional KB-ANN development algorithms for a system to
learn from both existing knowledge and empirical examples are
shown in Fig. 4. The hybrid-learning approach starts with the con-
version of existing knowledge to symbolic rules using the rules-
to-network algorithm. These rules are used to construct and initi-
alize a neural network that performs as a classifier that adheres to
the rules upon which it is built. The next step involves using the
network-training algorithm to train the classifier (initial ANN
structure) using empirical examples to obtain a final trained ANN.
Hence, the traditional KB-ANN method involves training all
nodes within the developed ANN.

However, the KB-ANN approach developed herein follows
one central objective: the significant reduction in the size of
training data. The resulting approach is unique, because a sig-
nificant portion of the KB-ANN produced using this approach
does not require training. Training can be eliminated for por-
tions of the network by using the DACM framework to encode
existing knowledge in the form of an ANN architecture. This
initial architecture, which forms the backbone of the KB-ANN

FEBRUARY 2019, Vol. 141 / 021705-5
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structure, is connected to smaller classical ANNs that represent
the zones of the model where knowledge is nonexistent. Thus,
the proposed approach differs from existing KB-ANN methods
in terms of initial structure development and training; how-
ever, the proposed approach is similar to classical ANNs in
terms of training knowledge-limited zones. Hence, using the
approach described in the foregoing, classical ANNs and a
KB-ANN are developed to model an FDM process, as
described next.

3 Fused Deposition Modeling Case Study

In this section, it is demonstrated that exploration of the manu-
facturing space can be effectively performed using KB-ANN
modeling to improve AM part quality, while keeping the number
of required training data sets low. The printed FDM part used in
this case study is shown in Fig. 5.

The FDM part has a wall thickness ¢ =0.5*0.05mm and
height H,=12 = 0.05mm, constant for the entire profile. The
concurrent modeling and experimental process applied in this
study are decomposed into six steps summarized below
(Fig. 6).

Step 1: Four initial printing tests are completed using prese-
lected printing process parameters proposed by the slicing soft-
ware (Repetier).

Step 2: The printing process parameters are analyzed and pro-
cess parameters that will potentially affect the targets, namely,
wall thickness (e), part height (H,), and part mass (M,) are
extracted.

Step 3: A rapid evaluation of the effects of process parameters
on the targets is performed with a few supplementary experi-
ments, implying simultaneous variation of the parameters using
orthogonal arrays. This evaluation is performed to find high
latency variables that can later be fixed at a level minimizing their
effect on the targets.

= R=2mm
g
(=)
wv

X  R=Imm

N\

Printing direction

Fig. 5 Solid model (left) and dimensions (right) for the sample
part [46]
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Fig.6 Concurrent experimental and modeling process

Step 4: The most significant parameters to achieve the expected
thickness ¢=0.5 = 0.05mm and height H,=12 £ 0.05mm are
selected for developing a predictive model.

Step 5: The prediction model for thickness, height, and mass
are built for the remaining control factors: nozzle travel speed
(TS), layer height (h;), and extruder temperature (Tg,). A col-
ored causal graph is first developed using the DACM approach
to encode the knowledge. The variables are classified into four
main classes (i.e., colors). Exogenous variables (shown in black)
are outside the system boundary and part of the surrounding
environment of the system. They cannot be modified by the
designer, but are imposed on the system. Independent design
variables (shown in green) are not influenced by any other vari-
ables in the system, and their value can be modified by design-
ers (examples include the nozzle travel speed, extruder
temperature, and layer height). Dependent design variables
(shown in blue) are influenced by other variables such as exoge-
nous and independent variables, and are difficult to modify and
control. Performance variables (shown in red) are the objective
variables (selected by the designers to evaluate the performance
of a system) and are usually dependent variables. In this case,
wall thickness, part height, and mass are the dependent varia-
bles selected as the performance variables. Finally, the devel-
oped causal graph is translated into an ANN topology, which is
designed for maximum compactness to maintain all the connec-
tions in the causal graph. Three classical ANNs and a KB-ANN
topology are evaluated in this study. The KB-ANN topology
developed in the form of modular ANNs is shown in the causal
graph in Appendix B.

Step 6: The three classical ANNs and the KB-ANN are com-
pared for performance and prediction capability to evaluate the
relative utility of the selected approaches.

4 Results and Discussion

In steps 1 and 2, initial experimental prints were created and
the process parameters that could affect printed part quality were
detected. In step 3, the most influencing factors were taken into
consideration, i.e., the layer height (4;) in mm, the extruder tem-
perature (T,) in °C, the nozzle TS in mm/s, and the fan speed
(Fan) in rpm. In step 4, these four input parameters influencing
the wall thickness, part height, and mass were analyzed at three
possible levels. An L27 standard orthogonal array was adopted,
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and each of the necessary 27 experiments was replicated once to
ensure repeatability of the FDM machine. In step 4, fan speed var-
iations were removed from the model because of the latency of its
effects on the three performance variables. The fan speed parame-
ter was fixed to a value of ON at 50%.

In step 5, the prediction model for thickness, height, and mass
was developed. The causal graph developed using the DACM
framework for FDM is presented in Appendix A. The developed
causal graph is simplified and represented in the form of modular
ANN:Ss for designing the KB-ANN topology (Appendix B). In both
causal graphs, the independent variables (TS, h;, and Ty,) are
represented in green. The dependent variables of the system are
represented in blue. The performance, or target, variables are rep-
resented in red. The nodes of the causal graph from DACM are
connected using black leader lines, where the arrows represent the
direction of causality and the numbers represent precomputed
weights for knowledgeable zones. Classical ANNs are presented
in zones where knowledge is nonexistent. From the developed
causal graph structure, two types of ANNs are developed, namely,
a classical fully connected ANN and a KB-ANN.

4.1 Classical Artificial Neural Network. Three classical
ANNs (Fig. 7) are designed to model the three outputs, namely,
wall thickness, part height, and mass using three inputs: layer
height, travel speed, and extruder temperature. The ANNs are
designed with two hidden layers consisting of three (3) neurons
each and one output layer with one (1) neuron. The perform-
ance of the network is measured in terms of mean squared error
(MSE). The Levenberg—Marquardt algorithm was chosen as the
training function, and the tangent sigmoid function was chosen
for the transfer function [47]. The input data for the ANN was
divided, using 70% for training, 15% for validation, and 15%
for testing.

Typical performance graphs contain three curves, namely, a
training curve, a validation curve, and a test curve, which together
indicate the mean square error of a training process. The perform-
ance curves indicate the quality of the training in terms of error
reduction, under-fitting (bad training), and overfitting. For a good
fit performance, the three curves must follow a downward trend
indicating low MSE. In addition, the curves must be smooth and
must follow the pattern of training and testing curves at the very
bottom, followed by a validation curve.

The performance curves (Figs. 8(a)-8(c)) for the fully con-
nected classical ANNs are shown in Fig. 8. The MSE value for
best performance was found to be 5.43 x 10~* after nine iterations
(Fig. 8(a)), 1.15x 10~* after ten iterations (Fig. 8(b)), and
2.01 x 1072 after 23 iterations (Fig. 8(c)) for wall thickness, part
height, and part mass, respectively.

The performance curves obtained from the classical ANN
(Figs. 8(a)-8(c)) are compared to the performance curve (Fig. 9)
of a standard function, z = sin(x)cos(y), modeled as a best fit per-
formance using a classical ANN for 100 training samples. It is
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Fig. 8 Performance curves for classical fully connected ANN
to model: (a) part wall thickness, (b) part height, and (c) part
mass

seen from Fig. 8(«a) (wall thickness) and Fig. 8(c) (mass) that the
training curve follows a downward trend, while the testing and
validation curves follow a downward slope until the lowest MSE
value achievable; it then trends slightly upward, indicating a low
generalization to inputs with values lying outside the range of the

FEBRUARY 2019, Vol. 141 / 021705-7

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 12/20/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Best Validation Performance is 2.8081¢-06 at epoch 1000

—Train
e Validation
Test
--==-Best

i Error (mse)

e —

300 400 500 600 700 800
1000 Epochs

" " "
0 100 200 900 1000

Fig. 9 Performance curve for best-fit scenario (standard func-
tion z = sin(x).cos(y))

training data. In addition, the upward trend of the validation and
testing curves against the continuous downward trend of the train-
ing curve indicate the possibility of overfitting. In Fig. 8(b),
curves are steady at a fixed MSE value with the validation curve
trending below the testing curve, indicating a poor fit to the pro-
vided data samples and a low level of generalization for inputs
that lie outside the training state.

All performance curves show MSE value at low number of iter-
ations indicating that the ANNs could not find a better fit or any
reduction in MSE past that iteration point. This is opposed to the
best-fit scenario shown in Fig. 9, which obtained best performance
MSE value at 1000 iterations.

4.2 Knowledge-Based Artificial Neural Network. The
KB-ANN was designed as four modular ANNs following the sim-
plified causal graph, as shown in Appendix B. The first modular
ANN is designed for one output: ratio of viscosity (x) of molten
polymer at extrusion temperature to the viscosity (y;) of molten
polymer at a reference temperature (175°C). The filament feed
rate and extruder temperature (7.) are used as inputs. Here, the
output of the modular ANN 1 is an intermediate (blue) variable,
which cannot be directly measured and, hence, has to be estimated
using numerical simulations. A direct solution to the simulation of
all the missing data is not provided in this study. In some cases,
these data can be computed using the DACM method or numeri-
cal simulation, or can be directly measured using sensors. In
this research, numerical simulation of viscosity was carried out
using the CFD Module of comsoL muLTiPHYSICS software. The
Navier-Stokes equation (Eq. (3)) and continuity equation
(Eq. (4)) are solved for the conservation of the momentum and
conservation of the mass [48].

0
pFZ:V.[—pl—l—u(Vu—i-(Vu)T] +pg+Fy+F (3

p(u.Vu) =0 “4)

Viscosity of the fluid has been considered using the Carreau
model in the numerical simulation (in the following equation):

n—1

1= Hing + (Mo — Hing) [1 4 (£)] )

The viscosity of polylactic acid has been previously determined
by measurement from a parallel-plate rheometer for frequency
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Table 2 Values for Carreau-Yasuda viscosity curve fitting

175°C 185°C 195°C 205°C
1o (Pa-s) 5169 £5 2480 = 14 1945 £ 16 726 £ 6
Ling (Pa-s) 0 0 0 0
A 0.048 = 0.02 0.09 0.5 0.08+0.02  0.05=*0.01
a 0.82+0.3 1.60.8 193105 2.60 =0.01
n 0.52+0.3 0703 0.693*x0.2 0.79 = 0.11

range 100-0.1s™". Tests were carried out at four different temper-
atures: 175°C, 185°C, 195°C, and 205°C [49]. The viscosity
curves were fitted with the Carreau—Yasuda equation using ORIGIN
software. The terms of the Carreau—Yasuda equation for the
studied temperatures are shown in Table 2. These terms have been
implemented in the oRIGIN software in order to determine the flow
properties in the liquefier.

The second modular ANN is designed for the output, wall
thickness. To reduce the dimensionality of the ANN, the inputs to
predict wall thickness were represented in the form of Pi numbers
(dimensionless primitives) using DA [50]. A widely used theory
in DA is the Vashy—Buckingham 7 theorem [51,52], which identi-
fies the number of these independent dimensionless primitives
(Pi numbers) that characterize a given physical problem. The
dimensionless primitives are the invariants of the problem, where
the term “invariant” is understood here as a relationship deeply
connected with the behavior of certain aspects of a phenomenon.
The DA method offers a way to simplify complex problems by
grouping variables into dimensionless primitives. Every law
which takes the form y, = f(xy, x5, X3, ..., X,) can take the alterna-
tive form shown in Eq. (6), where 7; (for i =1 to n) is the dimen-
sionless product for the variable x; and 7, is the dimensionless
product of variable y,

Ty :f(n17n27~'~7n!l) (6)

Equation (6) is the final form of the dimensional analysis and is
the consequence of the Vashy—Buckingham theorem for the vari-
able x;, which takes the form shown in the following equation:

_ %ij Ot
Ty = yix] 1 7)

Here, x;, x;, and x,, are called repeating variables, y; is the per-
formance variable, and the o values are exponents ensuring the
dimensional homogeneity of the relation.

The third modular ANN was designed for part height (H,) as
the output, with layer height (4;) and number of layers (1) as the
inputs. The fourth modular ANN was designed for mass (M,) as
output, with wall thickness (e), height (H,), and density of the
material (p) used as the inputs. ANN performance was measured
using MSE. The Levenberg—Marquardt algorithm was chosen as
the training function and tangent sigmoid function was chosen for
the transfer function [46]. The input data for the ANN were
divided, using 70% for training, 15% for validation, and 15% for
testing. The modular ANNs are designed with one hidden layer
consisting of three nodes each. The performance curves for the
four modular ANNs are shown in Figs. 10(a)-10(d).

Figure 10(a) shows that the modular ANN 1 was able to obtain
the best validation performance at the 53rd iteration with an MSE
of 7.7186 x 107>, The performance curves show training, testing,
and validation following each other in a downward trend, indicat-
ing a good fit and good generalization capability. The downward
trend also implies that a better model could be obtained by
increasing the number of training samples. The results for modu-
lar ANN 2 for wall thickness (e) are shown in Fig. 10(b). The
observed MSE was found to be 9.30 x 107> after 93 iterations.
The curves show overlap during the first ten iterations, but soon
smoothen and follow a uniform trend. This shows that the ANN
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Fig. 10 Performance curves for: (a) modular ANN 1 (viscosity) in the KB-ANN, (b) modular ANN 2 (thickness) in
the KB-ANN, (¢) modular ANN 3 (height) in the KB-ANN, and (d) modular ANN 4 (mass) in the KB-ANN

was able to train for 93 iterations without failure, indicating a
good fit to the training data. The modular ANN 3 results for part
height shown in Fig. 10(c) have best-fit performance with an MSE
of 1.41 x 10™* after only four iterations. The curves are smooth
and follow each other in the graph; however, the ANN achieved
the best performance at four iterations, indicating a mediocre fit to
the training data. Finally, the results of modular ANN 4 for part
mass (M,) are shown in Fig. 10(d). The observed MSE is
2.54 x 10~* after 23 iterations. It was seen that the performance
curves follow a downward trend with the validation curve below
or at par with the testing curve. This indicates an average fit to the
provided data samples, but with the possibility of overfitting.

4.3 Validation. The validation of the developed models was
carried out with nine experimental tests. The values for the
independent input variables (layer thickness, extruder tempera-
ture, and travel speed) were chosen at random. The range of val-
ues for the independent variables are as follows, layer thickness
(0.1-0.4 mm), extruder temperature (175-215°C), and travel
speed (5-19mmy/s). From validation, the standard prediction
errors for thickness, height, and mass using the KB-ANN were
found to be 0.1627, 0.3647, and 0.4621, respectively. Similarly,
the prediction errors for the fully connected classical ANN were
found as 0.1376 (thickness), 0.5898 (height), and 0.4667 (mass).

Journal of Mechanical Design

The propagated global error of the KB-ANN model was found to
be 0.5220.

It can be noted that the KB-ANN global model error is propa-
gated due to the output of modular ANN 1 (viscosity) acting as
input for modular ANN 2, and similarly, the output of modular
ANN 2 (thickness) and ANN 3 (height) acting as input for modu-
lar ANN 4 (mass). The MSE and standard error calculated after
validation for the two types of networks are compared in Fig. 11.
It is seen that the errors for the KB-ANN are in the same range as
the prediction error of the classical ANN.

4.4 Model Comparison. In the case presented above, the
KB-ANN method performed better than the classical fully con-
nected ANN in terms of fit to the provided experimental data.
Specifically, the prediction error for the KB-ANN method was
found to be nearly the same as the classical approach for wall
thickness and part mass, while lower for part height. This pre-
diction error was largely the result of lost information when
streamlining the complete causal graph (Appendix A) to the
simpler version (Appendix B). In particular, the regression fit
for the height using the KB-ANN method was poor largely
due to the absence of adequate knowledge or models to repre-
sent the phenomena that influence part height. For instance,
the cooling effect of the fan may affect the solidification rate
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classical ANN and the developed KB-ANN

of the molten polymer, resulting in tight bonding or sparse
bonding of layers, which would have a direct impact on part
height. The addition of key variables to the study through sim-
ulation results or experimental estimates would improve the
training and reduce the prediction error. The key difference
between the classical ANN model and KB-ANN model lies in
the total number of weights that define the state space for each
model. In this example, the KB-ANN model had 12 fewer
weights than its classical counterpart. Further, the hidden layer
of the KB-ANN model operates within the dimensionally
homogenous space. The combination of these factors (number
of weights trained and dimensionally homogenous hidden
layer) results in improved efficiency during fit to training and
similar MSE performance for the same number of training
(27) samples. This increase in efficiency is visible in the train-
ing and its robustness. The KB-ANN method provides more
robust generalization compared with the classical ANN
approach. Nevertheless, the small number of data in the train-
ing set used in this effort, limit the conclusions that can be
drawn from the training, validation, and testing. The higher
number of epochs required for training in the KB-ANN
method demonstrate that the difference in training epochs will
increase with bigger datasets. It also indicates that KB-ANN
can provide better results for smaller datasets.

5 Conclusions

This research developed a KB-ANN approach to limit the
amount of required experiments for training and validating ANNs
for characterizing a manufacturing system. The approach was
applied to develop a metamodel capable of dynamically predict-
ing control factors of fused deposition modeling. Benefits were
gained from causal graph representation, which enabled the
design of KB-ANN as modular ANNs with reduced dimensional-
ity. The results demonstrated the superiority of the KB-ANN
approach over classical full-connected ANNs in terms of fit and
regularization for the same performance and same number of
training samples. The case study was limited to the prediction of
three target variables in comparison to the large number of target
variables that essentially need to be modeled for a complex FDM
system. In reality, more intermediate variables and phenomena

021705-10 / Vol. 141, FEBRUARY 2019

(Appendix A) need to be modeled to represent the FDM process
holistically. The work reported herein demonstrates an initial
proof of concept for the techniques and approaches that can be
used to combine knowledge in a modular manner and to reduce
dimensionality of complex problems using knowledge extraction,
representation, and integration techniques such as dimensional
analysis.

6 Future Work

The authors are expanding the case study analysis to model a
larger set of target variables for FDM using the current method-
ology to obtain a holistic FDM process model. The developed
model will be usable for real production simulations and process
parameter tuning. In addition, the DACM method in this study
generated causal graphs that were used to define elementary
ANN topologies. Such elementary ANNs when expanded for a
larger set of variables can grow quickly in size and be faced with
problems such as, high training time, high training cost, require-
ment of large training data, high probability of model fitting
issues (under-fitting or over-fitting), and vanishing gradient
issue. Thus, a multilevel hierarchy approach to ANN topology
creation as well as the use of regulators for the flow of values
similar to long short-term memory neural networks is being
investigated. This would allow for the development of a hierar-
chy of variables ranked based on importance and modular ANNs
for variables in sequence following the hierarchy. This method
could help in prioritizing variables and constrain the size of each
modular ANN in the holistic KB-ANN model reducing training
time and cost. The approach would also improve the accuracy of
the ANN training and in turn reduce the prediction error of the
holistic FDM model.

Nomenclature

a = dimensionless parameter describing the transition
between the first Newtonian plateau and the power law
zone

Ay = cross-sectional area of filament (mm2)

¢, = heat capacity (J/kg K)

dy = diameter of filament (mm)

d; = diameter at ith section of liquefier nozzle (mm)
dx/dt = nozzle velocity in x direction for dx (mm/s)
dy/dt = nozzle velocity in y direction for dy (mm/s)

e = intended wall thickness (mm)

F = force resulting from surface tension (N)

h; = layer height (mm)
H, = part height (mm)

k = coefficient of conduction (W/m K)

L; = length at ith section of liquefier geometry (mm)
M, = part mass (g)

n = power index
T; = initial filament temperature (°C)
Tt = reference temperature (°C)
T,, = wall temperature (°C)
Ty = output temperature (°C)
TS = nozzle travel speed (mm/s)
VFR = volumetric flow rate of filament (mm?>/s)
f = conical angle of liquefier geometry
y = shear rate (sfl)
AP; = pressure drop (Pa) at ith section of nozzle
AV = change in nozzle travel velocity (mm/s)
0 = dimensionless temperature
A = relaxation time index
1 = viscosity of polymer filament (Pa-s)
; = kinematic viscosity (m?/s) at reference temperature
Uing = Viscosity at the infinite shear rate (Pa-s)
Uo = viscosity of fluid at zero shear rate (Pa-s)
p = filament density (kg/m>)
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Appendix A: Detailed Causal Graph for Fused Deposition Modeling Using Dimensional Analysis Conceptual
Modeling
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