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a b s t r a c t

Although many surrogate-assisted evolutionary algorithms (SAEAs) have been proposed to solve
computationally expensive problems, they usually need to consume plenty of expensive evaluations
to obtain an acceptable solution. In this paper, we proposed a fast surrogate-assisted particle swarm
optimization (FSAPSO) algorithm to solve medium scaled computationally expensive problems through
a small number of function evaluations (FEs). Two criteria are applied in tandem to select candidates
for exact evaluations. The performance-based criterion is used to exploit the current global best
and accelerate the convergence rate, while the uncertainty-based criterion is used to enhance the
exploration of the algorithm. The distance-based uncertainty criterion in SAEAs does not consider the
fitness landscape of different problems. Therefore, we developed a criterion to estimate uncertainty
by considering the distance and fitness value information simultaneously. This criterion can make
up for the disadvantage of the conventional distance-based uncertainty criterion by considering the
fitness landscape of a problem. In addition, it can be applied in any surrogate-assisted evolutionary
algorithm irrespective of the used surrogate model. Twenty-three benchmark functions widely adopted
in the literature and a 10-dimension propeller design problem are used to test the proposed approach.
Experimental results demonstrate the superiority of the proposed FSAPSO algorithm over seven
state-of-the-art algorithms.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) have been successfully applied
to solve various problems in different fields [1–4]. These algo-
rithms can be used to solve black box optimization problems
whose gradient information and mathematical expression are un-
known. Most EAs need many FEs to find a good solution, so they
are not suitable for computationally expensive problems whose
FEs are time-consuming. To address this challenge, surrogate
models have been applied in EAs to replace some FEs or select
promising individuals for exact FEs. Such algorithms are called
surrogate-assisted evolutionary algorithms (SAEAs). Commonly
used surrogate models include the polynomial regression [5–7],
the radial basis function (RBF) [8–11], Kriging, [5,12–14], and
support vector regression [15,16]. Comparisons of different mod-
els have been made in [5,17,18]. Different types of models are
suitable for their corresponding problems [19]. Characteristics of
most real-world problems are often unknown. Hence, an ensem-
ble of surrogates and hybrid surrogates are often used for better
approximation and uncertainty quantification [20–22].
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Generally, predictions from surrogate models can replace some
exact FEs. Surrogate models can help to select individuals for
exact evaluations by using some pre-screening criteria. These pre-
screening criteria are quite important for SAEAs. First, not all
fitness values are important in the iterative processes of EAs,
so many FEs can be saved by just selecting some promising
individuals for exact evaluations. Second, the pre-screening crite-
rion, deciding on which individuals could be calculated by exact
evaluations, has great effects on balancing the exploration and
exploitation of an algorithm, indirectly influencing the conver-
gence rate of an algorithm. Therefore, it is generally hard to judge
how many individuals or which individuals should be exactly
evaluated.

Commonly used pre-screening criteria in SAEAs can be roughly
divided into three categories. First, the performance-based cri-
terion evaluates individuals with good predicted fitness values.
For example, in [23], each particle had multiple trail velocities
and positions, and an RBF surrogate model was used to select a
position with the minimum predicted fitness value. One draw-
back of this method is that all the particles are exactly evaluated
at each iteration, so it needs many FEs to obtain good solu-
tions. Sun et al. [24] used a criterion where particles with better
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Nomenclature

Symbols

x input variables
Nt the number of training points
y(x) the true function
λ coefficients of the RBF model
ci the ith center of basis functions
p a polynomial model
ϕ a basis function
w inertia factor
vi speed of the ith particle
c1 learning factor
c2 learning factor
xi current location of the particle i
pi the best position of the particle i
pg the global optimum position of the

particle swarm.
D dimensions of parameter space
f expensive functions
K the number of initial sample points
maxNFE maximum NFEs
N swarm size
η thresholds for determining whether the

sample is evaluated by f
k the number of nearest neighbors
dij the distance from the candidate i to its

jth nearest neighbor
di1 the distance from the candidate i to its

nearest neighbor
yj fitness value of the jth nearest neighbor
ub upper boundary of variables
lb the lower boundary of variables
Vmax the maximum velocity of particles
Vmin the minimum velocity of particles

Abbreviations

FSAPSO fast surrogate-assisted particle swarm
optimization

FEs function evaluations
NFEs number of function evaluations
PSO particle swarm optimization
EAs evolutionary algorithms
SAEAs surrogate-assisted evolutionary

algorithms
RBF radial basis function
MSE mean square error
SPSO standard PSO
DB database
DF distance and fitness value

approximate fitness values than their current personal optima
(PBEST-based criterion) were exactly evaluated in a two-layer
surrogate-assisted particle swarm optimization algorithm. This
pre-screening criterion was also used in [25–28]. Although the
PBEST-based criterion can reduce some unimportant FEs, some
particles with a little better improvement than their personal best
will be exactly evaluated. This will also induce that many FEs
are consumed in some iterations as the PBEST-based criterion

FSAPSO-WOMO FSAPSO without evaluating the model
optimum

FSAPSO-WOBP FSAPSO without evaluating the best
particle

FSAPSO-WOU FSAPSO without the uncertainty-based
criterion

CAL-SAPSO surrogate-assisted PSO algorithm with
the help of committee-based active
learning

SAPSO-PBEST an RBF model assisted PSO
SL-PSO social learning-based PSO
SHPSO surrogate-assisted hierarchical particle

swarm optimizer
GORS-SSLPSO surrogate-assisted SL-PSO with a

generation-based optimal restart
strategy

SA-COSO surrogate-assisted cooperative swarm
optimization

ESAO evolutionary sampling assisted
optimization

has no limitation for the number of evaluated individuals. In
addition, there are some algorithms that select the best individual
in the population for exact evaluations [27,29–31]. However, this
method cannot be used solely as the algorithm will quickly fall
into the local optima of the surrogate model.

Second, the uncertainty-based criterion evaluates individuals
with great uncertainties. Generally, evaluating individuals with
great uncertainties can effectively improve the accuracy of a
surrogate model and push the search to unexplored or not-well-
explored regions in SAEAs [32,33]. The uncertainty in SAEAs usu-
ally refers to the reliability of fitness estimations, and less reliable
fitness estimations indicate greater uncertainties [34]. Searching
regions with complex fitness landscapes usually implies great
uncertainties. In addition, the reliability of the estimated fitness
values cannot be known in advance. Therefore, regions with
sparse sample points are usually assumed to be with great un-
certainties. However, there may be regions where samples are
sparse but the estimated fitness values are accurate, e.g., prob-
lems with flat fitness landscapes in some regions. Three methods
are commonly used to estimate uncertainty. First, the Kriging
model [12,35] can estimate the mean square error (MSE) of a
prediction. However, this method can only be used with the Krig-
ing model, thereby limiting its applications. Second, differences in
predictions of multiple models can estimate the degree of uncer-
tainty [35,36], a great difference usually indicates a larger degree
of uncertainty. However, multiple surrogates should have dif-
ferent characteristics, otherwise, the predictions may be similar
and the calculated uncertainties may not be reliable. Meanwhile,
the method of adopting multiple surrogates is time-consuming.
Finally, the distance from a candidate to the existing training data
has been used as a measure of the uncertainty. Branke et al. [34]
used Euclidean distances from a candidate point to its k nearest
estimated neighborhoods to estimate the uncertainty [34]. Regis
et al. [37] used the minimum distance from a candidate to previ-
ously evaluated points to estimate the uncertainty. However, the
distance criterion can only be used to discover a sparsely sampled
region, and the predicted uncertainty is similar if the dispersion
of candidate points is similar. In addition, the uncertainty-based
pre-screening criterion should not be solely used as many FEs will
be spent on exploring not-well-explored areas. This may result in
the delay of the convergence rate.
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The third type of criterion incorporates exploration and ex-
ploitation simultaneously. For instance, in [36], a lower confi-
dence bound criterion consisting of predicted mean values and
standard deviations of a heterogeneous ensemble model was
proposed to solve expensive multi-objective problems. In [38],
a lower confidence bound criterion based on two different RBF
models was proposed to select the most promising trail position
for each particle, and the weight coefficients of the lower confi-
dence bound criterion were changed with iterations to control the
exploratory space of particles. In [39–43], some individuals with
high scores of better fitness values or better lower confidence
bound values are evaluated. However, the number of selected
individuals in these criteria is set based on users’ knowledge.
There is no strict rule to set this value. Therefore, there may be
not enough FEs left for exploitation if too many individuals are
evaluated at each iteration.

The pre-screening criterion only considers the predicted fit-
ness values may result in the premature convergence, while the
pre-screening criterion only considers uncertainties may result
in a slow convergence rate. Therefore, the two criteria cannot
be solely used. The pre-screening criterion considering predicted
fitness values and uncertainty simultaneously has difficulty in
setting the number of exactly evaluated individuals (Ns). Many
FEs are used to explore the search space if the value of Ns is
too big or too small. A good solution may not be obtained if
the total computational resource is limited. Therefore, in this
paper, a performance-based criterion and an uncertainty-based
criterion are collaboratively used in a surrogate-assisted PSO al-
gorithm to solve medium scaled computationally expensive prob-
lems through a small number of FEs. The two criteria only select
the individual with the best fitness value or the greatest un-
certainty for exact evaluation to reduce the consumed FEs. The
performance-based criterion is used to exploit the current global
best, while the uncertainty-based criterion is used to enhance the
exploration of the algorithm. The proposed algorithm can quickly
exploit the current promising area by using the performance-
based criterion, and the probability of falling into local optimum
is reduced by using the uncertainty-based criterion. It can achieve
a better solution in a limited number of FEs as no more than
three candidates are evaluated at each iteration. Therefore, we
name the proposed algorithm as a fast surrogate-assisted PSO
(FSAPSO) algorithm. In addition, the uncertainty criterion based
on Kriging model or multiple models either has a requirement
for the model or needs more than one model. The distance-based
uncertainty criterion does not consider the fitness landscape of
different problems. Considering the defects of the three criteria,
we developed a criterion to estimate uncertainty by considering
the distance and fitness value information simultaneously. This
criterion can make up for the disadvantage of the conventional
distance-based uncertainty criterion by considering the fitness
landscape of a problem. In addition, it can be used for any SAEA
irrespective of the used surrogate model.

The main contribution of the paper can be summarized as
follows.

(1) Different from conventional SAEAs using one pre-screening
criterion to balance exploration and exploitation, two cri-
teria are collaboratively used in the proposed FSAPSO algo-
rithm to select individuals for exact FEs. Its main advantage
is that the performance-based criterion can promote the
exploitation and accelerate convergence rate, while the
uncertainty-based criterion can promote exploration and
relieve the premature stagnation. The proposed algorithm
can balance the exploration and exploitation well by evalu-
ating several individuals at each criterion, and it can obtain
a good solution through a small number of FEs.

(2) Different from the conventional method to estimate uncer-
tainty, an uncertainty-based criterion considering the dis-
tance and fitness value information simultaneously is pro-
posed. The main advantage of this criterion is that it makes
up for the disadvantage of the conventional distance-based
uncertainty criterion by considering the fitness landscape
of a problem. In addition, it can be used for any SAEAs
irrespective of the used surrogate model.

The rest of this paper is organized as follows. Section 2 pro-
vides the preliminaries of the work presented in this paper.
Section 3 describes the main components of the proposed fast
surrogate-assisted PSO (FSAPSO) algorithm and the proposed
uncertainty-based criterion. Section 4 presents a behavior study
of the proposed algorithm and comparisons between the pro-
posed algorithm and other state-of-the-art SAEAs on some nu-
merical instances and an engineering instance. Section 5 con-
cludes the paper and discusses some future work.

2. Preliminaries

2.1. RBF Models

The RBF model was originally developed for scattered mul-
tivariate data interpolation [8]. It uses a weighted sum of ba-
sis functions to approximate complicated landscapes [44]. For
a data set consisting of the values of the input variables and
response values at Nt training points, the true functiony(x) can
be approximated as

ŷ(x) =

Nt∑
i=1

λiϕ(∥x − ci∥) + p(x) (1)

where λ are coefficients calculated by solving linear equations; ci
denotes the ith center of basis functions; p is either a polynomial
model or a constant value, and a linear polynomial is used in the
paper [23,37]; ϕ is a basis function.

As (1) is underdetermined, the orthogonality condition is fur-
ther imposed on coefficients λ as
Nt∑
i=1

λipj(xi) = 0, for j = 1, 2, . . . ,m (2)

[
Φ P
PT 0

][
λ

b

]
=

[
y
0

]
(3)

where m is the number of terms of p(x), Φij = ϕ(∥xi −

xj∥), (i = 1, 2, . . . ,Nt), (j = 1, 2, . . . ,Nt), Pij = pj(xi), (i =

1, 2, . . . ,Nt), (j = 1, 2, . . . ,m), λ = [λ1, λ2, . . . , λNt ]
T , and b =

[b1, b2, . . . , bm]
T . Eq. (3) consists of (Nt + m) equations and its

solution gives coefficients λ and b in (1).

2.2. Standard PSO algorithm

In the standard PSO (SPSO) [45], the particle updates its ve-
locity and position according to (4) and (5). We used the two
formulas to update the particle swarm in this paper. Hereinafter,
we also use the standard SPSO to denote the PSO with the inertia
weight.

vi(t + 1) = w · vi(t) + c1 · rand · (pi(t) − xi(t))

+ c2 · rand · (pg (t) − xi(t)) (4)

xi(t + 1) = xi(t) + vi(t + 1) (5)

where w is inertia factor; vi is the speed of the ith particle; c1
and c2 are learning factors; rand is random number in [0, 1]; xi is
the current location of the particle; pi is the best position of the
ith particle; and pg is the global optimum position of the particle
swarm.
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3. The proposed FSAPSO algorithm

The particle swarm often needs to experience a process of
exploration and exploitation before converging to a good so-
lution. A large number of FEs will be consumed if too many
particles are exactly evaluated at each iteration. Therefore, it is
important to select the ‘‘right’’ particles for exact evaluations for
computationally expensive problems.

Two criteria, the performance-based criterion and the
uncertainty-based criterion, are used in tandem to select can-
didate solutions for exact FEs in the proposed FSAPSO. In the
performance-based criterion, the particle with the best predicted
fitness value and the optimum of the surrogate model are exactly
evaluated at each iteration to control the searching directions of
the particle swarm. The optimum of the surrogate model will
replace the current global best of the swarm if the optimum is
better. If only the performance-based criterion is used, particles
may concentrate in the neighborhood of the optimum of the
model after a few iterations. Hence, the swarm may quickly
converge to a local optimum. Therefore, a novel uncertainty-
based criterion is used in the paper to select the particle with
the greatest uncertainty for exact evaluation to enhance the
exploration of the algorithm. The accuracy of the model is also
improved as particles located in sparse regions usually have large
uncertainties. Generally, the particle with great uncertainty can
only make a small improvement to the current global best of
the swarm. If the particle with the greatest uncertainty is exactly
evaluated at every iteration, some FEs may be wasted. Referring
to the method in [35], the particle with the greatest uncertainty is
exactly evaluated only when the current global best of the swarm
is not improved.

The proposed FSAPSO algorithm is different from a surrogate-
assisted PSO algorithm with the help of committee-based active
learning (CAL-SAPSO) [35] although both the performance-based
and uncertainty-based criteria are used in the two algorithms.
First, the FSAPSO algorithm uses two criteria to select particles
from the swarm for exact FEs, while CAL-SAPSO mainly works to
find optima of models corresponding to the two criteria. There-
fore, CAL-SAPSO seems like a global optimization algorithm based
on surrogate models, while FSAPSO is a surrogate-assisted PSO
algorithm. Second, CAL-SAPSO uses differences in predictions of
multiple surrogate models to estimate uncertainty, while FS-
APSO uses distance and fitness value information to estimate
uncertainty.

3.1. Overall flowchart of FSAPSO

A generic diagram of the proposed FSAPSO algorithm is pre-
sented in Fig. 1. The detailed flow of the proposed algorithm is
shown in Algorithm. 1. At the beginning of the process, Latin
Hypercube Sampling is used to generate the initial samples, and N
samples with the best fitness values are taken as the initial pop-
ulation. Then, an RBF model is built with all the samples, and the
optimum of the RBF model (xminRBF ) is exactly evaluated if the
minimum distance between xminRBF and other evaluated samples
is larger than the threshold η. The threshold η is used to avoid
the samples being too closed. The xminRBF will replace the global
best of the swarm if it is better. Then, velocities and positions of
the particles are updated. Finesse values of all particles are first
predicted by the RBF model, then the particle with the minimum
prediction is exactly evaluated if the minimum distance between
the particle and other samples is bigger than η. The particle with
the greatest uncertainty is also exactly evaluated if the current
global best is not improved. Note that three kinds of solutions will
be stored in the database (DB): initial sample points, the optimum
of the RBF model and the exactly evaluated particles. The last two
kinds of solutions will be cumulatively stored in the DB at each
iteration.

Fig. 1. Flowchart of the FSAPSO algorithm.

3.2. Model management

A global RBF model with cubic basis functions is constructed
to predict the fitness values of all particles as cubic basis func-
tions have shown good performance on other SAEAs [23,37]. The
optimum of the RBF model is exactly evaluated to update the
global best of the swarm if the optimum is better. The RBF model
has the ability to approximate high-order nonlinear problems, so
the approximation model may have many local optima. Although
evaluating all the local optima is beneficial for the exploration,
many FEs may be consumed. The optimum of the surrogate is
mainly used to improve the current global best, so a local opti-
mization algorithm is used to find the optimum. In this paper, the
fimincon solver with the interior point method in Matlab R2015a
is used to find the optimum of the model. The starting point for
the local optimization algorithm is the current global best of the
swarm. The searching space for finding the optimum is restricted
to space where the current population is located as the optimum
in this area may have a bigger probability to improve the current
optimum.

3.3. The proposed uncertainty-based criterion

We consider the following three situations. First, if the disper-
sion of samples is similar, areas with complex fitness landscapes
usually have greater uncertainties for they are more difficult
to approximate. Second, if the complexity of the landscapes is
similar across space, candidates near the evaluated points usually
have smaller uncertainties as the nearest sample points have the
greatest influence on it. Finally, similar to the second situation,
the uncertainty of a candidate usually becomes smaller with more
evaluated points existing in its neighbor. Overall, the uncertainty
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is influenced by the fitness landscape of a problem, the distance
from a candidate to its nearest evaluated points and the number
of its nearest evaluated points. The conventional distance crite-
rion used in other works only considers distances between the
candidate and its evaluated neighboring points, so the predicted
uncertainty may be unreliable.

Considering the defect of the distance criterion, we improved
it by adding the information of fitness values and named it as
the distance and fitness value (DF) criterion. In a small region,
the distribution of fitness values can indicate the smoothness
of the fitness landscape to some degree. The fitness landscape
with a small variance of fitness values is likely to be slightly
flatter than the fitness landscape with a bigger one. However,
this assumption only holds in a small local area for a rugged
landscape may have a small variance of fitness values in a big
search space. The improved uncertainty-based criterion considers
distances from a candidate to its k nearest evaluated points and
the fitness values variance of its k nearest evaluated points. The
formula of calculating the DF value of a candidate is shown in
(6), where s is a modified sigmoid function. s is used to express
the relation between the distance from a candidate to its nearest
evaluated point and the uncertainty. The uncertainty of a candi-
date becomes smaller when the distance from it to its nearest
neighbor becomes smaller. The uncertainty is zero on the exactly
evaluated point as shown in Fig. 2. The function value of the
sigmoid function is close to a stable value when the variable is

close to five. It is hard to distinguish the effect of the distance
on uncertainty if most of the nearest distances are larger than
five, so the nearest distances of different particles are scaled to (0,
5) by using (12). The problem caused by the different magnitude
of distances is also avoided. The mean value of distances from
a candidate to its k nearest neighbors and the fitness values
variance of its k nearest neighbors are taken as a weight of s
as both of them have influence on the uncertainty. To solve the
scaling problem, the two values are divided by their respective
sums as shown in (9) and (10).

ui = si(dmnorm,i + σnorm,i) (6)

dmi=
1
k

k∑
j=1

dij (7)

σi =

√1
k

k∑
j=1

(yj − ȳ)2, ȳ =
1
k

k∑
j=1

yj (8)

dmnorm,i = dmi/

N∑
i=1

dmi (9)

σnorm,i = σi/

N∑
i=1

σi (10)

si = 1/(1 + e−d′
i1 ) − 0.5 (11)
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Fig. 2. The relation between the nearest distance and the uncertainty.

d′

i1 = 5di1/
N∑
i=1

di1 (12)

where k is the number of nearest neighbors, dij is the distance
from the candidate i to its jth nearest neighbor, di1 is the distance
from the candidate i to its nearest neighbor, yj is the fitness value
of the jth nearest neighbor. Fig. 3(a) shows the Kriging model
of the one-dimension Forrester function with four sample points
distributed uniformly in [0,1], and Fig. 3(b) shows the minimum
distance (dmin) from candidates to sample points, DF value of the
candidates, and the MSE as predicted by Kriging. It is evident that
the dmin criterion is only related to the distribution of sample
points but the DF criterion can reflect the complexity of the
landscape.

To test the effectiveness of the proposed DF criterion, the one-
dimension Forrester function with four non-uniformly distributed
sample points is used to compare uncertainties predicted by the
three criteria. The variation trends of the three criteria are similar
without considering peak values as shown in Fig. 4. However,
peak values of the dmin criterion and DF criterion are not iden-
tical as in the MSE of the Kriging model. The dmin criterion only
considers the distance to the nearest neighbor, so peak values are
only related to the distance. The DF criterion also considers fitness
values, so the area with a larger variance of fitness values tends
to have bigger uncertainties with a similar distribution of sample
points.

In the high-dimensional searching space, samples are sparsely
distributed in the search space at the initial stage of the algo-
rithm. Distances between particles to its nearest samples are
relatively big. For instance, Fig. 5 shows the distances of particles
to each evaluated point from the DB in different iterations by
using FSAPSO to test a 50-dimension Rastrigin function. If the
nearest distances are large, the variance of fitness values may
not indicate the real fitness landscape of the area where the
candidate is located. In this situation, the particles may all have
large uncertainties as the surrogate model is clearly not accurate
anywhere, so the DF criterion can also be used to select the
candidate with the largest uncertainty. More evaluated points are
located in the area where the swarm exists with the iteration
going on. Distances between particles to its nearest samples be-
come smaller gradually. The variance of fitness values is reliable,
and the DF criterion has the ability to identify the most uncertain
candidate.

4. Experimental study

4.1. Parameter settings

During experiments, 30 independent runs are performed for
each algorithm. Eight benchmark functions in Table 1 with differ-
ent characteristics are taken to evaluate the effectiveness of the
proposed algorithm [26,27,29,31,35]. For all the used algorithms
in this paper, the termination condition is that the number of con-
sumed FEs is less than maxNFE, and maxNFE is set as 11D [31,35].
For all the used PSO algorithms in this paper, w= 0.792-(0.792-
0.2)NFE/maxNFE, c1 = c2 = 1.491 as they are commonly used
in the literature [3,46]. The number of initial sample points K
is max(D,20) as the search space increases with the increase of
variables of the problems. D is the dimension of the problem.
The swarm size N is 20. Vmax=0.1(ub-lb), Vmin=-Vmax. ub is the
upper boundary of variables, and lb is the lower boundary. For FS-
APSO algorithm, η is min(sqrt(0.0012D), 5.0×10−5D×min(ub-lb))
inspired by the method in [23]. The number of nearest neighbors
(k) is 3, and the effects of it on the proposed algorithm is analyzed
on Section 4.4.

4.2. Behavior study of FSAPSO

4.2.1. Effects of the performance-based criterion
To show the effects of the performance-based criterion on the

proposed FSAPSO algorithm, we compare FSAPSO with its two
variants (FSAPSO-WOMO and FSAPSO-WOBP). FSAPSO-WOMO is
similar to FSAPSO except that it does not evaluate the optimum
of the model. FSAPSO-WOBP is similar to FSAPSO except that it
does not evaluate the best particle. Five benchmark problems
with dimensions D = 10, 20, 30 are used to test the three
algorithms. The average best objective function values obtained
by the three algorithms over 30 independent runs are shown in
Table 2, and the best mean values of individual instances are
highlighted. The last column of the tables lists the results of the
Wilcoxon rank-sum test calculated at a significance level of α

=0.05, where ‘≈’ indicates that there is no statistically significant
difference between the results obtained by FSAPSO algorithm
and the compared algorithms, ‘+’ indicates that FSAPSO algorithm
is significantly better than the compared algorithms, while ‘−’
means that FSAPSO algorithm is significantly outperformed by
the compared algorithms. FSAPSO algorithm significantly outper-
forms FSAPSO-WOMO algorithm on all problems as shown in
Table 2. However, FSAPSO and FSAPSO-WOBP algorithms show
similar performances on thirteen out of fifteen problems, and
FSAPSO-WOBP algorithm slightly outperforms FSAPSO algorithm
on the 30-dimension Ackley function, while FSAPSO algorithm
is slightly better than it on the 20-dimension Rosenbrock func-
tion. This indicates that evaluating the optimum of the model
can effectively improve the quality of the final solutions, and
evaluating the best particle in the swarm improves solutions of
some problems. The convergence curves of the three algorithms
on 10-dimension Rastrigin is shown in Fig. 6. FSAPSO achieves
significantly better solutions than its two variances after about
60 FEs. This means that evaluating the best particle and the
optimum of the surrogate model can make a good guidance for
PSO and promote exploitation. In addition, FSAPSO-WOBP obtains
better results than FSAPSO-WOMO on most of the problems.
This indicates the optimum of the surrogate model can produce
more promising information for the swarm. Overall, the effective-
ness of the performance-based criterion on FSAPSO algorithm is
demonstrated.
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Fig. 3. Forrester function with four uniformly distributed sample points.

Fig. 4. Forrester function with four non-uniformly distributed sample points.

Table 1
Benchmark functions used in the experimental study.
Benchmark Problem Dimension Characteristics Global Optimum

Ellipsoid 10, 20, 30, 50 Unimodal 0
Rosenbrock 10, 20, 30, 50 Multimodal with narrow valley 0
Ackley 10, 20, 30, 50 Multimodal 0
Griewank 10, 20, 30, 50 Multimodal 0
Rastrigin 10, 20, 30, 50 Multimodal 0
F10 in CEC 2005 [47] 50 Shifted Rotated Rastrigin Very complicated multimodal −330
F16 in CEC 2005 [47] 50 Rotated Hybrid composition function Very complicated multimodal 120
F19 in CEC 2005 [47] 50 Rotated Hybrid composition function Very complicated multimodal 10

4.2.2. Effects of the uncertainty-based criterion
To show the effects of the uncertainty-based criterion on

the FSAPSO algorithm, we compare FSAPSO and FSAPSO without
the uncertainty-based criterion (denoted as FSAPSO-WOU). The
average best objective function values obtained by the three
algorithms over 30 independent runs are shown in Table 3, and
the best mean results of individual instances are highlighted.
FSAPSO algorithm outperforms FSAPSO-WOU algorithm on seven
out of fifteen problems and they show similar performance on
eight problems. The two algorithms show similar performance

on the 10-dimension Ellipsoid and two simple multi-modal func-
tions (Ackley and Griewank). This may be that these problems
are easy to approximate and the surrogate model can provide
real promising information for the swarm even without the
uncertainty-based criterion. However, the sample points are easy
to gather in the neighbor of the current optimum without the
uncertainty-based criterion, so the FSAPSO-WOU algorithm is
easy to be trapped in local optima. The algorithm can explore
more areas and the accuracy of the model is also improved
with the uncertainty-based criterion. Besides, standard deviations
achieved by FSAPSO algorithm are smaller than the algorithm
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Fig. 5. Distances of particles to the evaluated points at different iterations.

Fig. 6. Convergence profiles of the three algorithms on 10-dimension Rastrigin
function.

without the uncertainty-based criterion on most problems. The
results indicate that the algorithm with more exploration is
more stable. Therefore, the effectiveness of the uncertainty-based
criterion on FSAPSO algorithm is demonstrated.

4.2.3. Compare the DF criterion with other uncertainty-based crite-
ria

Although the effectiveness of the DF criterion on the FSAPSO
algorithm has been demonstrated, whether the DF criterion is
a good measure of the uncertainty is unknown. Therefore, the
DF criterion is also compared with other uncertainty-based cri-
teria to further investigate its characteristics. Two variants of
the FSAPSO algorithm, FSAPSO using MSE of Kriging model to

replace the DF criterion and FSAPSO using a random criterion
(randomly selecting a particle) to replace the DF criterion, are
compared with FSAPSO algorithm with the DF criterion. The MSE
of the Kriging model is a commonly used method for uncertainty.
The random criterion is used to test whether it can play the
same role as the DF criterion in FSAPSO. The outcome of this
comparison will show whether other criteria are as effective as
the DF criterion in FSAPSO. The average best objective function
values obtained by the three algorithms over 30 independent runs
are shown in Table 4, and the best mean values of individual
instances are highlighted. DF criterion outperforms the random
criterion on five out of fifteen problems, while their performances
are very close on nine problems. Besides, the DF criterion leads
to better mean values on twelve problems, so the DF criterion is
different from the random criterion. These results also indicate
that not all the criteria can show a similar performance as the
DF criterion in FSAPSO. Furthermore, the DF criterion leads to
better performance than the MSE criterion on ten out of fifteen
problems. This indicates that the effectiveness of the DF criterion.

4.3. Comparative experiments on benchmark problems

4.3.1. Experiments on 10-, 20-, and 30-dimension benchmark prob-
lems

To further examine the performance of the proposed algo-
rithm, we compare it with five state-of-art algorithms. SPSO
algorithm [45] is adopted to test the effects of the surrogate
model. Parameters of the SPSO are set as the same with FS-
APSO. SAPSO-PBEST, an RBF model-assisted PSO algorithm, is
used to investigate the effects of different pre-screening criteria
on the algorithm. SAPSO-PBEST is similar to FSAPSO except that
the PBEST-based criterion is used to select particles for exact
evaluations. Three recently proposed surrogate-based optimiza-
tion algorithms are also used. SHPSO [26] is a surrogate-assisted
hierarchical particle swarm optimizer consisting of a PSO al-
gorithm and a social learning-based PSO (SL-PSO) algorithm to
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Table 2
Statistics results of FSAPSO, FSAPSO-WOMO and FSAPSO-WOBP algorithms.
Problem D Algorithm Best Worst Median Mean Std t-test

Ellipsoid 10
FSAPSO 6.94E−04 3.90E−01 1.75E−02 4.27E−02 8.48E−02
FSAPSO-WOMO 9.51E−01 1.74E+01 4.72E+00 6.80E+00 4.94E+00 +

FSAPSO-WOBP 6.36E−04 1.28E−01 1.71E−02 3.39E−02 3.82E−02 ≈

Ellipsoid 20
FSAPSO 2.30E−02 1.47E+00 3.48E−01 4.47E−01 3.82E−01
FSAPSO-WOMO 3.11E+00 3.32E+01 1.21E+01 1.42E+01 8.32E+00 +

FSAPSO-WOBP 2.07E−02 1.25E+00 1.39E−01 3.25E−01 3.78E−01 ≈

Ellipsoid 30
FSAPSO 1.24E−01 2.43E+00 1.06E+00 1.10E+00 6.79E−01
FSAPSO-WOMO 1.08E+01 5.19E+01 2.81E+01 2.95E+01 1.23E+01 +

FSAPSO-WOBP 1.07E−01 1.54E+00 5.56E−01 6.32E−01 3.99E−01 –

Rosenbrock 10
FSAPSO 7.88E+00 4.06E+01 9.79E+00 1.17E+01 7.03E+00
FSAPSO-WOMO 1.07E+01 3.47E+01 1.58E+01 1.75E+01 6.38E+00 +

FSAPSO-WOBP 8.15E+00 3.85E+01 1.06E+01 1.30E+01 6.69E+00 +

Rosenbrock 20
FSAPSO 1.50E+01 6.07E+01 1.99E+01 2.32E+01 1.17E+01
FSAPSO-WOMO 2.34E+01 6.31E+01 3.76E+01 3.85E+01 9.58E+00 +

FSAPSO-WOBP 1.87E+01 3.25E+01 2.01E+01 2.14E+01 3.17E+00 ≈

Rosenbrock 30
FSAPSO 2.92E+01 6.87E+01 3.85E+01 4.32E+01 1.22E+01
FSAPSO-WOMO 4.90E+01 1.56E+02 9.14E+01 9.38E+01 3.15E+01 +

FSAPSO-WOBP 3.03E+01 5.42E+01 3.51E+01 3.69E+01 5.89E+00 ≈

Ackley 10
FSAPSO 2.63E+00 1.15E+01 3.72E+00 4.48E+00 2.06E+00
FSAPSO-WOMO 5.92E+00 1.34E+01 9.60E+00 9.89E+00 2.20E+00 +

FSAPSO-WOBP 2.05E+00 8.68E+00 3.63E+00 4.41E+00 2.19E+00 ≈

Ackley 20
FSAPSO 2.90E+00 8.31E+00 6.05E+00 5.69E+00 1.74E+00
FSAPSO-WOMO 6.62E+00 1.21E+01 8.91E+00 9.07E+00 1.48E+00 +

FSAPSO-WOBP 2.34E+00 7.10E+00 5.79E+00 5.30E+00 1.57E+00 ≈

Ackley 30
FSAPSO 3.27E+00 1.32E+01 5.75E+00 6.21E+00 2.36E+00
FSAPSO-WOMO 7.65E+00 1.17E+01 9.98E+00 9.83E+00 1.38E+00 +

FSAPSO-WOBP 3.47E+00 6.50E+00 5.05E+00 5.00E+00 7.92E−01 ≈

Griewank 10
FSAPSO 3.35E−01 1.01E+00 8.46E−01 7.84E−01 2.11E−01
FSAPSO-WOMO 1.90E+00 7.12E+00 3.68E+00 4.04E+00 1.36E+00 +

FSAPSO-WOBP 5.80E−01 1.20E+00 9.16E−01 8.81E−01 1.85E−01 ≈

Griewank 20
FSAPSO 1.89E−01 6.89E−01 4.11E−01 4.16E−01 1.56E−01
FSAPSO-WOMO 3.81E+00 1.62E+01 7.12E+00 7.68E+00 3.20E+00 +

FSAPSO-WOBP 2.13E−01 7.26E−01 5.23E−01 4.99E−01 1.54E−01 ≈

Griewank 30
FSAPSO 1.79E−01 5.18E−01 3.20E−01 3.33E−01 8.56E−02
FSAPSO-WOMO 4.83E+00 2.88E+01 9.12E+00 9.95E+00 4.95E+00 +

FSAPSO-WOBP 2.22E−01 5.58E−01 3.78E−01 3.93E−01 9.37E−02 ≈

Rastrigin 10
FSAPSO 1.29E+01 5.54E+01 2.72E+01 3.06E+01 1.18E+01
FSAPSO-WOMO 3.10E+01 8.17E+01 5.19E+01 5.06E+01 1.18E+01 +

FSAPSO-WOBP 1.20E+01 6.80E+01 3.49E+01 3.84E+01 1.70E+01 ≈

Rastrigin 20
FSAPSO 3.08E+01 8.96E+01 4.85E+01 5.26E+01 1.55E+01
FSAPSO-WOMO 5.84E+01 1.32E+02 9.94E+01 9.30E+01 2.00E+01 +

FSAPSO-WOBP 1.79E+01 8.19E+01 4.13E+01 4.46E+01 1.78E+01 ≈

Rastrigin 30
FSAPSO 2.49E+01 9.95E+01 6.62E+01 6.80E+01 2.07E+01
FSAPSO-WOMO 9.79E+01 1.95E+02 1.29E+02 1.35E+02 2.86E+01 +

FSAPSO-WOBP 3.91E+01 1.15E+02 5.54E+01 6.15E+01 2.07E+01 ≈

explore and exploit search spaces. SHPSO is similar to SAPSO-
PBEST except that the RBF model is built with the first P non-
duplicated best samples in the archive, and an SL-PSO algorithm
is used to search the optimum of the model. CAL-SAPSO [35],
an ensemble-surrogate-based global optimization method, em-
ploys a PSO algorithm to find the best and the most uncertain
points for exact evaluations. The uncertainty-based criterion of
CAL-SAPSO consists of differences between outputs of the sub-
models. GORS-SSLPSO [31] is a surrogate-assisted SL-PSO with a
generation-based optimal restart strategy. SL-PSO restarts every
few generations, and the best sample points archived in the
database are employed to reinitialize the swarm at each restart.
The individual with the best estimated fitness value is chosen for
the exact evaluation before each restart of the SL-PSO. The param-
eters of the compared SAEAs are the same as those in the original
papers. The average best objective function values obtained by
the six algorithms over 30 independent runs are shown in Table 5
and the best mean results of individual instances are highlighted.
Table 6 lists the results of Wilcoxon rank sum test calculated
at a significance level of α = 0.05, and results of CAL-SAPSO

are not tested as we cannot replicate the results of CAL-SAPSO.
Convergence profiles of the algorithms are plotted in Fig. 7, and
convergence profiles of CAL-SAPSO are extracted from [31].

From the results shown in Tables 5 and 6, we can observe that
FSAPSO algorithm achieves the best mean values in eight out of
fifteen problems, and GORS-SSLPSO algorithm obtains the best
mean values on the remaining problems. In comparison with the
non-surrogate assisted algorithm, FSAPSO algorithm significantly
outperforms SPSO algorithms on all problems. This indicates that
using the surrogates can significantly improve the final solutions.
FSAPSO algorithm outperforms SAPSO-PBEST algorithm on eleven
out of fifteen problems, while SAPSO-PBEST algorithm achieves
slightly better results on Ackley function with D = 20, 30.
Ackley function is a multimodal function with many shallow
valleys. FSAPSO algorithm may be trapped in a local optimum.
Besides, FSAPSO algorithm outperforms SHPSO algorithm on all
problems. In SHSPO, the number of initial sample points is 100
when D<50, and the number of samples to train the RBF sur-
rogate model is also 100 for problems with D<50, so many
samples are used to construct the surrogate model. FSAPSO al-
gorithm outperforms CAL-SAPSO algorithm on fourteen out of
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Table 3
Statistics results of FSAPSO and FSAPSO-WOU algorithms.
Problem D Algorithm Best Worst Median Mean Std t-test

Ellipsoid 10 FSAPSO 6.94E−04 3.90E−01 1.75E−02 4.27E−02 8.48E−02
FSAPSO-WOU 6.42E−04 3.60E−01 2.71E−02 7.32E−02 9.63E−02 ≈

Ellipsoid 20 FSAPSO 2.30E−02 1.47E+00 3.48E−01 4.47E−01 3.82E−01
FSAPSO-WOU 9.68E−02 2.10E+02 7.77E−01 1.90E+01 5.38E+01 +

Ellipsoid 30 FSAPSO 1.24E−01 2.43E+00 1.06E+00 1.10E+00 6.79E−01
FSAPSO-WOU 9.28E−01 5.66E+01 2.28E+00 9.05E+00 1.67E+01 +

Rosenbrock 10 FSAPSO 7.88E+00 4.06E+01 9.79E+00 1.17E+01 7.03E+00
FSAPSO-WOU 5.27E+00 1.27E+02 2.68E+01 3.68E+01 2.90E+01 +

Rosenbrock 20 FSAPSO 1.50E+01 6.07E+01 1.99E+01 2.32E+01 1.17E+01
FSAPSO-WOU 3.61E+01 1.12E+03 7.53E+01 1.39E+02 2.34E+02 +

Rosenbrock 30 FSAPSO 2.92E+01 6.87E+01 3.85E+01 4.32E+01 1.22E+01
FSAPSO-WOU 3.85E+01 1.45E+02 1.11E+02 1.04E+02 3.12E+01 +

Ackley 10 FSAPSO 2.63E+00 1.15E+01 3.72E+00 4.48E+00 2.06E+00
FSAPSO-WOU 7.06E−01 1.78E+01 5.01E+00 7.13E+00 5.32E+00 ≈

Ackley 20 FSAPSO 2.90E+00 8.31E+00 6.05E+00 5.69E+00 1.74E+00
FSAPSO-WOU 2.39E+00 1.65E+01 5.57E+00 7.82E+00 4.98E+00 ≈

Ackley 30 FSAPSO 3.27E+00 1.32E+01 5.75E+00 6.21E+00 2.36E+00
FSAPSO-WOU 3.38E+00 1.62E+01 7.16E+00 8.17E+00 3.82E+00 ≈

Griewank 10 FSAPSO 3.35E−01 1.01E+00 8.46E−01 7.84E−01 2.11E−01
FSAPSO-WOU 3.80E−01 9.80E−01 7.29E−01 7.17E−01 1.57E−01 ≈

Griewank 20 FSAPSO 1.89E−01 6.89E−01 4.11E−01 4.16E−01 1.56E−01
FSAPSO-WOU 1.93E−01 8.10E−01 3.07E−01 3.66E−01 1.81E−01 ≈

Griewank 30 FSAPSO 1.79E−01 5.18E−01 3.20E−01 3.33E−01 8.56E−02
FSAPSO-WOU 8.89E−02 9.02E+01 2.84E−01 4.78E+00 2.01E+01 ≈

Rastrigin 10 FSAPSO 1.29E+01 5.54E+01 2.72E+01 3.06E+01 1.18E+01
FSAPSO-WOU 9.96E+00 7.10E+01 2.94E+01 3.41E+01 1.72E+01 ≈

Rastrigin 20 FSAPSO 3.08E+01 8.96E+01 4.85E+01 5.26E+01 1.55E+01
FSAPSO-WOU 3.59E+01 1.66E+02 7.26E+01 7.58E+01 3.20E+01 +

Rastrigin 30 FSAPSO 2.49E+01 9.95E+01 6.62E+01 6.80E+01 2.07E+01
FSAPSO-WOU 4.88E+01 1.43E+02 9.20E+01 9.51E+01 2.75E+01 +

fifteen problems, and they show comparable performance on
Rosenbrock with D = 30. However, FSAPSO algorithm only out-
performs GORS-SSLPSO algorithm on Rosenbrock function with
D = 10, 20, 30, and GORS-SSLPSO algorithm achieves slightly bet-
ter results on 30-dimension Ellipsoid function and 10-dimension
Ackley function.

From the performance curves presented in Fig. 7, one can eas-
ily see that FSAPSO and GORS-SSLPSO algorithms converge faster
than the other four algorithms on most of the problems. SPSO,
CAL-SAPSO, and SHPSO converge slower than other algorithms on
most of the problems. FSAPSO can achieve greater improvement
than SPSO on current optimum with the same number of FEs.
Moreover, the global optima obtained by SAPSO-PBEST algorithm
are worse than those obtained by FSAPSO algorithm within the
same number of FEs on most of the problems except Ackley
function with D = 20 and 30. FSAPSO converges much slower
than SAPSO-PBEST in the later stage for Ackley function with D =

20 and 30. However, FSAPSO converges much faster than SAPSO-
PBEST on the other two multi-modal functions (Rastrigin and
Griewank). The three functions are multi-modal functions with
many local optima, but Ackley has much shallower local optima
than the other two problems. The PBEST-based pre-screening
criterion can find promising areas on Ackley function, while many
FEs are consumed on exploration for the other two problems. The
performance-based criterion and uncertainty-based criterion are
used in tandem in FSAPSO. This can achieve a good balance of
exploration and exploitation, and will not waste many unnec-
essary FEs on exploration. In addition, FSAPSO converges much
faster than the other surrogate-assisted algorithm (CAL-SAPSO
and SHPSO). This indicates the superiority of the two criteria in
FSAPSO.

From the above results, we can make the following obser-
vations. First, surrogate models help improve the performance

of PSO. Second, the collaboration between the performance-
based criterion and uncertainty-based criterion can make FSAPSO
achieve good performance on both uni-modal and multi-modal
problems. FSAPSO can obtain good solutions for the five classical
benchmark functions in the context of the limited computational
budget scenario. In addition, the convergence rate of FSAPSO is
much faster than the other algorithms on most problems. This
may owe to the good collaboration between performance-based
criterion and uncertainty-based criterion. The performance-based
criterion can promote the exploitation and accelerate conver-
gence rate, while the uncertainty-based criterion can enhance
exploration and avoid unnecessary FEs.

4.3.2. Experiments on 50-dimension benchmark problems
To further test the performance of the FSAPSO algorithm on

higher-dimensional problems, 50-dimension functions in Table 1
are used in the experimental study. SPSO, SAPSO-PBEST, SH-
PSO [26], GORS-SSLPSO [31], a surrogate-assisted cooperative
swarm optimization algorithm (SA-COSO) [27] and an evolution-
ary sampling assisted optimization (ESAO) algorithm [29], are
also used for comparison. The average best objective function
values obtained by the algorithms over 30 independent runs
are shown in Table 7, and the best mean results of individual
instances are highlighted. Table 8 lists the results of the Wilcoxon
rank sum test calculated at a significance level of α = 0.05. The
results of ESAO [29] are copied from the original papers. Rastrigin
and F16 are not tested in the original papers of ESAO, so the
results of the two functions on the three algorithm are blank.
Convergence profiles of the algorithms are plotted in Fig. 8. Con-
vergence profiles of ESAO algorithms are copied from the original
papers. There may be some deviations to the original data, but the
overall trends can be reflected for a fair comparison.
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Fig. 7. Convergence profiles of the algorithms on the test problems.
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Table 4
Statistics results of FSAPSO algorithm with three different criteria.
Problem D Criterion Best Worst Median Mean Std t-test

Ellipsoid 10
DF 6.94E−04 3.90E−01 1.75E−02 4.27E−02 8.48E−02
MSE 2.73E−03 2.05E−01 3.39E−02 5.64E−02 5.70E−02 ≈

Random 2.03E−03 8.13E−01 6.68E−02 1.11E−01 1.82E−01 +

Ellipsoid 20
DF 2.30E−02 1.47E+00 3.48E−01 4.47E−01 3.82E−01
MSE 7.05E−02 2.73E+00 4.10E−01 7.06E−01 7.32E−01 ≈

Random 1.19E−02 1.55E+00 3.40E−01 4.48E−01 3.91E−01 ≈

Ellipsoid 30
DF 1.24E−01 2.43E+00 1.06E+00 1.10E+00 6.79E−01
MSE 4.92E−02 7.25E+00 1.71E+00 2.09E+00 1.73E+00 +

Random 2.84E−02 3.45E+00 9.37E−01 1.26E+00 9.48E−01 ≈

Rosenbrock 10
DF 7.88E+00 4.06E+01 9.79E+00 1.17E+01 7.03E+00
MSE 7.24E+00 4.47E+01 1.05E+01 1.39E+01 8.61E+00 ≈

Random 8.43E+00 4.12E+01 1.50E+01 1.71E+01 8.45E+00 +

Rosenbrock 20
DF 1.50E+01 6.07E+01 1.99E+01 2.32E+01 1.17E+01
MSE 1.90E+01 8.46E+01 2.25E+01 2.71E+01 1.47E+01 +

Random 1.89E+01 6.89E+01 2.39E+01 2.67E+01 1.17E+01 +

Rosenbrock 30
DF 2.92E+01 6.87E+01 3.85E+01 4.32E+01 1.22E+01
MSE 2.98E+01 9.08E+01 3.99E+01 4.67E+01 1.81E+01 ≈

Random 2.94E+01 1.02E+02 4.19E+01 4.97E+01 2.00E+01 ≈

Ackley 10
DF 2.63E+00 1.15E+01 3.72E+00 4.48E+00 2.06E+00
MSE 1.66E+00 1.33E+01 3.89E+00 4.47E+00 2.67E+00 ≈

Random 1.28E+00 1.15E+01 4.15E+00 4.98E+00 2.89E+00 ≈

Ackley 20
DF 2.90E+00 8.31E+00 6.05E+00 5.69E+00 1.74E+00
MSE 2.90E+00 1.04E+01 5.98E+00 6.48E+00 2.22E+00 ≈

Random 1.34E+00 9.92E+00 4.40E+00 4.74E+00 2.20E+00 ≈

Ackley 30
DF 3.27E+00 1.32E+01 5.75E+00 6.21E+00 2.36E+00
MSE 3.02E+00 9.55E+00 5.58E+00 5.79E+00 1.75E+00 ≈

Random 6.94E−01 1.10E+01 3.78E+00 4.42E+00 2.91E+00 −

Griewank 10
DF 3.35E−01 1.01E+00 8.46E−01 7.84E−01 2.11E−01
MSE 4.17E−01 1.01E+00 8.00E−01 7.64E−01 1.72E−01 ≈

Random 5.14E−01 1.16E+00 9.33E−01 8.79E−01 1.82E−01 ≈

Griewank 20
DF 1.89E−01 6.89E−01 4.11E−01 4.16E−01 1.56E−01
MSE 1.02E−01 6.57E−01 5.01E−01 4.48E−01 1.47E−01 ≈

Random 1.41E−01 1.02E+00 5.91E−01 6.31E−01 2.67E−01 +

Griewank 30
DF 1.79E−01 5.18E−01 3.20E−01 3.33E−01 8.56E−02
MSE 1.85E−01 4.69E−01 3.06E−01 3.20E−01 8.14E−02 ≈

Random 1.30E−01 1.02E+00 6.94E−01 6.36E−01 2.82E−01 +

Rastrigin 10
DF 1.29E+01 5.54E+01 2.72E+01 3.06E+01 1.18E+01
MSE 1.41E+01 6.56E+01 3.23E+01 3.48E+01 1.27E+01 ≈

Random 1.00E+01 5.00E+01 3.38E+01 3.17E+01 1.07E+01 ≈

Rastrigin 20
DF 3.08E+01 8.96E+01 4.85E+01 5.26E+01 1.55E+01
MSE 2.01E+01 8.17E+01 4.21E+01 4.61E+01 1.73E+01 ≈

Random 2.19E+01 1.25E+02 5.38E+01 6.52E+01 3.11E+01 ≈

Rastrigin 30
DF 2.49E+01 9.95E+01 6.62E+01 6.80E+01 2.07E+01
MSE 3.50E+01 1.31E+02 6.97E+01 7.34E+01 2.02E+01 ≈

Random 3.45E+01 1.53E+02 8.35E+01 8.31E+01 3.10E+01 ≈

Table 5
Statistical results of compared algorithms on the selected benchmarks, including the average fitness value and standard deviation shown as avg(std)
Problem D FSAPSO GORS-SSLPSO CAL-SAPSO SHPSO SAPSO-PBEST SPSO

Ellipsoid 10 4.27E−02(8.48E−02) 5.59E−02(6.22E−02) 1.14E+00(9.95E−01) 1.72E+00(2.38E+00) 6.74E−01(3.03E−01) 1.37E+01(6.57E+00)
Ellipsoid 20 4.47E−01(3.82E−01) 2.54E−01(2.27E−01) 1.55E+00(5.15E−01) 1.50E+01(5.83E+00) 8.10E−01(7.09E−01) 4.28E+01(2.27E+01)
Ellipsoid 30 1.10E+00(6.79E−01) 7.60E−01 (8.14E−01) 3.29E+00(1.47E+00) 3.12E+01(1.19E+01) 1.83E+00(1.28E+00) 9.99E+01(3.06E+01)
Rosenbrock 10 1.17E+01(7.03E+00) 1.94E+01(8.52E+00) 1.59E+01(3.54E+00) 1.48E+02(8.69E+01) 3.40E+01(1.52E+01) 5.48E+01(2.19E+01)
Rosenbrock 20 2.32E+01(1.17E+01) 5.48E+01(1.56E+01) 3.53E+01(5.57E+00) 1.66E+02(5.09E+01) 3.44E+01(8.05E+00) 1.04E+02(4.15E+01)
Rosenbrock 30 4.32E+01(1.22E+01) 9.87E+01(2.33E+01) 4.94E+01(9.98E+00) 1.78E+02(4.07E+01) 5.52E+01(1.55E+01) 2.10E+02(6.42E+01)
Ackley 10 4.48E+00(2.06E+00) 3.93E+00(2.88E+00) 1.99E+01(4.43E−01) 1.55E+01(2.75E+00) 8.17E+00(1.12E+00) 1.11E+01(1.59E+00)
Ackley 20 5.69E+00(1.74E+00) 4.81E+00(1.82E+00) 2.01E+01(3.61E−15) 1.18E+01(1.80E+00) 4.37E+00(6.06E−01) 1.17E+01(1.29E+00)
Ackley 30 6.21E+00(2.36E+00) 5.59E+00(1.41E+00) 1.60E+01(5.62E−01) 9.96E+00(9.84E−01) 3.11E+00(3.76E−01) 1.13E+01(1.07E+00)
Griewank 10 7.84E−01(2.11E−01) 7.40E−01(2.13E−01) 1.13E+00(1.14E−01) 1.22E+00(1.39E−01) 1.02E+00(3.32E−02) 1.00E+01(3.66E+00)
Griewank 20 4.16E−01(1.56E−01) 4.14E−01(1.41E−01) 1.05E+00(3.57E−02) 1.16E+00(1.53E−01) 9.41E−01(1.12E−01) 1.61E+01(6.75E+00)
Griewank 30 3.33E−01(8.56E−02) 3.48E−01(1.04E−01) 9.92E−01(4.36E−02) 1.14E+00(8.22E−02) 8.90E−01(1.56E−01) 2.90E+01(8.62E+00)
Rastrigin 10 3.06E+01(1.18E+01) 3.46E+01(2.34E+01) 8.55E+01(2.37E+01) 8.82E+01(1.31E+01) 6.64E+01(1.04E+01) 6.58E+01(1.38E+01)
Rastrigin 20 5.26E+01(1.55E+01) 5.45E+01(2.79E+01) 7.35E+01(1.53E+01) 1.77E+02(2.53E+01) 8.07E+01(2.16E+01) 1.26E+02(2.03E+01)
Rastrigin 30 6.80E+01(2.07E+01) 7.17E+01(4.05E+01) 9.08E+01(1.93E+01) 2.78E+02(1.86E+01) 7.67E+01(1.64E+01) 1.70E+02(1.79E+01)

From the results shown in Tables 7 and 8, we can observe
that FSAPSO, SAPSO-PBEST, and ESAO algorithms achieve the

best mean values on four/one/three problems respectively. FS-
APSO algorithm significantly outperforms the SPSO algorithm
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Table 6
Wilcoxon rank sum test calculated at a significance level of α = 0.05.
Problem D GORS-SSLPSO SHPSO SAPSO-PBEST SPSO

Ellipsoid 10 ≈ + + +

Ellipsoid 20 ≈ + + +

Ellipsoid 30 − + ≈ +

Rosenbrock 10 + + + +

Rosenbrock 20 + + + +

Rosenbrock 30 + + + +

Ackley 10 − + + +

Ackley 20 ≈ + − +

Ackley 30 ≈ + − +

Griewank 10 ≈ + + +

Griewank 20 ≈ + + +

Griewank 30 ≈ + + +

Rastrigin 10 ≈ + + +

Rastrigin 20 ≈ + + +

Rastrigin 30 ≈ + ≈ +

+ /≈/− 3/10/2 15/0/0 11/2/2 15/0/0

on all problems. FSAPSO algorithm significantly outperforms the
SAPSO-PBEST algorithm on four problems, while it is outper-
formed by SAPSO-PBEST algorithm on two problems. The advan-
tage of the FSAPSO algorithm is not so obvious on 50-dimension
problems. The fact that FSAPSO only selects the best and most
uncertain particles at each iteration may cause the algorithm
to be trapped in a local optimum as the search space of high-
dimensional problems is too large. Two candidates are exactly
evaluated in ESAO [29]: the best offspring produced by differ-
ential evolution and the optimal solution of the local surrogate
model. FSAPSO algorithm outperforms the ESAO algorithm on
four out of six problems, while they obtain comparable results
on Ackley. This indicates the two criteria used in FSAPSO can
make FSAPSO achieve good performance. SA-COSO [27] uses two
surrogate-assisted PSO algorithms collaboratively to search for
the global optimum. FSAPSO algorithm significantly outperforms
the SA-COSO algorithm on all eight problems. SHPSO [26] algo-
rithm uses the same pre-screening strategy as the SAPSO-PBEST
algorithm, but it uses a local surrogate model to pre-evaluate
particles and SL-PSO is used to search the optimum of the model.
SHPSO algorithm achieves worse performance than the SAPSO-
PBEST algorithm on most problems, which may be that the use of
the local model makes the algorithm trapped in a local optimum
of the model. However, it shows better results on F16 and F19
which are very complex functions. GORS-SSLPSO [31] restarts SL-
PSO after a few generations, and balances the exploration and
exploitation by exactly evaluating the best particle in the SL-
PSO. FSAPSO algorithm significantly outperforms GORS-SSLPSO
algorithm on seven out of eight problems.

Table 8
Wilcoxon rank sum test calculated at a significance level of α = 0.05.
Problem GORS-SSLPSO SHPSO SA-COSO SAPSO-PBEST SPSO

Ellipsoid + + + + +

Rosenbrock + + + + +

Ackley + + + − +

Griewank + + + + +

Rastrigin + + + ≈ +

F10 + + + + +

F16 + ≈ + ≈ +

F19 − − + − +

+ /≈/− 7/0/1 6/1/1 8/0/0 4/2/2 8/0/0

From the performance curves presented in Fig. 8, it can be
seen that the FSAPSO algorithm converges much faster than other
algorithms on most of the problems. The global optimum of the
FSAPSO algorithm improves faster than the SPSO algorithm. It
indicates that using the surrogate can improve the quality of final
solutions within the same number of FEs on high-dimensional
problems. FSAPSO converges a little slower than SAPSO-PBEST
on Ackley, F16, and F19. The criterion in SAPSO-PBEST can select
more particles to explore promising areas. This may explain that
the SAPSO-PBEST algorithm still has more potential to improve
the final solution in the later stage. In addition, FSAPSO converges
faster than EASO on five out of six problems, while ESAO con-
verges faster on F19. F19 is a complex multi-modal function, and
ESAO uses differential evolution to evolve the population. The
good exploration ability of the differential evolution algorithm
may result in the good performance of ESAO on F19. FSAPSO
can obtain a better optimum than SA-COSO within the same FEs
on all problems. The strategies in SA-COSO distribute plenty of
resource on exploration may induce its bad performance. FSAPSO
converges faster than GORS-SSLPSO on six problems, while GORS-
SSLPSO converges faster than FSAPSO on F19. They obtain a
similar convergence rate on F10. GORS-SSLPSO uses SL-PSO to
explore the search space. This may induce to better exploration
ability of it than FSAPSO on F19.

From the above results, we can make the following obser-
vations. First, the surrogate model can significantly improve the
performance of PSO on high-dimensional problems. Second, the
FSAPSO algorithm significantly outperforms GORS-SSLPSO, SH-
PSO, SA-COSO, ESAO, SAPSO-PBEST and SPSO algorithms on most
benchmark functions in the context of the limited computational
budget scenario. In addition, the FSAPSO algorithm converges
faster than other algorithms on most of the problems.

Table 7
Statistical results of compared algorithms on the selected benchmarks, including the average fitness value and standard deviation shown as avg(std).
Problem FSAPSO GORS-SSLPSO SHPSO SA-COSO ESAO SAPSO-PBEST SPSO

Ellipsoid 2.81E+00
(1.89E+00)

6.93E+01
(1.56E+02)

4.97E+01
(1.07E+01)

1.77E+02
(5.29E+01)

2.22E+01 4.52E+00
(3.22E+00)

3.94E+02
(7.81E+01)

Rosenbrock 7.08E+01
(1.83E+01)

4.10E+02
(4.69E+02)

1.47E+02
(3.26E+01)

5.33E+02
(9.41E+01)

8.56E+01 8.79E+01
(2.03E+01)

4.07E+02
(7.02E+01)

Ackley 5.59E+00
(1.07E+00)

8.04E+00
(3.43E+00)

6.50E+00
(5.00E−01)

1.29E+01
(1.11E+00)

6.00E+00 2.32E+00
(3.32E−01)

1.25E+01
(8.08E−01)

Griewank 1.99E−01
(5.37E−02)

9.12E+00
(2.75E+01)

1.15E+00
(9.32E−02)

2.50E+01
(4.67E+00)

1.82E+00 7.77E−01
(1.12E−01)

6.65E+01
(1.33E+01)

Rastrigin 1.06E+02
(2.70E+01)

1.57E+02
(4.24E+01)

4.68E+02
(4.17E+01)

4.15E+02
(3.50E+01)

N/A 9.77E+01
(1.98E+01)

2.44E+02
(2.48E+01)

F10 −5.56E+01
(5.78E+01)

−8.80E+00
(3.90E+01)

1.55E+02
(2.67E+01)

2.87E+02
(5.01E+01)

2.05E+02 −1.49E+01
(5.14E+01)

5.51E+02
(9.15E+01)

F16 4.49E+02
(1.00E+02)

5.72E+02
(1.29E+02)

4.89E+02
(4.37E+01)

7.76E+02
(8.97E+01)

N/A 4.44E+02
(9.24E+01)

8.39E+02
(1.03E+02)

F19 1.12E+03
(6.59E+01)

1.08E+03
(6.46E+01)

1.03E+03
(2.02E+01)

1.18E+03
(4.11E+01)

1.00E+03 1.05E+03
(3.46E+01)

1.24E+03
(3.74E+01)
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Fig. 8. Convergence profiles of the algorithms on 50-dimension functions.

4.4. Effects of number of nearest neighbors for the DF criterion

The uncertainty of a candidate is usually influenced by the
nearest evaluated neighbors, and a remote observed point hardly
has a significant influence on it. Moreover, the DF criterion is
also devised to be applied in local areas as a large neighbor will
make the variance of fitness values invalid. Therefore, the number
of nearest neighbors (k) for the DF criterion could not be too
large. Besides, k should be greater than 1 as only the distance
information is considered when k = 1. The number of initial
sample points for D = 10, 20 is 20, so the maximum value of
k is set as 20. Five different values (1, 3, 5, 10, 20) are selected to
test its influence on the final result, and five benchmark problems
with D = 10, 20, 30 are used in the experimental study. The
average best objective function values obtained by the algorithms
over 30 independent runs are shown in Table 9, and the best
mean results of individual instances are highlighted. For all tested
problems, the worst results are obtained when k = 1, and similar
results are obtained for the remains. The results indicate that
it is better to use the distance and fitness value information to
estimate uncertainty than just using the distance. There is no
significant difference between k = 3 and the others, so the

parameter k hardly has any significant influence on the proposed
algorithm

4.5. Effects of the used surrogate model

To test the effects of different surrogate models on the pro-
posed FSAPSO algorithm, we compare FSAPSO with its variant
FSAPSO1. FSAPSO1 is similar to FSAPSO except that it uses the
Kriging model to predict the fitness values. For a second-order
polynomial model, the number of terms in the quadratic model
is (D + 1)(D + 2)/2 and the number of interaction terms is D(D
-1)/2. D is the number of input variables. Many samples are
required if the polynomial model is used. Therefore, we do not
use the polynomial model. Four benchmark problems with di-
mensions D = 10 and 30 are used to test the two algorithms.
The average best objective function values obtained by the two
algorithms over 30 independent runs are shown in Table 10,
and the best mean results of individual instances are highlighted.
FSAPSO obtains better mean values than FSAPSO1 on seven out of
eight problems, while FSAPSO1 obtains better mean values than
FSAPSO on one problem. These results indicate the superiority
of the RBF model over the Kriging model. In general, different
types of models are suitable for their corresponding problems.

garywang
Highlight
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Table 9
Statistics results of FSAPSO with different k on selected benchmarks, including the average fitness value and standard deviation shown as avg(std)
Problem D 1 3 5 10 20

Ellipsoid 10 1.21E+00(1.63E+00) 4.27E−02(8.48E−02) 7.06E−02(6.89E−02) 1.00E−01(1.47E−01) 7.96E−02(1.03E−01)
Ellipsoid 20 2.01E+00(3.09E+00) 4.47E−01(3.82E−01) 5.56E−01(4.97E−01) 4.02E−01(4.35E−01) 3.86E−01(3.13E−01)
Ellipsoid 30 4.20E+00(1.15E+01) 1.10E+00(6.79E−01) 9.04E−01(5.53E−01) 1.06E+00(7.91E−01) 1.21E+00(9.40E−01)
Rosenbrock 10 6.66E+01(9.93E+01) 1.17E+01(7.03E+00) 1.11E+01(4.26E+00) 1.58E+01(1.78E+01) 1.74E+01(2.00E+01)
Rosenbrock 20 1.82E+02(5.82E+02) 2.32E+01(1.17E+01) 2.38E+01(9.05E+00) 2.13E+01(3.49E+00) 2.31E+01(8.66E+00)
Rosenbrock 30 6.18E+01(3.49E+01) 4.32E+01(1.22E+01) 4.10E+01(1.31E+01) 3.86E+01(1.34E+01) 4.02E+01(1.27E+01)
Ackley 10 1.25E+01(5.66E+00) 4.48E+00(2.06E+00) 4.49E+00(3.75E+00) 5.14E+00(2.82E+00) 5.28E+00(3.24E+00)
Ackley 20 1.12E+01(2.98E+00) 5.69E+00(1.74E+00) 5.91E+00(2.26E+00) 5.51E+00(2.44E+00) 5.92E+00(2.41E+00)
Ackley 30 8.59E+00(4.19E+00) 6.21E+00 (2.36E+00) 5.34E+00(1.80E+00) 5.61E+00(1.50E+00) 5.85E+00(2.07E+00)
Griewank 10 9.91E−01(2.15E−01) 7.84E−01(2.11E−01) 8.89E−01(1.63E−01) 7.65E−01(2.05E−01) 7.43E−01(1.90E−01)
Griewank 20 1.30E+00(1.30E+00) 4.16E−01(1.56E−01) 5.25E−01(1.44E−01) 4.96E−01(1.66E−01) 4.63E−01(2.07E−01)
Griewank 30 2.06E+00(3.17E+00) 3.33E−01(8.56E−02) 2.92E−01(1.12E−01) 3.04E−01(1.19E−01) 3.26E−01(1.73E−01)
Rastrigin 10 6.81E+01(3.14E+01) 3.06E+01(1.18E+01) 2.93E+01(1.34E+01) 3.12E+01(1.44E+01) 2.95E+01(1.21E+01)
Rastrigin 20 1.03E+02(3.26E+01) 5.26E+01(1.55E+01) 4.43E+01(1.39E+01) 4.34E+01(9.72E+00) 4.15E+01(1.50E+01)
Rastrigin 30 1.19E+02(6.67E+01) 6.80E+01(2.07E+01) 7.08E+01(2.81E+01) 6.53E+01(2.30E+01) 6.56E+01(2.43E+01)

Table 10
Statistics results of FSAPSO and FSAPSO1 algorithms.
Problem D FSAPSO FSAPSO1

Ellipsoid 10 4.27E−02(8.48E−02) 2.71E−02 (4.91E−02)
Ellipsoid 30 1.10E+00(6.79E−01) 1.96E+00(1.32E+00)
Rosenbrock 10 1.17E+01(7.03E+00) 5.02E+01(1.74E+01)
Rosenbrock 30 4.32E+01(1.22E+01) 9.91E+01(3.77E+01)
Ackley 10 4.48E+00(2.06E+00) 1.52E+01(2.11E+00)
Ackley 30 6.21E+00(2.36E+00) 1.12E+01(1.50E+00)
Griewank 10 7.84E−01(2.11E−01) 1.78E+00(1.85E+00)
Griewank 30 3.33E−01(8.56E−02) 3.68E+00(2.48E+00)

However, the computational complexity of the Kriging model
is high when the dimension of the problem is bigger than 10.
The RBF model has shown good performance in other surrogate-
assisted evolutionary algorithms. Therefore, the RBF model is
used in this paper.

4.6. Results analysis and discussion

All strategies used by SAPSO-PBEST and FSAPSO are the same
except the pre-screening strategies. SAPSO-PBEST may select
more candidates for exact evaluations at each iteration as the
PBEST criterion is used. The better performance achieved by the
FSAPSO algorithm indicates that evaluating fewer candidates to
balance exploration and exploitation at each generation is better
for problems with D = 10, 20, 30. As the total number of FEs is
limit, selecting too many particles for exact evaluations at each
iteration may make the algorithm stop without sufficient ex-
ploitation. However, FSAPSO and SAPSO-PBEST algorithms show
comparable performance on 50-dimension problems. If enough
FEs are provided, the PBEST-based criterion may be better as
more exploration is allowed. Although CAL-SAPSO and FSAPSO al-
gorithms both use the performance-based and uncertainty-based
criteria to select candidates, the FSAPSO algorithm significantly
outperforms the CAL-SAPSO algorithm on most problems. CAL-
SAPSO algorithm is actually a model-based global optimization
algorithm. It exactly evaluates the optimum of an ensemble at
every iteration. In addition, the most uncertain point is exactly
evaluated when the current global optimum is not improved to
enhance the accuracy of the model and avoid the stagnation of
the algorithm. There are many unexplored areas in the entail
search space, and the most uncertain point is selected from the
entail space in CAL-SAPSO. Although this is good to improve the
model accuracy, its contribution to the improvement of the global
optimum is limited. On the other hand, the exactly evaluated
point in the FSAPSO algorithm is selected from the particle
swarm. The whole swarm spreads in the entail space in the
beginning, so evaluating the particle with the largest uncertainty

is beneficial for exploration at this stage. The dispersion of the
swarm grows smaller with the evolution of the swarm. Exactly
evaluating the particle with great uncertainty is beneficial to
explore the area near the current global optimum, which can
improve the global optimum as the area is more promising and
smaller than the entail space. In addition, if the uncertain particle
is promising, the swarm might be attracted to the area. The
GORS-SSLPSO algorithm uses an SL-PSO algorithm to solve the
global optimum of a global RBF model, and the optimum will be
exactly evaluated. However, the SL-PSO only evolves a certain
generation, then an RBF model is updated and certain better
points were selected to restart the swarm. The GORS-SSLPSO has
a good exploratory ability in the beginning as the SL-PSO only
evolves certain generations, which also avoids the stagnation of
the algorithm in a local optimum of the model. It gradually varies
from exploration to exploitation when the top-ranked points are
near the current optimum. FSAPSO and GORS-SSLPSO algorithms
show comparative performance on function with D = 10, 20,
30 in 11D FEs, which may be that they all have a good balance
of exploration and exploitation with a limited number of FEs. In
addition, FSAPSO can quickly obtain better solutions than other
algorithms on most of the problems. The performance-based
criterion selects the particle with the best fitness value and the
optimum of the global surrogate model for exact evaluations.
Evaluating the best particle can attract the swarm to exploit
the promising areas once a promising area is found. In addition,
the global surrogate model can roughly approximate the whole
fitness landscape of the problem, and the optimum of the model
may indicate the real promising area for the swarm. The swarm
can quickly exploit new promising area by evaluating the optima
of the surrogate model and use it to replace the global best if it
is better. Therefore, the fast convergence rate of FSAPSO mainly
owes to the performance-based criterion. However, the algorithm
may quickly be trapped into the optimum of the surrogate model
if only the performance-based criterion is used as the surrogate
model is not accurate and the exploratory particle cannot be
exactly evaluated. The uncertainty-based criterion selects the
particles with the greatest uncertainty for the exact FEs. This
can enhance the exploration in not-well-explored areas, enhance
the accuracy of the surrogate model and relieve the premature
stagnation of the algorithm. Overall, the collaboration between
the performance-based criterion and uncertainty-based criterion
accelerates the convergence rate of FSAPSO through the whole
evolutionary process.

Although FSAPSO algorithm shows promising results on 50-
dimension problems used in the paper, the strategy used in
FSAPSO may not be suitable for higher-dimensional problems.
The high-dimensional space is too large, more exploration is
needed to get a better solution.

garywang
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Fig. 9. Different models of the propeller.

Fig. 10. Axis structure diagram of propeller.

4.7. Optimal design of bearings in an all-direction propeller

The all-direction propeller is widely used in ships and drilling
platforms that require high accuracy of positioning. It is im-
portant to design an all-direction propeller with a good ability
of resisting vibration to improve its performance. Besides, the
power flow is a significant dynamic index to reflect the degree
of vibration. The paper takes the power flow as an objective to
obtain an optimal design of the all-direction propeller with a good
dynamic performance. However, the calculation of the power
flow needs computationally expensive finite element analysis
simulations, which makes the acquisition of the power flow a
black-box problem. Therefore, surrogates can be used to approx-
imate the relationship between the power flow of the propeller
and several key structural parameters including the stiffness and
damping coefficients of the bearings in the propeller drive system
to improve the design efficiency. To show the optimization prob-
lem, different models of the propeller are shown in Fig. 9. The
finite element model (FEM) is used for power flow simulation.

The optimization problem can be formulated as:

find K = [k1, k2, k3, k4, k5, c1, c2, c3, c4, c5]T

min P∗
=

√∑KP
j=1(Pj)2

Pj = ω/2π
∫ ω/2π
0 Re(fi)Re(vj)dt

s.t. kLi ≤ ki ≤ kUi , cLi ≤ ci ≤ cUi , i = 1, 2, 3, 4, 5

(13)

where ki and ci are the stiffness and damping coefficients of
different bearings in the propeller, kiL and kiU are the lower
and upper bounds of ki, respectively; and ciL and ciU are the
lower and upper bounds of ci, respectively; Pj is the power flow
at the selected evaluation point j in the propeller; and KP is
the sum of evaluation points distributed in different bearings,

Fig. 11. Convergence curves of FSAPSO, GORS-SSLPSO, SHPSO, SAPSO-PBEST and
SPSO algorithms for the propeller design problem.

which is set as 10 in the paper. fj and vj represents the force
and velocity in the jth evaluation point. The power flow is the
sum of the product of force and speed in a cycle as (13) defines.
More details about power flow calculation and application for
vibration control can be found in [48]. The initial values of design
variables are given as: [k1, k2, k3, k4, k5, c1, c2, c3, c4, c5, ]initial =

[3, 4, 3, 3, 4, 1.5, 2, 1.5, 1.5, 1.5, 2]. The corresponding initial
power flow of the propeller is P∗

= 22.58W . The bounds are
defined as k1, k3, k4 ∈ [2, 4] × 107 N/m,k2, k5 ∈ [2, 6] ×

107N/m, c1, c3, c4 ∈ [1, 2]×107Ns/m, c2, c5 ∈ [1, 3]×107Ns/m.

The axis structure diagram of the propeller is shown in Fig. 10.
The FSAPSO, GORS-SSLPSO, SHPSO, SAPSO-PBEST and SPSO

algorithms are used to optimize the all-direction propeller. The
optimization process is stopped when the number of all simu-
lation points reaches 110 as it involves expensive power flow
simulation. Each algorithm repeats ten times for robustness com-
parison as running a power flow simulation takes about 5 min.
The statistics on the best objective function values obtained by
the four algorithms over 10 independent runs are shown in Ta-
ble 11 and the convergence curves of different algorithms for the
propeller design problem are depicted in Fig. 11. It is evident that
the proposed FSAPSO algorithm obtained the best mean value as
compared with four other algorithms, and it achieves the fastest
rate of convergence.
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Table 11
Statistical results of compared algorithms on the propeller design problem.
Algorithm Best Worst Median Mean Std

FSAPSO 1.6648E+01 1.6993E+01 1.6681E+01 1.6725E+01 9.3700E−02
GORS-SSLPSO 1.6648E+01 1.7244E+01 1.6879E+01 1.6880E+01 1.5002E−01
SHPSO 1.6916E+01 1.7668E+01 1.7192E+01 1.7263E+01 2.3529E−01
SAPSO-PBEST 1.6704E+01 1.7365E+01 1.6928E+01 1.6957E+01 1.6064E−01
SPSO 1.6950E+01 1.7783E+01 1.7580E+01 1.7501E+01 2.3217E−01

5. Conclusion and future work

This paper proposes a fast surrogate-assisted particle swarm
optimization (FSAPSO) algorithm which requires only 11D FEs
to solve medium scaled computationally expensive optimization
problems. Particles with the best prediction and the greatest
uncertainty are evaluated to explore and exploit the search space.
An uncertainty-based criterion considering the distance and fit-
ness value information is proposed to evaluate uncertainties of
particles. Comprehensive analyses demonstrate the effectiveness
of the uncertainty-based criterion. The proposed algorithm is
compared with seven state-of-the-art algorithms on seven widely
used benchmark problems of different dimensionalities rang-
ing from 10 to 50. The experimental results indicate that the
proposed algorithm can obtain significantly better results and
achieve a faster convergence rate than the alternative competi-
tors on most of the benchmark problems. The experimental re-
sults also indicate that exactly evaluating uncertain candidates in
promising areas is better than in the whole search space with a
limited number of FEs. Finally, the proposed FSAPSO algorithm is
used to solve a 10-dimension propeller design problem, and the
results confirm the good performance of the proposed algorithm.

The exploratory ability of the FSAPSO algorithm is limited
and it may not very suitable for problems with more than 50
dimensions. This limitation is being addressed in our ongoing
research.
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