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Sequential Radial Basis
Function-Based Optimization
Method Using Virtual Sample
Generation
To further reduce the computational expense of metamodel-based design optimization
(MBDO), a novel sequential radial basis function (RBF)-based optimization method
using virtual sample generation (SRBF-VSG) is proposed. Different from the conventional
MBDO methods with pure expensive samples, SRBF-VSG employs the virtual sample gen-
eration mechanism to improve the optimization efficiency. In the proposed method, a least
squares support vector machine (LS-SVM) classifier is trained based on expensive real
samples considering the objective and constraint violation. The classifier is used to deter-
mine virtual points without evaluating any expensive simulations. The virtual samples are
then generated by combining these virtual points and their Kriging responses. Expensive
real samples and cheap virtual samples are used to refine the objective RBF metamodel
for efficient space exploration. Several numerical benchmarks are tested to demonstrate
the optimization capability of SRBF-VSG. The comparison results indicate that SRBF-
VSG generally outperforms the competitive MBDO methods in terms of global convergence,
efficiency, and robustness, which illustrates the effectiveness of virtual sample generation.
Finally, SRBF-VSG is applied to an airfoil aerodynamic optimization problem and a small
Earth observation satellite multidisciplinary design optimization problem to demonstrate its
practicality for solving real-world optimization problems. [DOI: 10.1115/1.4046650]
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1 Introduction
1.1 Research Background and Literature Review. Metamo-

del-based design optimization (MBDO) methods have been widely
employed in simulation-driven engineering design applications to
alleviate the computational burden [1]. In MBDO methods, a meta-
model is constructed to approximate computationally expensive
simulations, e.g., computational fluid dynamics (CFD) and finite
element analysis (FEA). Since often only a limited number of
samples are required to construct a metamodel, the MBDO
methods improve the optimization efficiency as compared with tra-
ditional numerical optimization techniques such as genetic algo-
rithm (GA) and particle swarm optimization (PSO) [2]. Long
et al. [3] and Jin et al. [4] compared commonly used metamodeling
methods systematically and pointed out that Kriging (KRG) [5] and
radial basis function (RBF) [6] generally outperform other methods
in terms of approximation accuracy, robustness, and efficiency with
limited samples.
In the past decades, some adaptive MBDO methods have been

developed, where the metamodels are adaptively updated for
global exploration and local exploitation according to certain
infill sampling strategies. For instance, the efficient global optimiza-
tion (EGO) [7] and its variants (e.g., MSEGO [8], SuperEGO [9])
gradually infill new points by maximizing the expected improve-
ment criterion; the mode-pursing sampling (MPS) [10] and its var-
iants (e.g., TR-MPS [11], CiMPS [12]) generate discriminative

sequential samples toward the global optimum according to the spe-
cific probability density distribution function from metamodel pre-
dictions [13]; the adaptive response surface method (ARSM) [14]
and its variants (e.g., TR-ARSM [15], ARSM-ISES [16]) adaptively
reshape the search space for bias sampling to improve the optimiza-
tion efficiency and convergence. In recent years, state-of-the-art
technologies such as machine learning and high-dimensional
(HD) modeling representation (HDMR) have been applied to
MBDO methods to further enhance their optimization capacity
for black-box optimization problems. For instance, Shi et al. [17]
proposed a sequential radial basis function using the support
vector machine method (SRBF-SVM), where the fuzzy c-means
clustering method and the support vector machine (SVM) classifier
are utilized to identify the interesting sampling region where the
global optimum is probably located. A partial metamodel-based
optimization method combined with the trust region was proposed
by Wu et al. [18] to enhance the global convergence with limited
computational resources. Rouhi et al. [19] presented a multistep
metamodel-based optimization method, where the design space is
reduced by narrowing down the side constraints of the design var-
iables around the optimum points obtained from the previous steps.
Li et al. [20] integrated EGO into HDMR to improve the capability
of EGO for high-dimensional problems. Ran et al. [21] proposed a
hybrid metamodel-based two-level global optimization method to
search the significant design space, where a local search is per-
formed to obtain the global optimum. Moreover, some penalty-free
constraint handling mechanisms have been developed for solving
expensive constrained black-box problems such as ConstrLMSRBF
[22], COBRA [23], KCGO [24], FSRBF [25], and FLT-AKM [26].
Note that most aforementioned MBDO methods purely use

samples from expensive simulations for optimization. Thus, the
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computational cost is still high when an excessive number of
simulation evaluations are required to build a sufficiently accurate
metamodel. To address this issue, some novel metamodeling tech-
niques such as multimodel fusion [27–29] and gradient-enhanced
metamodels [30–32] were developed. In multimodel fusion
methods, cheap low-fidelity samples are integrated with a limited
number of expensive high-fidelity samples to enhance the metamo-
deling accuracy and optimization efficiency [33]. However, the
variable fidelity models or data are not available for some prob-
lems, which limits the application of multimodel fusion in prac-
tices. For gradient-enhanced metamodeling methods, the
inexpensive gradients are incorporated into the construction of a
metamodel to improve the approximation accuracy [30].
However, gradient-enhanced metamodeling methods are only sui-
table for specific problems (e.g., structural and aerodynamic opti-
mization) whose gradient information is cheap to obtain. Thus, it
is still necessary and promising to investigate other approaches
to further enhance the efficiency of MBDO methods.
Recently, the virtual sample generation (VSG) technique

becomes attractive in machine learning [34]. VSG technique aims
at constructing artificial samples to enlarge the training sample
sets [35]. Generally, virtual samples can be constructed by prior
knowledge, addition of noises, and existing datasets [36]. The
prior knowledge-based VSG method generates virtual samples by
extracting the prior knowledge hidden in the questions, but the
adaptability is low. The addition-of-noises based VSG method gen-
erates virtual samples by adding small normal noises to each
sample, but this approach lacks sufficient justification [36].
Different from the prior knowledge and addition of noises

methods, the VSG method based on existing datasets generates a
great number of new virtual samples with the information hidden
in the raw samples, which releases the requirement of prior knowl-
edge about relevant research fields [37]. In the literature, Chongfu
[38] proposed an information diffusion theory to generate virtual
samples. Li et al. [39] proposed the mega-trend-diffusion technique
by considering the position information of each training sample. Lin
et al. [40] estimated the domain ranges of datasets to help generate
virtual samples. Li and Lin [41] constructed virtual samples based
on possibility functions, which is estimated by Gaussian kernel
functions and intervalization technique [42]. In addition to the
aforementioned applications to classification tasks, some research-
ers are committed to applying the VSG method to regression
tasks. For instance, Li et al. [43] proposed a procedure based on
the nonparametric approach and fuzzy techniques to generate
virtual samples considering attribute dependence, which improves
the forecasting accuracy of multiple linear regression model and
support vector regression model. Chen et al. [37] proposed a PSO-
based virtual sample generation method for regression tasks. Based
on the work in Ref. [37], Gong et al. [44] combined the Monte Carlo
method with PSO to further address the data scarcity issue.
In general, only a small number of samples are available in the

early stage of the engineering optimization practices. Thus, the meta-
model construction is essentially a regression task with small-scale
samples. However, no study has been reported on the application of
VSG to MBDO methods according to the authors’ best knowledge.

1.2 Motivations and Contributions. To further release the
computational burden of MBDO methods, a novel sequential
radial basis function-based optimization method using virtual
sample generation (SRBF-VSG) is proposed in this paper. In
the proposed method, the VSG technique is employed to reduce
the required expensive simulation calls for metamodeling, which
is an innovative endeavor in the MBDO field. Moreover, a
VSG-based metamodel management strategy is developed to
balance the exploration and exploitation of design space, which pro-
vides SRBF-VSG with promising optimization capacity.
The remainder of the paper is organized as follows. Section 2

briefly reviews the fundamental mathematical tools used in
SRBF-VSG. Section 3 presents details of the proposed SRBF-VSG
and the VSG-based metamodel management strategy. In Sec. 4,

SRBF-VSG is tested on a number of benchmark problems through
comparing with a number of well-known MBDO methods. The
detailed iteration process on a numerical benchmark is illustrated
to investigate the benefits of using KRG-based virtual samples. In
Sec. 5, SRBF-VSG is applied to an airfoil aerodynamic optimization
problem and an Earth observation satellite optimization problem.
Finally, Sec. 6 presents the conclusions and the future work.

2 Mathematical Foundations of SRBF-VSG
In this section, RBF/KRG metamodels and the least squares

support vector machine (LS-SVM) classifier are briefly reviewed.

2.1 Kriging and Radial Basis Function Metamodels. KRG
is an interpolation metamodeling technique as shown in Eq. (1):

fKRG(x) = G(x) + Z(x) (1)

where G(x) is a global model indicating the changing trend of
approximation objects in the design space and Z(x) is a stochastic
Gaussian process determining the approximation ability of the
KRGmetamodel. The covariance matrix of Z(x) is given as follows:

Cov(Z(xi), Z(xj)) = σ2R[R(xi, xj)] (2)

where σ2 is the process variance of Z(x); R is the correlation matrix;
and R(.) is a Gaussian correlation function that controls the smooth-
ness of the KRG metamodel.
RBF is a multidimensional interpolationmethod based on discrete

samples. The formulation of RBF metamodel is given as Eq. (3):

fRBF(x) = βTϕ(x)
ϕ(x) = [ϕ(‖x − x1‖) . . . ϕ(ri) . . . ϕ(‖x − xns‖)]T
β = [β1 β2 . . . βns ]

T

⎧⎨
⎩

(3)

where x is the unknown point; ns is the number of constructing
points; ϕ(ri) is the radial basis function; ri = ‖x − xi‖, i =
1, 2, . . . , ns is the Euclidean distance of two points; xi is the i-th con-
structing point; and β is a coefficient vector of the RBF, which can be
obtained by considering the interpolation property. In this paper, the
multiquadratic basis function is used as the radial basis function, as
given in Eq. (4):

ϕ(r) = (r2 + c2)1/2 (4)

where c is the shape coefficient. More details about RBF and KRG
metamodels can be found in Refs. [5,6]. A MATLAB toolbox SURRO-
GATES [45] is employed to construct RBF and KRGmetamodels in
this paper. All tuning parameters are set to be the default values.
Comparison studies in Refs. [3] and [4] have proved that KRG

generally has better approximation accuracy than RBF in the condi-
tion of relatively sparse samples and lack of prior knowledge,
whereas the construction expense of KRG is more expensive than
that of RBF.

2.2 Least Squares Support Vector Machine Classifier.
LS-SVM is a natural extension of SVM to improve the training effi-
ciency. The LS-SVM model utilizes the least square linear system
as the loss function, and the inequality constraint functions in
SVM are revised as the equality constraints [46].
For a given training set S with nt training samples:

S = {(xi, yi)|i = 1, 2, 3, · · · , nt} (5)

where xi is an input vector and yi∈{−1,+1} represents a corre-
sponding desired output. The input space is mapped into a higher
dimensional feature space by using a nonlinear function φ(.). The
desired optimal classification hyperplane must satisfy the following
conditions:

wTφ(xi) + b ≥ +1 yi =+1
wTφ(xi) + b ≤ −1 yi = −1

{
(6)

111701-2 / Vol. 142, NOVEMBER 2020 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/11/111701/6536290/m
d_142_11_111701.pdf by Sim

on Fraser U
niversity user on 23 Septem

ber 2020



where w is the normal vector of the hyperplane and b is an offset
quantity. Then, the classification model can be described as follows:

f (xi) = sgn(wTφ(xi) + b) (7)

To find the optimal hyperplane, the LS-SVM model is obtained
by solving the following optimization problem:

min
w,b,e

l2(w, b, e) =
1
2
wTw + γ

∑nt
i=1

e2i

s.t. yi[wTφ(xi) + b] = 1 − ei, i = 1, . . . , nt

(8)

where ei is a slack variable and γ is a small positive regularization
constant to balance the fitness error and model complexity. The
optimization problem is solved by the Lagrange multiplier
method, as shown in Eq. (9):

L2(w, b, e; α) = l2(w, b, e) −
∑nt
i=1

αi{yi[w
Tφ(xi) + b]−1 + ei} (9)

where αi is a positive Lagrange multiplier. Thus, the classification
model can be formulated as follows:

f (xi) = sgn
∑n
i=1

yiαiK(x, xi) + b

[ ]
(10)

where K(x, xi) is a kernel function.
More details are available in Ref. [46]. A MATLAB toolkit

LSSVMlab [47] is employed for classifier training with default
tuning parameters in this paper.

3 Methodology of Sequential Radial Basis Function
Using Virtual Sample Generation
In this section, the overall procedure of SRBF-VSG is first

presented. Then, a VSG-based metamodel management strategy is
discussed about how SRBF-VSG reduces the computational
budget of metamodel updating and improves the optimization
performance.

3.1 Overall Procedure of SRBF-VSG. A general engineering
optimization problem can be formulated as follows:

min f (x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . , n

xL ≤ x ≤ xU
(11)

where f (x) is the objective; gi(x) is the i-th computationally expen-
sive constraint; n is the number of expensive constraints; and xL and
xU denote the lower and upper bounds of the design space.
When f(x) and gi(x) are replaced by RBF metamodels f̃ (x) and

g̃i(x), respectively, the original optimization problem in Eq. (11)

can be rewritten as Eq. (12):

min f̃ (x)
s.t. g̃i(x) ≤ 0, i = 1, 2, . . . , n

xL ≤ x ≤ xU

(12)

Before introducing the methodology of SRBF-VSG, some con-
cepts in SRBF-VSG are explained in Table 1 based on the
notions of samples, cheap points, and superior cheap points
defined in Ref. [17]. In SRBF-VSG, the RBF metamodels are grad-
ually refined using the newly added real samples and virtual
samples. The flowchart of SRBF-VSG is shown in Fig. 1, and the
procedure is explained in details as follows:

Step 1. Configuration parameters are determined including the
design space [xL, xU], the number of initial real samples ni,
the number of cheap points nc, and the number of virtual
samples generated at each iteration nvs. The iteration
counter k is set to be one, i.e., k= 1.

Step 2. The maximin latin hypercube design (LHD) method is
employed to generate initial real points, which are stored in
the real points databaseXr. Their real objective and constraint
responses are calculated and then stored in the real objective
response databaseYr and the real constraint response database
Cr, respectively. Finally, the real samples database Sr is
updated by the aggregate of Xr, Yr, and Cr.

Step 3. The RBF metamodels f̃ (x) and g̃i(x) are constructed to
approximate f (x) and gi(x), respectively. In this method,
f̃ (x) is constructed or updated based on real and virtual
samples, while g̃i(x) is constructed or updated only based
on real samples.

Step 4. The GA is employed to perform the global optimization
on the current RBF metamodels to get the pseudo optimum
point x (k), which is regarded as the current potential global
optimum. The expensive simulations are invoked to calculate
real responses f (x (k)) and gi(x

(k)) at x (k). In the end, the
pseudo optimum point x (k) and its responses are stored in
the historical pseudo optimum samples database and real
samples database.

Step 5. The termination criteria inEq. (13), containing the optimal-
ity criterion C1, the approximation criterion C2, and the com-
putational budget criterion C3 [3], are checked to verify
whether the optimization process should be terminated.

(C1 AND C2) OR C3

C1:
f (x(k)) − f (x(k−1))

f (x(k))

∣∣∣∣
∣∣∣∣ ≤ ε||∣∣ f (x(k) − f (x(k−1))

∣∣ ≤ ε

( )

C2: err ≤ err max

C3: nr > nmax (13)

Table 1 Definitions and characteristics of some concepts

Definition Characteristics

Point Pure coordinate
Sample A combination of a point and its response

Real sample A combination of a point and its real response generated by
invoking expensive simulations

(1) The amount of real samples indicates the computational
expense of an optimization method.
(2) The point in a real sample is named as real point.

Virtual sample A combination of a point and its virtual response generated
without calling expensive simulations

(1) The virtual response is generated by a KRG metamodel.
(2) The expense to generate virtual samples is negligible.
(3) The point in a virtual sample is named as a virtual point.

Cheap point [17] A point produced by design of computer experiment in the entire
design space

(1) The actual response of a cheap point is not calculated.
(2) The computational cost is negligible.
(3) The cheap points are tested by the trained LS-SVM classifier.

Superior cheap
point [17]

A cheap point classified by LS-SVM with positive value +1 (1) The superior cheap point has a promising optimality and
feasibility performance.
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where ɛ is the optimality tolerance; err_max is the approxima-
tion accuracy tolerance; nr is the number of real samples; and
nmax is the cap of nr. The approximation accuracy err at x (k) is
defined as Eq. (14):

err =
f (x(k)) − f̃ (x(k))

f (x(k))

∣∣∣∣∣
∣∣∣∣∣, | f (x(k))| > 0.01

| f (x(k)) − f̃ (x(k))|, | f (x(k))| ≤ 0.01

⎧⎪⎨
⎪⎩ (14)

If both C1 and C2 are satisfied, or C3 is meet, SRBF-SVG ter-
minates and outputs the current best solution; otherwise, the
procedure jumps to Step 6.

Step 6. A VSG-based metamodel management strategy is applied
to refining the RBF metamodel for the objective. Virtual
samples set for the next iteration S(k)v , including virtual
points set X(k)

v and virtual objective responses set Y(k)
v , is con-

structed. Then, the procedure returns to Step 3 to refit the
RBF metamodels. The details of VSG-based metamodel
management strategy are presented in Sec. 3.2. The iteration
counter is increased by one, i.e., k= k+ 1.

3.2 Virtual Sample Generation-Based Metamodel
Management Strategy. In the authors’ previously developed
SRBF-SVM [17], an interesting sampling region is identified by
the SVM for sequential sampling to refine the RBF metamodels.
Inspired by the machine learning enhanced metamodeling frame-
work in the conventional SRBF-SVM, a VSG-based metamodel
management strategy is developed in SRBF-VSG, where the
LS-SVM classifier is used to determine the virtual samples. The
procedure of this strategy exhibited in Algorithm 1 is detailed as
follows:

Step 1 (line 1): The constraint violation set h is calculated in
terms of Eq. (15):

h = [h1, . . . , hi, . . . , hnr ]

hi =
∑n
i=1

max (0, gi(xir))
(15)

where gi(xir) are constraint information of real points stored
in Cr. If the i-th real point xir is feasible, the corresponding
constraint violation hi= 0; otherwise hi > 0.

Step 2 (lines 2–14): Real points are separated into two
categories with different classification values, according to
constraint violations and objective responses, as shown in
Eq. (16):

Ŷr = [ŷ12, . . . , ŷ
i
r , . . . , ŷ

nr
r ]

if nf ≥ 2

ŷir =
+1, xir ∈ X feas AND yir ≤ Pthresh

−1, otherwise

{
else

ŷir =
+1, xir ∈ X feas

−1, otherwise

{
(16)

where Ŷr is the classification value set; nf is the number of
feasible real points; xir is the i-th real point; yir is the actual
response of xir; Xfeas is the feasible point set to store feasible
and quasi-feasible real points; and Pthresh is the threshold to
determine the classification value ŷir of xir and the amount
of superior cheap points [17]. The corresponding objective
responses of points in Xfeas are stored in the feasible objec-
tive responses set Yfeas. The quasi-feasible real points are
not strictly feasible, but their constraint violations are the

Fig. 1 Flowchart of SRBF-VSG
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lowest in h. Both Xfeas and Yfeas are set as NULL initially at
each optimization iteration.
When no less than two feasible real points exist in Xr (lines

2–9), feasible real points and their objective responses are
stored in Xfeas and Yfeas, respectively. Next, the threshold
Pthresh is constructed as Eq. (17) [17]:

Pthresh =min (Y feas) + ηk( max (Y feas) −min (Y feas)) (17)

where ηk is a shrinking coefficient at the k-th optimization
iteration. Then, the classification values are constructed: if
the i-th real point xir is a member of Xfeas and its correspond-
ing response yir is smaller than Pthresh, its classification value
ŷir is set as + 1; otherwise, ŷir is set as −1. In this paper, if
there is only one positive element in Ŷr , Pthresh is modified
as Eq. (18) [17], and Ŷr is reconstructed.

Pthresh = Pthresh + λk|Pthresh| (18)

where λk is a modification coefficient at the k-th iteration.

Algorithm 1 Metamodel Management Strategy

1 h←GetConstraintViolation (Sr)
2 If no less than two feasible real points exist
3 construct Xfeas and Yfeas, respectively
4 Pthresh = ConstructThreshold (Yfeas)
5 Ŷr =∅
6 While less than two positive values exist in Ŷr

7 Ŷr = SetClassificationResults (Xr, Yr, Xfeas, Pthresh)
8 Pthresh=ModifyThreshold (Pthresh)
9 End

10 Else
11 select (nv – nf) quasi-feasible real points stored in Xqfeas

12 Xfeas= xfeas ∪ Xqfeas

13 Ŷr = SetClassificationResults (Xr, Yr, Xfeas)
14 End
15 Xsup=∅
16 While Xsup=∅
17 Classifier←TrainLS-SVM (Xr,Ŷr)
18 generate nc cheap points and store them in Xcheap

19 Foreach xic in Xcheap

20 If LS-SVMpredict (Classifier, xic)=+1
21 Xsup=Xsup ∪ xic
22 End
23 End
24 Modify parameters in the strategy
25 End
26 KRG←ConstructKRG (Xr, Yr)
27 Ysup=KRGpredict (Xsup)
28 X(k)

v =∅
29 If no less than two feasible real points exist
30 Foreach xisup in Xsup

31 If yisup <Pthresh

32 X(k)
v =X(k)

v ∪xisup
33 End
34 End
35 Else
35 X(k)

v = Xsup

37 End
38 If more than nvs elements exist in X(k)

v
39 X(k)

v ←FCM (X(k)
v , nvs)

40 End
41 Y(k)

v =KRGpredict (X(k)
v )

42 S(k)v = {X(k)
v ,Y(k)

v }
43 Return S(k)v

When less than two feasible real points exist (lines 10–14),
infeasible real points are sorted in the ascending order in
terms of constraint violations. The first (nv—nf) infeasible

real points are selected as the quasi-feasible ones stored in
the set Xqfeas. The feasible and newly generated quasi-
feasible real points are used to update the set Xfeas. If the i-
th real point xir is a member of Xfeas, its classification value
ŷir is set as + 1; otherwise, ŷir is set as −1.

Step 3 (lines 15–25): The superior cheap points set Xsup is ini-
tially set to be NULL. nc cheap points are generated ran-
domly in the whole design space. The samples in (Xr, Ŷr)
are employed to train a binary classifier LS-SVM to classify
cheap points. If the classification value of a cheap point pre-
dicted by the trained LS-SVM classifier is positive, i.e., +1,
this cheap point is regarded to be superior, which is believed
to have lower objective and constraint violation values. This
superior cheap point is added to the set Xsup. If no superior
cheap points exist, the coefficients ηk and λk, whose initial
values are set as 0.1 [17] at the k-th optimization iteration,
are increased as shown in Eq. (19) to release the classification
condition, and the procedure returns to Step 2:

ηk = ηk + 0.1ηk
λk = λk + 0.1λk

(19)

Step 4 (lines 26–28): An objective KRG metamodel is con-
structed based on real samples in the set Sr. The approxi-
mated objective responses at superior cheap points are
generated by evaluating the constructed KRG metamodel.
The virtual points set as X(k)

v for the (k+1)-th iteration is
set as NULL initially.

Step 5 (lines 29–37): When less than two feasible real points
exist, X(k)

v is equal to Xsup; otherwise, if the approximate
objective response yisup of the i-th superior cheap point
xisup is smaller than Pthresh, xisup is considered as a virtual

point, which is stored in the set X(k)
v . In this paper, virtual

points can be considered as a subset of superior cheap points.
Step 6 (lines 38–40): If more than nvs virtual points exist in X(k)

v ,
nvs cluster centers of virtual points are obtained by the fuzzy
c-means clustering method, and X(k)

v is overwritten by these
cluster centers; otherwise, X(k)

v does not need to be updated.
Step 7 (lines 41–43): The constructed KRG metamodel in Step 4

is employed to predict the virtual objective responses of
virtual points. These responses are stored in virtual objective
responses set Y(k)

v . Finally, the virtual samples set S(k)v is over-
written by the tuple of {X(k)

v , Y(k)
v }.

4 Tests on Numerical Benchmarks Problems and
Discussions
In this section, some numerical benchmarks are applied to testing

the global convergence, optimization efficiency, and robustness of
SRBF-VSG, compared with SRBF-SVM, EGO, MSEGO, MPS,
CiMPS, TR-MPS, COBRA, and ARSM-ISES. These benchmarks
are considered as the complex and time-consuming problems
although they have explicit function expressions.

4.1 Description of Benchmarks and Test Procedure. In this
paper, unconstrained benchmarks represent problems without
expensive constraints; constrained benchmarks represent problems
with expensive constraints. Basic information of numerical

Table 2 Tuning parameters of SRBF-VSG

Tuning parameters Value

ni 4nv
nc 100 n2v dmax
nvs nv
ɛ 0.001
err_max 0.0001
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benchmarks is listed in Tables 3–5 [16,23]. More details are shown
in the Appendix. If less than ten design variables exist, the problem
is considered as low-dimensional (LD), otherwise HD [16].
Tuning parameters of SRBF-VSG are listed in Table 2, where nv is

the dimension of design space and dmax is the maximum range of
values for all dimensions with two decimal places. In this paper,
nmax is set according to competitive MBDO methods; the GA opti-
mizer integrated in MATLAB is utilized to perform the global optimiza-
tion on the RBF metamodels; the rand(.) function in MATLAB is used

to generate cheap points; and the fuzzy c-means cluster method in
MATALB is applied to obtaining the cluster centers.
To reduce influences of randomness, each numerical benchmark

is tested for ten runs [16,17]. The variation ranges of optimum (i.e.,
VR_OPT) and the number of function evaluations (i.e., VR_NFE)
are recorded to indicate the optimization robustness. Besides, the
average number of function evaluations (AV_NFE) reflects the
optimization efficiency. The median optimum (MD_OPT) indicates
the global convergence.

Table 3 Optimization results comparison on unconstrained LD benchmarks

BR SC SE PK HN

Dimension 2 2 2 2 6
Analytic global optimum
solution

0.397 −1.032 −1.457 −6.551 −3.322

SRBF-VSG VR_OPT [0.398, 0.398] [−1.032, -1.031] [−1.457, 2.866] [−6.551, −3.050] [−3.322, −3.191]
MD_OPT 0.398 −1.032 −1.457 −6.551 −3.321
VR_NFE [20, 30] [19, 34] [18, 23] [18, 23] [49, 69]
AV_NFE 25.7 23 19.6 19.3 61.7

SRBF-SVM VR_OPT [0.398, 0.398] [−1.032, −1.031] [−1.457, 2.866] [−6.551, −3.047] [−3.321, −3.037]
MD_OPT 0.398 −1.032 −1.457 −6.549 −3.307
VR_NFE [20, 34] [20, 34] [32, 32] [16, 34] [56, 88]
AV_NFE 25.6 26.8 32 22.2 71.2

EGO VR_OPT [0.398, 0.400] [−1.032, −1.031] [−1.456, −1.436] [−6.550, −6.383] [−3.316, −3.308]
MD_OPT 0.398 −1.031 −1.453 −6.550 −3.313
VR_NFE [32, 41] [27, 37] [52, 52] [26, 52] [66, 74]
AV_NFE 36.1 32.6 52 42.6 68.8

MSEGO VR_OPT [0.398, 0.431] [−1.024, −0.987] [−1.456, −1.454] [−6.498, −5.079] [−3.208, −3.052]
MD_OPT 0.398 −1.024 −1.456 −6.498 −3.145
VR_NFE [36, 132] [130, 132] [70, 123] [129, 132] [176, 176]
AV_NFE 112.6 131.2 109.6 130.4 176

MPS VR_OPT [0.398, 1.393] [−1.032, −1.029] [−1.457, 6.538] [−6.551, −3.040] [−3.322, −3.149]
MD_OPT 0.398 −1.032 −1.457 −6.551 −3.322
VR_NFE [14, 174] [24, 47] [12, 71] [20, 57] [365, 1091]
AV_NFE 69.2 32.9 39.1 39.8 613.4

ARSM-ISES VR_OPT [0.398, 0.399] [−1.032, −1.030] [−1.457, 2.866] [−6.551, −6.550] [−3.322, −3.193]
MD_OPT 0.398 −1.032 −1.457 −6.551 −3.322
VR_NFE [29, 58] [25, 38] [22, 35] [22, 55] [142, 288]
AV_NFE 39.8 31.7 29.4 35.4 188.6

Table 4 Optimization results comparison on unconstrained HD benchmarks

R10 F16 HD1

Dimension 10 16 10
Analytic global optimum solution 0.000 25.875 0.000

SRBF-VSG VR_OPT [0.182, 7.772] [25.875, 25.876] [0.339, 0.627]
MD_OPT 4.793 25.876 0.538
VR_NFE [1100, 1100] [130, 130] [800, 800]
AV_NFE 1100 130 800

SRBF-SVM VR_OPT [18.307, 89.255] [26.141, 27.452] [0.506, 1.091]
MD_OPT 42.301 26.862 0.546
VR_NFE [1100, 1100] [130, 130] [800, 800]
AV_NFE 1100 130 800

TR-MPS VR_OPT N/A N/A N/A
MD_OPT 9.570 25.912 2.019
VR_NFE N/A N/A N/A
AV_NFE 6483.3 726.3 7137.0

MPS VR_OPT [70.057, 272.384] [29.387, 30.615] [3.326, 5.854]
MD_OPT 29.387 29.387 3.326
VR_NFE [4198, 4204] [916, 931] [2007, 2012]
AV_NFE 4200.6 921.0 2008.8

ARSM-ISES VR_OPT [2.714, 66.174] [25.875, 25.887] [0.505, 0.557]
MD_OPT 3.147 25.875 0.519
VR_NFE [1023, 4197] [462, 916] [802, 2006]
AV_NFE 2638.0 661.0 1408.6

111701-6 / Vol. 142, NOVEMBER 2020 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/11/111701/6536290/m
d_142_11_111701.pdf by Sim

on Fraser U
niversity user on 23 Septem

ber 2020



4.2 Test Results

4.2.1 Unconstrained Low-Dimensional Benchmarks. In this
part, some unconstrained LD benchmarks are used to compare
the capability of SRBF-VSG with SRBF-SVM, EGO, MSEGO,
MPS, and ARSM-ISES. The comparison results are summarized
in Table 3. Note that the results of competitive MBDO methods
are directly cited from Refs. [16] and [17].
The best global optima in Table 3 show that SRBF-VSG,

SRBF-SVM, MPS, and ARSM-ISES can successfully capture the
true global optimum for all the numerical problems. Their median
optima are all equal or close to analytic global optima. Results in
Table 3 also indicate that compared with SRBF-SVM, MPS, and
ARSM-ISES, the NFE consumed by SRBF-VSG is lower and has
much smaller variation range, which demonstrates the merits of
SRBF-VSG in optimization efficiency and robustness. Besides,
note that both EGO and MSEGO fail to find the analytic optima
for some benchmarks, e.g., EGO fails in HN, and MSEGO fails
in PK and HN. For the rest benchmarks, EGO and MSEGO gener-
ally consume larger NFE to find inferior solutions, compared with
SRBF-VSG, SRBF-SVM, MPS, and ARSM-ISES.
To intuitively illustrate the performance difference between the

proposed SRBF-VSG and the conventional SRBF-SVM, the
boxplots of optima obtained by the two competitive methods are
compared in Fig. 2. The boxplots also show that SRBF-VSG
generally outperforms the conventional SRBF-SVM in terms of

global convergence, which demonstrates the effectiveness of
virtual sample generation.
In conclusion, the aforementioned comparison results indicate

that SRBF-VSG can converge to the analytical global optima
with a higher efficiency for unconstrained LD problems, compared
with SRBF-SVM, MPS, ARSM-ISES, EGO, and MSEGO.

4.2.2 Unconstrained High-Dimensional Benchmarks. In this
part, three unconstrained HD benchmarks are utilized to test the
capability of SRBF-VSG. Considering that EGO and MSEGO are
inefficient for solving HD problems [16], SRBF-VSG is only com-
pared with SRBF-SVM, MPS, TR-MPS, and ARSM-ISES in this
study. Comparison results are summarized in Table 4. Since the var-
iation ranges of solutions obtained by TR-MPS are not available
in Ref. [16], they are labeled as N/A in Table 4. Note that the
results of MPS, TR-MPS, and ARSM-ISES are cited directly from
Ref. [16]. SRBF-VSG and SRBF-SVM are operated with the same
maximum NFE for each benchmark.
The comparison results in Table 4 show that the best solutions

obtained by SRBF-VSG are closer to analytical optima than those
obtained by SRBF-SVM, TR-MPS, MPS, and ARSM-IESE.
Although the median optima obtained by SRBF-VSG are compara-
ble with those obtained by ARSM-ISES, they are much better than
those obtained by SRBF-VSG, TR-MPS, and MPS. Besides,
SRBF-VSG has the fewest mean NFE values for R10, F10, and

Table 5 Optimization results comparison on constrained numerical benchmarks

G6 G4 G7

Dimension 2 5 10
Analytic global optimum solution −6961.8139 −30665.539 24.3062

SRBF-VSG VR_OPT [−6961.2, −5647.3] [−30492.5, −29811.1] [41.70, 129.02]
MD_OPT −6945.9 −30233.1 98.75
VR_NFE [21, 36] [38, 56] [187, 187]
AV_NFE 25.1 50.6 187

SRBF-SVM VR_OPT [−6961.9, −6961.5] [−30097.8, −29018.0] [24.45, 1540.05]
MD_OPT −6961.8 −29359.9 30.20
VR_NFE [16, 18] [29, 45] [110, 442]
AV_NFE 17.4 34.2 187.4

COBRA local VR_OPT [−6944.5, −6450.5] [−30665.5, −30664.6] [24.48, 29.33]
MD_OPT −6834.5 −30665.2 25.32
VR_NFE [53, 53] [56, 56] [61, 61]
AV_NFE 53 56 61

COBRA global VR_OPT [−6929.7, −6341.1] [−30664.9, −30664.9] [24.52, 28.60]
MD_OPT −6799.05 −30664.9 25.28
VR_NFE [53, 53] [56, 56] [61, 61]
AV_NFE 53 56 61

CiMPS VR_OPT [−6961.8, −6961.8] [−30665.5, −30665.5] N/A
MD_OPT −6961.8 −30665.5 N/A
VR_NFE [104 (>1E4), 104 (1E4)] [108 (425), 116 (475)] N/A
AV_NFE 104 (1E4) 109.8 (460.2) N/A

For SRBF-VSG, SRBF-SVM, and COBRA, one function evaluation produces the values of the objective and all constraints at once; for CiMPS, the number
of constraint function evaluation is presented in the parenthesis.

(a) (b) (c) (d ) (e)

Fig. 2 Boxplots of optima for unconstrained LD benchmarks: (a) BR, (b) SC, (c) SE, (d ) PK, and (e) HN
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HD1 problems. Moreover, the boxplots of optima in Fig. 3 also
indicate that the proposed SRBF-VSG performs better than
SRBF-SVM for solving the unconstrained HD benchmarks.
Aforementioned comparative studies demonstrate that

SRBF-VSG has a comparable or better global convergence, and a
better optimization efficiency for unconstrained HD problems, com-
pared with SRBF-SVM, TR-MPS, MPS, and ARSM-IESE.

4.2.3 Constrained Numerical Benchmarks. Since standard
EGO, MSEGO, and MPS cannot handle expensive constrained
optimization problems [17], SRBF-VSG is compared with
SRBF-SVM, COBRA (COBRA global and COBRA local).
Comparison results in Table 5 indicate that COBRA has the
best performance on G7 in terms of efficiency and global conver-
gence. Besides, SRBF-VSG, SRBF-SVM, and CiMPS can success-
fully capture the analytic optimum and produce comparable median
optima for G6 benchmark. However, SRBF-VSG and SRBF-SVM
consume much fewer function evaluations than CiMPS. For G4, the
best and the median optima obtained by SRBF-VSG are only about
0.56% and 1.41% higher, respectively, than those obtained by
COBRA and CiMPS. But the mean function evaluations required
by SRBF-VSG is about 90% of that required by COBRA, and
only about 17.75% of that required by CiMPS. In addition, the
boxplots of the optima from SRBF-VSG and SRBF-SVM for
constrained benchmarks are displayed in Fig. 4.
The comparison results prove that compared with SRBF-SVM,

SRBF-VSG has a similar global convergence and a better efficiency
in G4 and G7. SRBF-VSG outperforms COBRA and CiMPS on LD
constrained problems with a better efficiency and a comparable
global convergence, whereas COBRA has advantages on HD con-
strained problems and CiMPS is not suitable to solve problems with
lots of variables and constraints.

4.3 Discussion. In this paper, the idea of virtual samples is
introduced for metamodel-based optimization, which distinguishes
SRBF-VSG from the existing MBDO methods. In this section, the
SC problem in Eq. (A2) is solved for ten runs to further illustrate the
benefits of KRG-based virtual sampling. In this work, three differ-
ent cases of the proposed method are discussed. In Case-I, the orig-
inal SRBF-VSG in this paper is used for optimization; in Case-II,
the virtual samples in SRBF-VSG are replaced with real samples

for optimization; and in Case-III, a variant of SRBF-VSG is imple-
mented to solve the optimization problem where the virtual samples
are generated by RBF instead of KRG. The optimization results are
shown in Figs. 5 and 6.
As shown as Fig. 5, Case-I obtains a better optimum than Case-II

after 40 function calls. Moreover, Case-I using virtual samples
significantly convergences faster than Case-II within 24 function
calls. It indicates that the nonlinear characteristic of the black-box

(a) (b) (c)

Fig. 4 Boxplots of optima for constrained benchmarks: (a) G6,
(b) G4, and (c) G7

(a) (b) (c)

Fig. 3 Boxplots of optima for unconstrained HD benchmarks:
(a) R10, (b) F16, and (c) HD1

Fig. 5 Error bars of optima in Case-I and Case-II

Fig. 6 Error bars of optima in Case-I and Case-III

Fig. 7 C-H type structural grids
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function can be further mined by the virtual samples to enhance the
approximation performance of metamodels, which improves the
global exploration and local exploitation ability of the optimization
method.
The error bar in Fig. 6 shows that Case-I takes fewer iterations

(i.e., 18) to converge to a better optimum compared with Case-III,
which indicates that the virtual samples from KRG are more effec-
tive than those from RBF for optimization. This can be attributed to
the promising approximation accuracy of KRG with limited sparse
samples.

5 Engineering Optimization Problems
In this section, SRBF-VSG is employed to solve an airfoil aero-

dynamic optimization problem and a small Earth observation satel-
lite multidisciplinary design optimization (MDO) problem, which
are presented as follows.

5.1 Airfoil Aerodynamic Optimization Problem.
NACA0012 is chosen as the baseline airfoil, whose geometry is
parametrized by the shape function method [48]. High-fidelity
CFD model is applied to evaluate the aerodynamic performance.
The flow field around the airfoil is simulated by the Navier–
Stokes equation incorporated with Spalart–Allmaras turbulence
model; and FLUENT software is employed as the CFD solver [15].
C-H type structural grids (shown in Fig. 7) are used to improve
the simulation accuracy and efficiency. As shown in Fig. 8, the
coefficient of pressure distribution (Cp) obtained by CFD simula-
tions under the flight condition (i.e., 0.6 Mach number and 2 deg
angle of attack) agrees well with the wind-tunnel experimental
data, which indicates that the CFD model used in this paper pro-
vides acceptable accuracy for this optimization problem.
The purpose of this optimization problem is to maximize the

lift-to-drag ratio via consecutively modifying the baseline airfoil
under the given flight condition, i.e., 0.8 Mach number and
2.5 deg angle of attack. This aerodynamic optimization problem
can be described as follows:

max L/D = CL/CD

s.t. CL ≥ Cbasic
L

tmax ≥ 0.8tbasicmax
−0.005 ≤ x1,2,...,i,...,10 ≤ 0.005

(20)

Fig. 8 Comparison of Cp

Table 6 Comparison for solution results

Optimization method

L/D

NFEOptimum range Mean

SRBF-VSG [16.3,17.0] 16.6 50
SRBF-SVM [15.4,16.6] 15.9 80
NLPQL [14.3,17.1] 16.7 120
MIGA [15.2,16.4] 15.8 500

Fig. 9 Error bars of optima obtained by different methods

Table 7 Comparison of baseline and optimized airfoils

Parameter Baseline Optimal Change (%)

CL 0.381 0.5211 +36.77
CD 0.0413 0.0306 −25.72
tmax 0.1043 0.0969 −7.09
L/D 9.232 17.014 +84.29

(a)

(b)

Fig. 10 Comparison of baseline and optimal airfoils: (a) geome-
try and (b) Cp
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where L/D is the lift-to-drag ratio; CL is the lift coefficient; CD is the
drag coefficient;Cbasic

L is the lift coefficient of the baseline airfoil; tmax
and tbasicmax are the maximum thickness of the optimized and baseline
airfoil, respectively; and xi is the coefficient of shape function.
The optimization results of SRBF-VSG are compared with those

obtained from nonlinear programming by SRBF-SVM, the quadratic
Lagrangian (NLPQL)method [49], and the multiisland genetic algo-
rithm (MIGA) method [50]. The optimization problem is solved for
ten runs by SRBF-VSG, SRBF-SVM, NLPQL, and MIGA, respec-
tively. The max iterations of NLPQL is set as 10; the subpopulation
size of MIGA is set as 50; the number of islands of MIGA is set as 1;
the number of generations is set as 10; and other parameters of
NLPQL and MIGA are set as default.
The solution results are summarized in Table 6. Although the

mean optimal L/D obtained by SRBF-VSG is about 0.6% lower
than that obtained by NLPQL, SRBF-VSG only takes about 41.7%
computational expense of that consumed by NLPQL. Besides,
SRBF-VSG costs only 10% computational budget of MIGA and

captures a mean optimal L/D 5.1% higher than that obtained by
MIGA. Moreover, the required NFE of SRBF-VSG is 37.5% less
than that of SRBF-SVM, while the mean optimal L/D of
SRBF-VSG is about 4.4% higher than that of SRBF-SVM. By com-
paring error bars of SRBF-VSG and NLPQL in Fig. 9, SRBF-VSG
can converge to a comparable optimal L/D value within fewer itera-
tions, which indicates the better convergence property of
SRBF-VSG. Moreover, the variance of SRBF-VSG is generally
smaller than that of SRBF-SVM,MIGA, andNLPQL,which demon-
strates the stronger robustness of SRBF-VSG. Thus, the aforemen-
tioned comparative studies prove that the proposed SRBF-VSG
outperforms SRBF-SVM, NLPQL, and MIGA methods for this
problem in terms of efficiency and global convergence.
Table 7 lists the comparison results of the baseline airfoil and the

optimal airfoil obtained by SRBF-VSG. The lift coefficient and the
lift-to-drag ratio are improved by 36.77% and 84.29%, respectively.
The drag coefficient and maximum thickness are reduced by 25.72%
and 7.09%, respectively. The geometry and pressure distribution

Table 8 Optimal design variables of the satellite MDO problem

Design variables Sign (unit) Range Optimum

Aperture of radiometer D1 (mm) [120, 280] 217.58
Aperture of CCD camera D2 (mm) [5, 15] 7.69
Focal length of radiometer F1 (mm) [400, 900] 724.25
Focal length of CCD camera F2 (mm) [10, 50] 37.47
Area of solar arrays Asa (mm) [3, 10] 3.04
Capability of storage battery Cs (AH) [20, 100] 20.63
Thickness of joint ring TR (mm) [10.5, 19.5] 14.7
Honeycomb core thickness of structure plates TBH (mm) [7.0, 13.0] 8.9
Skin thickness of the structure plates TSH (mm) [0.07, 0.13] 0.076

Table 9 Constraint information of the optimized satellite

Constraints Sign Range Value

Signal-to-noise ration of ocean color scanner SNR1 ≥300 416.9
Signal-to-noise ration of CCD camera SNR2 ≥500 800.8
Resolution of ocean color scanner R1 ≤1100 m 1038.2
Resolution of CCD camera R2 ≤250 m 225.4
Noise equivalent temperature difference NEΔR ≤0.2 K 0.2
Surplus power of satellite gw ≥0 W 0.9
Discharge depth of battery DOD ≤0.3 0.16
Natural frequency in the X coordinate fx ≥20 Hz 22.1
Natural frequency in the Y coordinate fy ≥20 Hz 23.5

(a) (b)

Fig. 11 Comparison of results obtained by different methods on the satellite MDO problem: (a) total mass reduc-
tion and (b) NFE
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comparison of the baseline and the optimal airfoil are exhibited in
Figs. 10(a) and 10(b). The effective angle of attack is increased in
the optimal airfoil, which results in improvement of L/D.

5.2 Earth Observation Satellite Multidisciplinary Design
Optimization Problem. An earth observation satellite MDO
problem in Ref. [17] is also investigated to further demonstrate
the performance of SRBF-VSG. The optimization results of
SRBF-VSG are compared with those from GA, SQP, and
SRBF-SVM presented in Ref. [17]. The max number of function
evaluations of both SRBF-VSG and SRBF-SVM are set as 165.
The obtained optimum reflects the methods’ convergence,
whereas the number of function evaluations reflects the optimiza-
tion efficiency. The satellite MDO problem aims to minimize the
total mass of the satellite, as formulated in Eq. (21) [17]

min Msatellite = mpayload + mbat + msolar + mstr + mother

where X = [D1, D2, F1, F2, Asa, Cs, TR, TBH , TSH]T

s.t.

SNR1 ≥ 300, SNR2 ≥ 500, R1 ≤ 1100m, R2 ≤ 250m

NEΔT ≤ 0.2K, gw ≥ 0, DOD ≤ 25%

fx ≥ 20Hz, fy ≥ 20Hz

⎧⎪⎨
⎪⎩ (21)

where the information of design variables and constraints [17,51] are
listed in Tables 8 and 9, respectively. The total mass of the satellite
Msatellite consists of the payload mass mpayload, the battery mass
mbat, the solar arrays mass msolar, the structure mass mstr, and the
fixed mass mother= 198 kg. Details of the variables, constraints,
and disciplinary analysis models are discussed in Ref. [51], and
more information about the optimization problem can be found in
Ref. [17].
The optimization results obtained by SRBF-VSG are summa-

rized in Table 8. The constraints at the optimum shown in
Table 9 indicate that SRBF-VSG successfully captures a feasible
optimum. The reduced total mass and required NFE are exhibited
in Figs. 11(a) and 11(b), respectively. Compared with the initial
total mass of the satellite (i.e., 366.7 kg [17]), the total mass
obtained by SRBF-VSG reduces 36.5 kg. Compared with GA,
SQP, and SRBF-SVM, the mass reduction of SRBF-VSG is more
obvious, as detailed in Fig. 11(a). Besides, the number of function
evaluations required by SRBF-VSG is only 2.25% and 51.24% of
that required by GA and SQP, respectively.
The comparative studies on two aforementioned real-world engi-

neering problems demonstrate that the proposed SRBF-VSG
method outperforms the competitive methods in terms of global
convergence, optimization efficiency, and robustness. The effec-
tiveness and practicality of SRBF-VSG in solving real-world engi-
neering optimization problems have also been demonstrated.

6 Conclusions and Future Work
In this paper, a novel sequential radial basis function using virtual

sample generation (SRBF-VSG) method is proposed to further
improve the optimization efficiency of MBDO. The proposed
method centers on a VSG-based metamodel management strategy.
In this strategy, a LS-SVM classifier is trained based on real
samples’ optimality and feasibility. Then, virtual samples are con-
structed including virtual points and virtual responses. Virtual
points are generated from the superior cheap points obtained by
the trained classifier, and virtual responses are generated by calcu-
lating a KRG metamodel of the objective. The virtual samples are
combined with the pseudo optimum of each iteration to update
the objective RBF metamodel, which significantly reduces the
budget of updating metamodels. Several numerical benchmarks
are used to test and validate the overall performance of the proposed
SRBF-VSG. The comparison results demonstrate that in terms of
global convergence, efficiency, and robustness, SRBF-VSG gener-
ally outperforms SRBF-SVM, EGO, MSEGO, MPS, CiMPS,
TR-MPS, COBRA, and ARSM-ISES. The capability of solving
real-world engineering design optimization problems of

SRBF-VSG is demonstrated by an airfoil aerodynamic optimization
problem and an earth observation satellite MDO problem. The
results of comparative studies show that the proposed method has
a promising effectiveness and practicality in solving expensive opti-
mization problems.
In future work, some further researches are expected to be inves-

tigated as follows:

(1) The idea of virtual samples is expected to be incorporated
with more MBDO methods to test its effectiveness.

(2) Other VSG mechanisms such as the mega-trend-diffusion
technique will be investigated to further improve the
quality of virtual samples.

(3) The proposed SRBF-VSG in this paper is mainly developed
for solving middle- and low-dimensional optimization prob-
lems. In the future, some novel techniques such as high-
dimensional model representation (HDMR) and manifold
learning are expected to be combined with virtual samples
to tackle the high-dimensional optimization problems.
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Appendix
Branin function (BR)

f (x) = x2 −
5.1
4π2

x21 +
π

5
x1−6

( )2

+ 10 1 −
1
8π

( )
cos x1

x1 ∈ [−5, 10], x2 ∈ [0, 15]
(A1)

Six-hump camelback function (SC)

f (x) = 4x21−2.1x41 +
1
3
x61 + x1x2−4x22 + 4x42

x1,2 ∈ [−2, 2]
(A2)

Sasena function (SE)

f (x) = 2 + 0.01(x2 − x21)
2 + (1 − x1)

2

+ 2(2 − x2)
2 + 7sin (0.5x1) sin(0.7x1x2)

x1,2 ∈ [0, 5]

(A3)

Peaks function (PK)

f (x) = 3(1− x1)2 exp (−x21)− (1+ x2)2

− 10
x1
5
− x31 − x52

( )
exp (−x21 − x22)

− 1
3
exp ((−x1 + 1)2 − x22)

x1,2 ∈ [−3, 3]

(A4)

Hartman function (HN)

f (x) = ∑4
i=1

ci exp
∑n
j=1

αij(xj − pij)2
[ ]

, i = 1, 2, . . . , 6

x1,2,...,6 ∈ [0, 1]
(A5)

where αij, ci, and pij are described in Ref. [17].
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10D SUR-TI-14 function (HD1)

f (x) = (x1 − 1)2 + (x10 − 1)2 + 10
∑10
i=1

(10− i)(x2i − xi+1)
2

x1,...,10 ∈ [−3, 2]
(A6)

10D Rosenbrock function (R10)

f (x) = ∑9
i=1

(100(xi+1 − x2i )
2 + (xi − 1)2) x1,...,10 ∈ [−5, 5]

(A7)

Sixteen-variable function (F16)

f (x) = ∑16
i=1

∑16
j=1

aij(x2i + xi + 1)(x2j + xj + 1)

xi ∈ [−1, 1], i = 1, 2, . . . , 16

(A8)

where aij is described in Ref. [17].
G4

min f (x) = 5.3578547x23 + 0.8356891x1x5
+37.293239x1 − 40792.14175

s.t. u = 85.334407+ 0.0056858x2x5 + 0.0006262x1x4
− 0.0022053x3x5

v = 80.51249+ 0.0071317x2x5 + 0.0029955x1x2
+ 0.0021813x23

w = 9.300964+ 0.0047026x3x5 + 0.0012547x1x3
+ 0.0019085x3x4

g1(x) = −u ≤ 0; g2(x) = u− 92 ≤ 0;
g3(x) = −v+ 90 ≤ 0; g4(x) = v− 100 ≤ 0;
g5(x) = −w+ 20 ≤ 0; g6(x) = w− 25 ≤ 0
78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45, i = 3, 4, 5

(A9)

G7

min f (x) = x21+ x22+ x1x2−14x1−16x2+(x3−10)2+4(x4−5)2
+(x5−3)2+2(x6−1)2+5x27+7(x8−11)2
+ 2(x9−10)2+(x10−7)2+45

s.t. g1(x)= (4x1+5x2−3x7+9x8−105)/105≤ 0
g2(x)= (10x1−8x2−17x7+2x8)/370≤ 0
g3(x)= (−8x1+2x2+5x9−2x10−12)/158≤ 0
g4(x)= (3(x1−2)2+4(x2−3)2+2x23−7x4−120)/1258≤ 0
g5(x)= (5x21+8x2+(x3−6)2−2x4−40)/816≤ 0
g6(x)= (0.5(x1−8)2+2(x2−4)2+3x25− x6−30)/834≤ 0
g7(x)= (x21+2(x2−2)2−2x1x2+14x5−6x6)/788≤ 0
g8(x)= (−3x1+6x2+12(x9−8)2−7x10)/4080≤ 0

−10≤ xi ≤ 10, i= 1,2, . . .,10

(A10)

G6

min f (x) = (x1−10)3+(x2−20)3
x1 ∈ [13,100] x2 ∈ [0,100]

s.t.
g1(x)=−(x1−5)2−(x2−5)2+100≤ 0

g2(x)= (x1−6)2+(x2−5)2−82.81≤ 0

{ (A11)
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