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Practicing design engineers often have certain knowledge about a design problem.
However, in the last decades, the design optimization community largely treats design
functions as black-boxes. This paper discusses whether and how knowledge can help
with optimization, especially for large-scale optimization problems. Existing large-scale
optimization methods based on black-box functions are first reviewed, and the drawbacks
of those methods are briefly discussed. To understand what knowledge is and what kinds
of knowledge can be obtained and applied in a design, the concepts of knowledge in
both artificial intelligence (AI) and in the area of the product design are reviewed. Existing
applications of knowledge in optimization are reviewed and categorized. Potential applica-
tions of knowledge for optimization are discussed in more detail, in hope to identify possible
directions for future research in knowledge-assisted optimization (KAO).
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1 Introduction
Current simulation-based optimization strategies usually treat

simulation as a black-box function. The assumption of black-box
functions is derived from the fact that simulations are used to eval-
uate design functions, whose mathematical expressions are
unknown to the user. One main advantage of treating simulation
as a black-box is that the optimization method can be generalized
to solve any design problem. The lack of equation is coupled
with the unavailable or unreliable gradients of such simulation func-
tions. Hence, nongradient-based (or derivative-free) optimization
algorithms have been widely applied in engineering to solve black-
box function problems, such as genetic algorithm (GA) [1], simu-
lated annealing method [2], particle swarm optimization (PSO)
[3], and so on. One major issue of those algorithms is that the
number of function evaluations is normally very large. When the
objective function is evaluated via expensive simulation, the com-
putational cost of optimization usually becomes unacceptable.
To reduce the number of expensive black-box function evalua-

tions in the optimization process, an approximation model,
known as a metamodel, is developed to replace the expensive simu-
lation in optimization. Different metamodel-based optimization
strategies, including efficient global optimization (EGO) [4],
mode pursuing sampling (MPS) [5], and so on, are developed to
improve the optimization efficiency when dealing with expensive
black-box functions. Although those methods perform well for low-
dimensional optimization problems, their performances for
large-scale optimization problems are less satisfactory. Since meta-
models are constructed based on samples, a rapidly increasing
number of samples are needed to obtain enough information to con-
struct an effective metamodel in a high-dimensional space.
Although different intelligent sampling strategies are developed to
improve the efficiency of metamodel-based optimization methods,
exploration of a totally blind and high-dimensional space is
extremely difficult and costly. To handle the large-scale optimiza-
tion problems, two types of strategies are developed. One is the

space modification strategy to generate new samples in interested
subspaces rather than the entire space. One well-known example
is the trust-region strategy, which is used in trust-region mode pur-
suing sampling [6] to solve large-scale problems. Another strategy
is based on reducing the dimensionality of the optimization. This
kind of strategy can also be categorized into two classes. One is
to decompose the problem into several subproblems with lower
dimensions, such as optimization on metamodeling-supported
iterative decomposition method [7,8]. The other is to perform opti-
mization on several dimensions selected from the whole dimen-
sions, such as dynamic coordinate search using response surface
models [9] and partial metamodel-based optimization [10]. Those
methods have the capability of solving large-scale optimization
problems, but the number of function evaluations is still large.
Generally, either for nongradient-based optimization methods or

in metamodel-based optimization methods, the key is how to gen-
erate useful samples (offspring or particles) in a high-dimensional
space. Generation of new samples needs to balance between explo-
ration and exploitation. Information obtained from previous itera-
tions and existing samples is usually used to help generate better
samples. However, the lack of information may lead to low effi-
ciency or even wrong search direction.
In a real-world engineering design, however, practitioners usually

have certain knowledge about the design problem such as variables
involved in the problem, the input–output relations, or even have
somemathematical functions based on physical laws. Such informa-
tion is largely ignored when solving engineering design problems in
current simulation-based optimization strategies. As aforemen-
tioned, the black-box assumption demands more computational
cost since the optimization is blind to the design problem at hand.
This phenomenon is more severe when the dimensionality of the
problem is high. Even thousands of sample points are sparse in a
100-dimensional space. Therefore, it becomes difficult to explore
and optimize blindly in such a huge space. If existing knowledge
of the engineering problem can be incorporated into modeling and
optimization, the number of sample points necessary to capture the
behavior of such a function and the design space could be reduced.
Additionally, by analyzing existing knowledge about an engineering
design problem, some hidden valuable information can be extracted,
which can help to perform optimization more efficiently. For
instance, if one finds that the objective function is monotonic with
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respect to some design variables, values of such design variables can
be determined without the need of optimization and the dimension-
ality of the problem can be reduced. If one knows that the input–
output relationship follows a certain trend, it will help in the selection
of the most suitable metamodel and reduces the costs of model
construction.
To obtain knowledge from problems, different artificial intelli-

gence (AI) methods were applied in the optimization. The applica-
tion of AI methods can be classified into two categories: knowledge
from graph and documents and knowledge from data. The expert
system, which belongs to the first category, was used in design
problems for decision-making [11,12]. However, there are few
applications using experts directly in assisting optimization. For
knowledge from the data, multiple data mining (DM) methods
[13,14] and classification methods [15–17] were applied in
problem formulation and in optimization strategies for generating
new samples. Although knowledge and some AI methods have been
used in optimization, there still exist limitations. First, researchers
only apply a single kind of knowledge in optimization. Additionally,
knowledge from graphs and documents are not well utilized in
assisting optimization. Therefore, how to systematically incorporate
different kinds of knowledge into optimization, rather than ad hoc
and problem-specific treatment, becomes an interesting research
topic. This issue becomes especially relevant for large-scale design
problems in order to break the “curse-of-dimensionality.”
The main motivation of this article is to call for research on how

to systematically and methodically extract and incorporate both
formal and tacit knowledge about a design problem to help increase
the accuracy and efficiency of design optimization. This paper is an
enhanced version from the authors’ conference paper [18]. To iden-
tify what kinds of knowledge can be obtained and applied in an
engineering optimization problem, the concept of knowledge is sur-
veyed in Sec. 2. Section 3 reviews existing applications of knowl-
edge in assisting optimization. To overcome the challenges in
high-dimensional optimization, Sec. 4 proposes potential applica-
tions of knowledge at different optimization stages. Given the fast
development of machine learning methods and the close tie
between optimization and machine learning, how knowledge can
help machine learning is discussed in Sec. 5. Section 6 provides a
summary.

2 Concept of Knowledge
Knowledge is defined as familiarity, awareness, or understanding

of someone or something [19]. The word “knowledge” is widely
used in AI, and the definition of knowledge used in engineering
also comes from AI. Hence, the concept of knowledge in AI is
reviewed first to give a clear description of knowledge representa-
tion and knowledge capture. Then, to define what kinds of knowl-
edge can be obtained from and applied in the engineering world, the
knowledge concept in the product design is also surveyed.

2.1 Knowledge in Artificial Intelligence. AI is currently one
of the most popular research fields around the world. AI is defined
as the study of intelligent agents: any device that perceives its envi-
ronment and takes actions that maximize its chance of success at
some goal [20]. In other words, AI is a technique which can help
machines to deal with different problems in an intelligent manner.
There are two main problems in AI: learning and problem solving
[20]. Knowledge is involved in both problems. In learning, knowl-
edge should be captured and represented in a form that machines
can understand. On the other hand, knowledge should be reused
to solve problems.
Knowledge representation is central to AI research, which focuses

on designing computer representations that capture information
about the world to solve complex tasks [20]. As shown in Fig. 1,
the earliest knowledge representation work was focused on a
general problem solver [21], which was to develop as a universal
solver machine. Although the development of a general problem

solver is not successful due to its limitation on the problem definition
format, this represents the first attempt to regard knowledge as an
input to solve problems. Following the idea of a general problem
solver, expert systems are developed to represent human knowledge.
Expert systems could match human competence on a specific task

[22–24]. Two techniques developed at that time and still used today
are the rule-based knowledge representation [25] and the frame-
based knowledge representation [26]. Rule-based systems are
widely used in domains such as automatic control [27,28], decision
support [29,30], and system diagnosis [24]. The frame-based
method is used on systems geared toward human interaction for
choosing appropriate responses to varied situations. The frame-
based knowledge representation focuses on the structure of the
concept, while the rule-based knowledge base focuses on logic
choices. To combine the properties of the two expert systems,
one of the most well-known integrated systems was developed in
1983, named as knowledge engineering environment [31], which
contained a complete rule engine with forward and backward chain-
ing and a complete frame-based knowledge base with triggers, slots,
inheritance, and message passing. The expert system is a useful
knowledge representation tool. By employing the expert system,
users can make reasonable decisions. However, the expert system
is defined by expert experiences. The effectiveness of expert
systems highly depends on the accuracy of the contents in the
system. Thus, an incorrect or outdated expert system may lead to
wrong decisions. Therefore, how to define an appropriate and
evolving expert system remains a main challenge.
Currently, one of the most active areas of knowledge representa-

tion research is on semantic net [32,33], which is a network that rep-
resents semantic relations between concepts. Different from neural
networks, semantic nets are made up of different concepts and
semantic relations between concepts. A related concept is ontology
[34,35]. In philosophy, ontology is the study of the nature of being,
becoming existence, or reality, as well as the basic categories of
being and their relations. In computer science, ontology is a
formal naming and definition system of properties and interrelation-
ships of entities that fundamentally exist in a particular domain [36].
The main benefit of ontology is that it is not only able to describe
different concepts in the domain but also relationships between con-
cepts. By employing ontology mapping [37] and ontology merging
[38], similar ontologies can be integrated to include more informa-
tion, especially relationships between different concepts. The
semantic net is a way to create ontologies.
In a general problem solver, knowledge is defined as information

of the real world. A problem is solved by employing a knowledge
representation method. In AI or computer science, knowledge is
represented by language or knowledge graph, which however
cannot be directly and automatically used in engineering design.
Compared to linguistic knowledge, input–output relationship data
are more applicable for engineering design. Based purely on data,
machine learning helps to uncover variable relations in a complex
system. How to combine the linguistic and graphic knowledge
and the knowledge embedded in data is the main question to be
addressed in future research.

2.2 Knowledge in Product Design. Although knowledge has
been used in product design for a long time, the definition of knowl-
edge is borrowed from AI. In product design, knowledge is under-
stood as the information which is not directly available but is
obtained from the analysis of data. In other references, knowledge
is also described as the experience, concepts, values, beliefs, and
ways of working that can be shared and communicated [39]. Sun-
nersjö [40] argues that knowledge should include not only the
rules that the designer should adhere to but also the background

General problem 
solver Expert system Semantic nets

Fig. 1 Knowledge representation methods
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knowledge that makes the design rules possible to review and
understand. In summary, the definition of knowledge in product
design is varied. But one consensus is that knowledge needs to be
captured and represented in an appropriate way.
In engineering design, knowledge is often used in the concept

design phase to help designers come up with better designs [41].
Knowledge used in design can be classified into two categories:
formal knowledge and tacit knowledge. Formal knowledge is
embedded in product documents, repositories, product function
and structure descriptions, problem solving routines, technical and
management systems, computer algorithms, and so on [42]. On
the other hand, knowledge tied to experience, intuition, unarticu-
lated models, or implicit rules of thumb is regarded as tacit knowl-
edge [43]. It is easier to capture and represent formal knowledge
than the latter. On the other hand, tacit knowledge is rather difficult
to be expressed, which is generally gained over a long period with
learning and experience. One reason is that there is not a common
recording method to capture the knowledge in human’s brain.
Another reason is that such knowledge can only be transferred by
willing and articulating people. One main research direction of
the knowledge in product design is how to capture and represent
tacit knowledge. Either formal knowledge or tacit knowledge
should be represented in a way that is easy to be understood [44].
Knowledge representation methods can be classified into five cat-

egories [42]: pictorial, symbolic, linguistic, virtual, and algorithmic
approaches as shown in Table 1. Pictorial presentation presents
knowledge as a picture or a graph, including sketches, detailed
drawings, and photographs. The symbolic method represents
knowledge by drawing a chart or a network. Decision tables, flow-
charts, assembly trees, and ontologies are all symbolic representa-
tion methods. The rule-based and frame-based expert systems
can be regarded as the symbolic knowledge. Linguistic represen-
tation uses document files including customer requirements,
design principles, constraints, and so on. Computer-aided design
(CAD) models, computer-aided engineering (CAE) simulations,
and virtual reality are examples of the virtual representation
methods. Finally, the algorithmic methods include the procedural
or methodical knowledge used in modeling, analysis, and optimiza-
tion. The information obtained from AI methods such as data
mining methods or machine learning methods can also be classified
into algorithmic knowledge.
Different knowledge is used at different stages of product design

[36,37]. To start a design, user requirements are needed for require-
ment modeling. House of quality, falling into the linguistic knowl-
edge category, is often employed to summarize the necessary

requirements. In the functional modeling stage, decision trees can
be used to determine the function of the product and how to
realize those functions. Then, some linguistic methods, such as
design principles, will be used to generate concepts whose behav-
iors are modeled based on the functions of the product. Different
ideas are generated in the concept design stage. A rich and well-
structured knowledge representation system is needed to support
such plenty of concepts and ideas [45]. Ontology is an appropriate
method to organize ideas. Ontology, which is a highly structured
domain covering processes, objects, and attributes, has the ability
to integrate and migrate valuable, unstructured information and
knowledge to provide a complex domain that contains rich concep-
tualization [46,47]. The semantic net is a tool to capture and repre-
sent the ontology in a graph with nodes and arcs [48]. In the above
three stages, i.e., requirement modeling, functional modeling, and
concept design stages, the linguistic and pictorial knowledge
plays the main role. The next stage is embodiment design, where
symbolic, algorithm, and pictorial methods are highly involved.
Information about the product architecture, material, and mathemat-
ical equations are applied at this step. Next is the detailed design,
where different virtual knowledge, including CAD model, CAE,
and virtual reality, are used to generate 3D models of the design.
Then, more accurate simulation models are generated and optimiza-
tion is employed to modify details of the product.
Different kinds of knowledge can be utilized for engineering

design. The issue is that traditional knowledge is often represented
by documents or graph. How to use the knowledge appropriately in
forming an engineering design and optimization problem is the
main task. An engineering simulation model is one attractive type
of virtual knowledge that can help in design. Such model gives
input and output relations, based on which one can dig out more
hidden information such as monotonic influence of certain inputs
on the output. In addition, approximation models can be constructed
on simulation models.
To combine the rule-based and frame-based expert systems with

engineering design, the knowledge-based engineering (KBE)
system was developed [49,50]. Rule-based and frame-based knowl-
edge can be captured, represented, and reused with CAD tools and
simulation tools in the KBE system to reduce time and costs of
product development. References [50,51] stated that KBE was
likely to be the best possible technology at hand to deal with rule-
driven, multidisciplinary, and repetitive geometry manipulation
problems. In Refs. [52–54], a multimodel generator was created
by KBE to develop a distributed design framework to support air-
craft multidisciplinary design optimization. A specific family of air-
crafts was generated automatically through the KBE system [53]. In
each model, discipline abstractions are obtained and used as the
input of simulation tools to evaluate the performance of an aircraft.
One disadvantage of the KBE system is that it can only deal with
revision from existing designs. In other words, before using KBE
to design a product, similar products and their design details are
required. Another shortcoming is the expert system used in the
KBE system. One issue is how to validate the accuracy of the
rules and classes in the knowledge base. Another issue is that mod-
eling the knowledge domain is also a burden to developers. Addi-
tionally, only an expert system is involved in the KBE system to
deal with design problems, which is just one type of knowledge
applied in the design. To better assist the design process, different
kinds of knowledge need to be involved. Thus, the KBE system
needs to be enhanced to include other kinds of knowledge when
it is used for optimization.

2.3 Summary Remarks. Knowledge has been employed in
problem solving and engineering design for decades. Knowledge
is captured from different resources, including documents, human
experiences, previous designs, and so on, and it is represented in
a structured way for further usage. The knowledge-based system
is first developed in the AI field, and the expert system is one of
the most common applications. By employing knowledge, the engi-
neering design process can be executed with little human

Table 1 Classification of knowledge representation [41]

Representation approaches Examples

Pictorial Sketch
Detailed drawing
Photograph

Symbolic Decision table
Flowchart
Assembly tree
Semantic net
Expert system

Linguistic Customer requirement
Design principles
Constraint

Virtual CAD model
CAE simulation
Virtual reality

Algorithmic Mathematical equation
Computer algorithm
Optimization algorithm
Data mining method
Machine learning method
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intervention. However, by employing frames and rules, the gener-
ated design through the expert system is only a feasible design
but not an optimal one. To reach the best, optimization needs to
be performed on the design obtained from KBE. Another issue
about the current knowledge base is that it focuses on linguistic
knowledge, neglecting knowledge hidden in data obtained from
engineering analyses. In addition, knowledge represented in an
expert system can be used to help define and solve the optimization
problem. Nevertheless, fundamental elements of optimization are
still data or numbers. Therefore, how to mine knowledge from
data and how to utilize such knowledge in optimization are two
research directions of the knowledge-assisted optimization method-
ology. Moreover, how to combine the linguistic knowledge, such as
design principles and customer requirements, with data is another
area of interest.

3 Existing Applications of Knowledge in
Design Optimization
Large-scale design optimization problems are difficult to solve.

There are several techniques that can be used to tackle these prob-
lems, including dimension reduction, decomposition, metamodel-
ing, and optimization strategies [55]. Although knowledge is not
formally incorporated in optimization methods, there are some tech-
niques employing knowledge to tackle large-scale optimization
problems. Table 2 gives a summary of existing optimization
methods involving knowledge. Note that the pictorial knowledge
is usually used at the beginning of the concept design and only
includes rough information of the design. Thus, the pictorial knowl-
edge is rarely applied in optimization. As for the other four kinds of
knowledge, the symbolic and algorithmic knowledge are widely
used in different solution methods when dealing with high-
dimensional optimization problems. The details are reviewed in
the following sections.

3.1 Symbolic Knowledge. Symbolic knowledge is knowledge
represented through graphs and symbols. Symbolic knowledge is
widely employed in optimization methods. To reduce the dimen-
sionality of an optimization problem, causal graph is employed to
identify and remove certain design variables. A causal graph is an
oriented graph showing the causal relations between variables.
Through analyzing causal relationships between design variables
and the objective, variables monotonically influencing the objective
are identified. The optimal values of these variables can thus be
determined without optimization, which means the number of
design variables can be reduced. To further decompose the problem,
sensitivity values are applied to simplify the causal graph and
decompose the original problem into several subproblems with
less design variables. This method was applied to solve an aircraft
concept design problem and a power converter design with
improved optimization efficiency [56]. The shortcoming of this
method is that if the monotonic variables cannot be found in the
problem or the range of variables is not carefully chosen so that
monotonicity is not ensured, this method will be ineffective.
One kind of symbolic knowledge, design structure matrix

(DSM), is usually used to show the interdependence of each disci-
pline in decomposition strategies. DSM is a square matrix that has

identical row and column listings to represent a single set of objects.
The key advantage of DSM is that DSM can show to designers a
complete view of the coupling structure within a system [57]. By
analyzing DSM, decomposition can be performed and the multidis-
ciplinary design optimization architecture can be constructed.
Moreover, different DSM analysis methods are developed to sim-
plify optimization problems. By performing the graph partitioning
[58–60], clustering analysis [61], and optimization [62] on DSM,
complex problems can be decomposed into subproblems. Then, dif-
ferent decomposition strategies, including concurrent subspace
optimization (CSSO) [63], collaborative optimization (CO) [64],
and bilevel integrated system synthesis (BLISS) [65], have been
developed according to the relations represented in the DSM. The
main disadvantage of those decomposition strategies is the large
number of function evaluations needed when dealing with high-
dimensional optimization problems. In Ref. [66], CO and CSSO
were tested with several numerical benchmarks and the results
show that even for low-dimensional problems, CO and CSSO
need thousands of discipline function calls. For different variations
of BLISS methods in solving an aircraft concept design problem,
although the number of system analysis was reduced to 10, the
total number of discipline calls was around 400 and BLISS/RS2
required more than 1000 discipline calls [65].
Symbolic knowledge was used to determine the structure of an

approximation model. In Ref. [67], the intermediate variables in a
Bayesian network are used as hidden nodes to construct an artificial
neural network (ANN) in a traffic accident prediction. However, the
Bayesian network is only used to represent the input–output rela-
tions; detailed mathematical relations cannot be captured by the
Bayesian network.
In summary, symbolic knowledge usually assists optimizations at

the beginning stage of optimization. By employing symbolic
knowledge, properties of the problem can be found to reduce the
number of dimensions or construct a more accurate metamodel,
easing the difficulties of solving high-dimensional optimization
problems.

3.2 Linguistic Knowledge. Linguistic knowledge is informa-
tion represented by documents. This kind of knowledge is difficult
to involve in optimization since optimization methods usually focus
on the trend of the data. One way to apply linguistic knowledge in
optimization is in selecting suitable approximation methods accord-
ing to the properties of the problem. A response surface method
with different orders can be chosen according to the problem. Addi-
tionally, different metamodels are fit for different problems. A
common conclusion regarding traditional metamodeling methods
is that a Kriging method performs better for low-dimensional prob-
lems while radial basis function outperforms others for high-
dimensional problems [68]. Thus, considering the properties of
metamodeling methods and features of the problem, a suitable
metamodeling method may be selected for a certain problem.
Other than selecting a metamodeling method, properties of the

design problem can be used in selecting operators in optimization
methods such as the GA. Reference [69] suggested to use domain
knowledge in the three stages of GA, i.e., initial population gener-
ation, encoding the genotype, and genetic operations of crossover
and mutation. In Ref. [70], knowledge of truss is used to guide
the initial sampling in GA. Hu and Yang [71] used the specific
knowledge in GA to solve a path planning problem. Piroozfard
et al. [72] employed knowledge-based operators to solve job shop
scheduling problems. In general, specific property of the problem
is applied to generate custom operators for the problem. However,
such ad hoc approaches cannot be extended to solve other problems.

3.3 Virtual Knowledge. Virtual knowledge, such as CAD,
CAE, and virtual reality models, allows users to get insight into
problems, find key trends and relationships among variables in a
problem, and make decisions by interacting with the data. A
visual design steering method [73,74] was developed as an aid in

Table 2 Existing applications of knowledge in optimization

Dimension
reduction Decomposition Metamodeling

Optimization
strategy

Pictorial
Symbolic ◎ ◎ ◎
Linguistic ◎
Virtual ◎
Algorithmic ◎ ◎ ◎ ◎
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multidisciplinary design optimization, which helped a designer to
make decisions before, during, or after an analysis or optimization
via a visual environment to effectively steer the solution process.
Virtual knowledge is helpful when little is known about the data
and the exploration goals are implicit, since users are able to directly
participate in the exploration processes, shift and adjust the explo-
ration goals if necessary. However, currently there lacks direct
translation of such knowledge into formulation for optimization
problems.

3.4 Algorithmic Knowledge. Algorithmic knowledge is the
most popular knowledge used in optimization since this knowledge
has the closest relation with data. As mentioned in Sec. 2.2, equa-
tions, procedural models, and information obtained from machine
learning algorithms can all be categorized as algorithmic knowledge.
Equations, which widely exist in different optimization prob-

lems, can be used at different stages of optimization. Note that
the equations may not be the accurate model of the design
problem, but the mathematical relations provided in the equations
can help in solving the optimization problem. Empirical equations
with lower fidelity can be employed in multifidelity models to
reduce the number of function evaluations of the expensive simula-
tion models. The co-Kriging method can be employed to generate
metamodels based on multifidelity models [75]. In Ref. [76], empir-
ical equations are used to construct a knowledge layer in the ANN
to solve a microwave design problem. Physical theories, empirical
data, and historical data are treated as white-box models, which may
be employed in constructing a grey-box metamodel [77]. The resid-
ual between the white-box prediction and the simulation data is
estimated by a metamodel. The grey-box method is applied in pre-
diction in two manufacturing problems, and the results show that
the metamodel is sufficiently accurate with small amount of
sample points. Equations can make the optimization easier, but
the inaccuracy of equations may negatively impact the optimization
results.
Data of historic designs can also be employed in optimization.

Kurek et al. [78] developed a novel approach for automatic optimi-
zation of reconfigurable design parameters based on knowledge
transfer. Solutions and historic data of related previous design are
treated as prior knowledge and will be transferred to the new
design and optimization. The autotransfer algorithm is developed
based on Bayesian optimization to determine which design will
be transferred, when it will be transferred, and how it will be trans-
ferred [79]. The efficiency improvement of the optimization method
based on knowledge transfer algorithm is significant.

Recently, more and more machine learning methods are
employed in assisting optimization. The screening methods and
mapping methods were employed to reduce the dimensionality of
the problem [80,81]. But there is information loss either in screen-
ing or mapping. The influences of those lost information on the opti-
mization results are difficult to quantify. If key information was lost
due to screening or mapping, the optimization would fail. The clas-
sification method is also employed in optimization to help with
sampling. A classifier-guided sampling method is developed to gen-
erate samples toward the area with a high probability of yielding
preferred performance [15]. Instead of random sampling, the
samples are generated based on the information obtained from the
classification results. Compared with traditional optimization
methods such as GA, the rate of convergence of the method was
improved significantly. In many cases, users tend to specify an
excessive number of, and often redundant, constraints. Methods
were developed to find the redundant constraints for the mathemat-
ical problems [82]. Cutbill and Wang [14] introduced a novel
method based on association analysis to detect redundant black-box
constraints.

3.5 Summary Remarks. Knowledge has been used in solving
optimization problems although the concept of knowledge is not
widely applied in the optimization field. In current optimization
methods, algorithmic knowledge is still the most used type of
knowledge. On the other hand, symbolic knowledge, such as
causal graph and DSM, are also employed in optimization
methods. However, employing specific knowledge may help to
improve effectiveness and efficiency of optimization for one
problem but it may not be suitable for different problems. The
issue of the current knowledge-assisted optimization method is
that there is no systematic way to employ different kinds of knowl-
edge together to deal with one problem. Besides, because of the
property of the linguistic knowledge and virtual knowledge, they
are difficult to use in optimization. Therefore, how to combine the
linguistic/virtual knowledge and data is one of the research direc-
tions for knowledge-assisted optimization methods.

4 Potential Applications of Knowledge for
Optimization
Potential applications of knowledge to assist optimization are

summarized in this section. As shown in Table 3, we list five
main tasks in optimization, including problem formulation, dimen-
sion reduction, decomposition, metamodeling, and optimization

Table 3 Potential applications of knowledge in optimization

Optimization tasks Challenges Knowledge

Problem formulation • Constraints definition
• Determining feasible space

Linguistic knowledge
Expert system
Ontologies (semantic nets)

Dimension reduction • Determining omittable variables Equations
Expert system
Causal graphs
Design principles
Ontologies (semantic nets)

Decomposition • Relations between disciplines
• Correlations between variables

Equations
Linguistic knowledge
Causal/Bayesian graphs

Metamodeling • Selecting a metamodeling method
• Accuracy of the metamodel

Equations
Historical data/designs
Causal/Bayesian graphs
Expert system

Optimization strategy • How to generate new samples Equations
Causal/Bayesian graph
Flowcharts
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strategy/algorithm. These tasks can also be viewed as different
stages of an optimization process. Then, we map the challenges
of each task with possible applications of knowledge in addressing
these challenges. Here, the knowledge entails linguistic knowledge,
pictorial/symbolic knowledge, and data knowledge.

4.1 Problem Formulation. There are three elements in an
optimization problem, design variables, objectives, and constraints.
The number of design variables, number of constraints, and strict-
ness of these constraints will influence the efficiency and effective-
ness of optimization. One of the challenges in problem formulation
is constraint specification. The number of constraints will influence
the efficiency of optimization. A large number of constraints will
increase the computational cost of an optimization problem. Addi-
tionally, a very strict set of constraints may cause the optimization
to fail since it is difficult to find a feasible solution, while a loose set
of constraints may lead to a design failure in the real world. Another
task related to problem formulation is to detect the feasible area. If
the feasible space can be determined, it will be much easier for opti-
mization algorithms to find the optimum. To deal with these two
challenges, different kinds of knowledge can be applied including
linguistic knowledge and symbolic knowledge.
Symbolic knowledge can be used for constraint specification to

avoid redundant constraints. The expert system can become one
of the useful tools for problem formulation. KBE systems were
widely used in engineering design problems to represent rules
and requirements in a structured manner [49], through which a
more complete and accurate set of constraints could be defined
according to different design scenarios [83]. By employing the
structured representation of rules and frames, the constraints and
relations between different constraints can be obtained and the def-
inition of the problem can be generated through the expert system.
For constrained optimization, some data-based methods were

developed to find the feasible space in black-box constrained opti-
mization problems [84–86]. The expert system has the capability to
generate feasible design considering different rules, and it can also
be used to detect the feasible area of one design problem
[49,51,87,88]. The expert system can also be used to determine
the constraints that must not be violated, and the constraints can
be mildly violated.
Semantic nets model not only a single concept but also relations

between different concepts. If one treats the design variables, con-
straints, and objectives as nodes in semantic nets and generates
semantic nets among those nodes, designers may have a clearer
and deeper understanding of the problem and the optimization
problem formulation may be more targeted. Similar to expert
systems, ontology can help to make judgements. In Refs. [89,90],
ontology was used to represent the requirements in engineering
design. The relationships between different concepts in the ontol-
ogy can give a clearer insight of the design problem at the
problem formulation stage. For example, similar requirements can
be detected through analyzing the ontology. Then, the constraints
of the optimization problem can be defined more appropriately by
employing knowledge. Additionally, ontology can be used to vali-
date system requirements early on Ref. [91]. Thus, using ontology
to guide formulation is a future research direction.

4.2 Dimension Reduction. Dimensionality of an optimization
problem often determines the computational cost, especially when
choosing metamodel-based optimization methods. Dimension
reduction is a common way to improve the optimization efficiency.
There are two kinds of methods, one is screening to select the
important variables and the other is mapping high-dimensional
data to a low-dimensional space. However, how to determine the
omittable variables in screening and how to determine the dimen-
sionality of the lower-dimensional space in mapping methods are
two challenges for dimension reduction.
As mentioned in Sec. 3.1, dimensionality of the optimization

problem can be reduced through analyzing the causal graph of the

problem [92]. Some design variables are removed from the variable
set due to their monotonic influences on the objective. The mono-
tonic influences can also be obtained from other knowledge, such
as equations or design principles/guidelines.
In screening methods, sensitivity analysis is performed to deter-

mine the importance of variables. The screening process can also be
performed based on rules and frames in an expert system. In this
case, sensitivity analysis can be employed as a validation method
by checking the screening results with the expert system.
In the traditional mapping method, the dimensionality of low-

dimensional space is always a question. Usually, the dimensionality
is determined by the user and often fixed at an arbitrary small
number. The ontology knowledge may be used to find out such
dimensionality and latent variables. By analyzing relations between
design variables, the dimensionality of the lower-dimensional space
may be defined. In Ref. [93], a mappingmethod named as generative
topographic mapping is used to solve 30-dimensional airfoil design
optimization problems and different lower-dimensional spaces were
tested. It is found that the optimized result of two-dimensional lower
spaces is the best. One reason is that for the airfoil design problem,
the naive 30 non-uniform rational basis spline (NURBS) variables
might have a more sensible dimension of two. If the designers can
find out through knowledge that the 2D spaces are the best, the opti-
mization results may be more accurate.
Various dimension reduction methods are developed in the data

mining field. Feature selection is one of the dimension reduction
methods by removing irrelevant and redundant features to reduce
dimensionality [94]. Two categories of feature selection methods,
filter methods and wrapper methods, were developed to select fea-
tures [95]. In filter methods, variables are ranked according to dif-
ferent principle criteria, such as correlation criteria [96] and
mutual information [97]. Wrapper methods use the prediction per-
formance of different subsets of variables to reduce the dimension-
ality [98,99]. Compared with wrapper methods, filter methods have
lower computational costs as the expense of accuracy.

4.3 Decomposition. There are two categories of commonly
used decomposition methods, one is based on relations of disci-
plines and the other is based on correlations among variables.
One multidisciplinary design optimization problem is usually
decomposed according to relations among disciplines. A common
problem in decomposition is that there is no general method in gen-
erating the decomposition framework. In other words, a new frame-
work needs to be constructed for every different problem. For the
variable-based decomposition method, the main challenge is detect-
ing the correlations of the variables with low computational cost.
As mentioned in Sec. 3.2, a problem can be decomposed

according to variables rather than disciplines. The causal graph or
Bayesian networks constructed based on variables and their rela-
tionships can be used to help find out where the coupling is in the
problem. In Ref. [92], three coupled loops can be reduced to one
when breaking the discipline-based DSM to the variable-based
DSM. Thus, the graphic knowledge representation methods have
the capability in generating more efficient decomposition results.
A group of decomposition methods based on variables is rooted
in the high-dimensional model representation (HDMR) method
[7,100]. High-dimensional problems are decomposed into several
subproblems based on the sensitivity information of different com-
ponent functions in the HDMR model.
For engineering problems, correlations between different vari-

ables can be determined through equations, documented (linguistic)
knowledge, or the analysis of the graphic knowledge. Then, decom-
position can be performed according to the obtained knowledge.

4.4 Metamodeling. Metamodels are widely employed to
replace expensive simulation models. Different metamodels have
different properties. Therefore, how to select a suitable meta-
modeling method is one of the tasks. Second, the accuracy of the
metamodel is another issue when approximating high-dimensional
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problems. The basic idea of improving the model accuracy is to
generate more samples in the space when treating the problem as
a black-box. However, thousands of samples are still extremely
scarce for a 100-dimensional problem.Moreover, sometimes adding
more samples may lead to over-fitting. To overcome this problem,
other information should be considered rather than simply regarding
the problem as a black-box.
ANN is one effective metamodeling method for nonlinear prob-

lems [101]. Increasing the number of nodes and the number of
layers can improve the accuracy of the ANN model to a certain
extent. In a fully connected ANN with plenty of nodes, the
number of weights needed to be estimated is very large and often
thousands of sample points are needed to generate an accurate set
of weights. Thus, how to reduce the number of nodes and the
number of links, or in other words, how to determine the structure
of a neural network is one of the issues for ANN approximation.
Similar with ANN, the causal graph or Bayesian network is also
a structure based on nodes and links. Those graphic knowledge rep-
resentation methods can be used as a guide in generating the ANN
structure. Another potential improvement of ANN is to consider
values of intermediate variables. Even in a black-box function
model, actual values of some intermediate variables can be obtained
by simulation. However, such information is not considered in
metamodel construction. After employing a causal graph to deter-
mine the structure of an ANN, values of intermediate variables can
be determined to improve the approximation accuracy. In other
words, some hidden layers in ANN can be taken to the surface as
actual values and the links related to them can be obtained.
In Ref. [10], a partial metamodel is employed to deal with high-

dimensional problems. In that case, only selected component func-
tions are constructed in the HDMR model instead of constructing
the complete model to reduce the function evaluations. A compo-
nent function is selected based on the importance of the design var-
iables via estimated sensitivity information. By using knowledge of
the engineering problems, such as causal graph or empirical equa-
tions, the important component functions may be predetermined.
Fuzzy logic knowledge can be used to construct the prediction

model. In fuzzy expert systems, continuous inputs and outputs are
transferred to fuzzy sets and they are linked together by if-then rules.
In prediction, the predicted fuzzy outputwill be converted back to the
continuous output. In Ref. [102], fuzzy logic knowledge was used to
forecast energy demand. A type-2 fuzzy rule-based expert system
model was constructed to estimate the stock prices [103].
Previous knowledge in constructing metamodels for similar

problems can also be utilized. The response of the metamodel
may be different from the actual model, but the trend of the prob-
lems or some interesting design spaces may be found through the
metamodel. Multitask regression is a method to construct a regres-
sion model for different but related tasks by analyzing data from all
the tasks instead of constructing an individual regression model for
each task [104]. Thus, combining the data from previous design
problems, a multitask regression model can be constructed on all
the related designs. Additionally, with the increase of the number
of design, the multitask models can be updated.

4.5 Optimization Strategy. How to generate new samples is
the main question for metamodel-based optimization strategies.
Some strategies generate samples in the area with the highest uncer-
tainty [4], some generate samples uniformly in the desired space
[105–107], and others generate samples according to the probability
distribution calculated from the previous metamodel [5,6]. Those
methods are all based on the data captured from the analysis of
the black-box model.
Knowledge can also be employed to guide the sampling in the

design space. Bayesian network is a method that represents not
only the graphic structure of the problem but also the probability
distribution of different variables [101]. Bayesian network can
also be used to estimate the probability distribution for input vari-
ables when given a certain value of the output. This distribution

is named as likelihood. By predicting the likelihood and generating
samples following the likelihood trend, more improvements are
expected in the metamodel-based optimization. Additionally, if
the prior probability distribution in the Bayesian network is
known before optimization, the initial sampling and the updating
can be performed following the knowledge of the prior probability
distribution.
Equation is another kind of information that can be used in the

optimization. The optimization results of the empirical equations
may not be accurate, but equations can be used in helping generat-
ing new samples in the optimization iterations.
Evolutionary and metaheuristic optimization algorithms have

been widely used for optimization on inexpensive problems. In
those algorithms, new samples at each iteration are generated fol-
lowing the evolution theory or other crowd behavior. The properties
of the design problem can be captured and involved in the algorithm
to guide the generation of new sample points to improve the search
efficiency of those optimization algorithms. Most of the current
knowledge-based operators in evolutionary algorithm are devel-
oped for special cases. Therefore, general-applicable methods of
employing knowledge in assisting generating offspring (new
samples) should be developed.

4.6 Summary Remarks and Challenges. To overcome the
limitation of assuming black-box functions in metamodel-based
design optimization, knowledge is involved to help in solving
large-scale optimization problems. Knowledge can be applied to
assist different optimization tasks. At the beginning, knowledge is
very useful in defining a reasonable and effective optimization
problem, either in dimension reduction or in constraint specifica-
tion. During optimization, knowledge can help in metamodel con-
struction and to guide generation of new samples.
In assisting optimization, equations tend to be most useful infor-

mation. Graphic knowledge such as causal graph and Bayesian
networks can also be used in problem formulation, metamodel con-
struction, new sample generation, and other processes of optimiza-
tion. Additionally, ontology knowledge base tends to be useful in
the problem formulation stage to determine the constraints and
design variables. Another important piece of information which is
not considered yet is data records from previous similar optimiza-
tions. In practice, sample points in similar optimizations can poten-
tially be employed for the current problem through modifications.
The challenge of employing knowledge in assisting optimization

is still huge. The first challenge is how to validate knowledge. The
expert system is useful in optimization formulation, but the accu-
racy of the expert system highly depends on qualities of the
expert and the knowledge that could possibly be extracted from
the expert. Causal graph is in the same situation. To validate knowl-
edge, different sources of knowledge can be used. For instance, the
experimental data can be used to validate knowledge obtained from
experiences while the experience can be used to judge the validity
of data.
The second challenge is how to employ different kinds of knowl-

edge to support various tasks of optimization. As proposed in Secs.
4.1–4.5, knowledge can be applied to support different optimization
tasks, from problem formulation to optimization strategy. More-
over, different kinds of knowledge can be applied together to one
optimization task. How to organize different knowledge for one
task is a challenge. How to manage different kinds of knowledge?
When and where to involve knowledge, and what kinds of knowl-
edge can be involved? All these questions needed to be answered in
order to develop a systematic approach of applying knowledge in
optimization, instead of falling into convenient ad hoc solutions.
Therefore, a systematical methodology of organizing different
kinds of knowledge is needed to concertedly assist optimization.
The third challenge is knowledge updating. During optimization,

new knowledge can be obtained as more samples are generated.
Then, how to update the current knowledge base and how to
apply the newly obtained knowledge in optimization are research
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questions. Moreover, another related challenge in knowledge updat-
ing is error correction. When errors are found in the current knowl-
edge base, these errors should be corrected through certain
methodologies. How to correct errors in knowledge is also a key
research direction for knowledge updating.

5 Machine Learning, Optimization, and Knowledge
There exists close ties between sample-based optimization and

machine learning. One of the issues in sample-based optimization
is to determine the next samples without or with less expensive
function evaluations. In heuristic optimization algorithms (e.g.,
GA, PSO, etc.), the expensive function is evaluated at all sample
points, which increases the computational cost significantly.
Instead of using expensive functions, metamodels are employed
to predict the responses and only the interesting points are evaluated
by the expensive functions to improve the efficiency of metamodel-
based optimization (e.g., MPS, EGO, etc.). Similar to optimization,
machine learning methods also try to learn from data (or samples).
ANN, one of the machine learning models, is widely used as predic-
tion and classification models in manufacturing [108]. ANN essen-
tially plays the same role as a metamodel and it is in fact a
commonly used metamodel in design optimization community.
The ability of ANNs (especially deep ANNs) in dealing with high-
dimensional spaces and large amount of data has been noticed
[109]. For example, convolutional neural networks can be used to
deal with pictures with thousands or even millions of pixels as
inputs [110]. Instead of estimating the actual responses of
samples, judging the performance of samples via classification is
another way to guide sampling, which has been used in optimiza-
tion algorithms by employing Bayesian network classifier [15,17]
or support vector machine [111]. Another application of classifica-
tion models is found in heuristic optimization algorithms, where
classification is used to determine whether the next generation of
sample positions improves the search or not. Some other ANNs
can also be employed to assist optimization. Autoencoder can be
used to reduce dimensionality [112]. Recurrent neural networks
(RNNs) are usually used to learn from sequential data as the circular
architecture of RNN [113]. An optimization process also has a loop
structure that the current optimal point and samples can determine
the next optimal solutions. Thus, there is a potential to use RNN
to learn the optimization process.
DM, also known as knowledge discovery from data, is a method

to help find knowledge from existing data [114]. Regression and
classification are also employed in DM to find the trend of the
data. Another benefit obtained from DM is the ability of preprocess-
ing. As mentioned in Sec. 4.2, feature selection methods can be
used to reduce the dimensionality. Additionally, feature selection
methods can also be used in determining redundant constraints
according to the data of constraints. If data of intermediate variables
can be obtained from simulations, feature selection can also be
applied in input-intermediate and intermediate-output pairs to iden-
tify the structure of engineering problems.
Both machine learning methods and data mining methods,

however, are also based on samples, similar to sample-based optimi-
zation. Wu et al. suggested that domain and application knowledge
should be applied to design big data mining algorithms and systems
[115]. In machine learning, deep learning methods are developed
to improve the effectiveness of learning without engineering skills
and domain expertise [116], but the amount of training data and
computational costs are large. Therefore, knowledge can help both
optimization and machine learning. In Refs. [117,118], fuzzy rules
were employed to predict the flying ash and the performance of a
gasoline engine and the results were similar to or outperformed
the ANN predictions. Bayesian networks came into sights of
researchers, as they contain the structures of problems (knowledge)
and the probability distributions of variables (data). By combining
knowledge and data together, Bayesian networks have the potential
to be applied in optimization to guide sampling.

6 Summary
To overcome the challenge of search blindly in design optimiza-

tion, the application of knowledge to assist optimization is dis-
cussed in this paper. The concepts of knowledge in AI and
product design are reviewed. In those fields, knowledge is captured,
represented, and reused to solve decision-making or design prob-
lems. Next, some existing applications of knowledge assisting opti-
mization are described and categorized. Although the concept of
knowledge may not explicitly appear in these methods, the idea
of involving knowledge in improving the efficiency of optimization
is employed in these works. Finally, multiple future potential appli-
cations of knowledge in optimization, as well as its relation to
machine learning, are discussed.
To summarize, to tackle challenging optimization problems and

to further improve the efficacy of design optimization, it seems
imperative to let go the assumption of black-box functions, but
rather incorporating existing knowledge in optimization. It is not
only because that it is a waste not using these valuable knowledge
but also necessary if we want to ultimately break the “curse-of-
dimensionality” for simulation-based optimization. This paper
reviews on this very topic and proposes many possible ways to
develop knowledge-assisted optimization approaches.
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