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A B S T R A C T

To reduce the computational cost in engineering design, expensive high-fidelity simulation models are
approximated by mathematical models, named as metamodels. Typical metamodeling methods assume that
expensive simulation models are black-box functions. In this paper, in order to improve the accuracy of
metamodels and reduce the cost of building metamodels, knowledge about engineering design problems is
employed to help develop a novel metamodel, named as causal artificial neural network (causal-ANN). Cause–
effect relations intrinsic to the design problem are employed to decompose an ANN into sub-networks and
values of intermediate variables are utilized to train these sub-networks. By involving knowledge of the design
problem, the accuracy of causal-ANN is higher than the traditional metamodeling methods that assume black-
box functions. Additionally, one can identify attractive subspaces from the causal-ANN by leveraging the
structure of the causal-ANN and the theory of Bayesian Networks. The impacts of fidelity of causal graphs and
design variable correlations are also discussed in the paper. The engineering case studies demonstrate that the
causal-ANN can be accurately constructed with a small number of expensive simulations, and attractive design
subspaces can be identified directly from the causal-ANN.
. Introduction

More and more high-fidelity expensive simulation models, such
s Computational Fluid Dynamics (CFD) and Finite Element Analysis
FEA) are applied in engineering design to improve the accuracy of
he simulation. The high computational cost of simulation varies de-
ending on the complexity of the model and computational power,
ut in general simulation models are much more expensive than math-
matical models. To balance computational efficiency and modeling
ccuracy in engineering design, metamodels are developed to approx-
mate the time-consuming simulation models. Wang and Shan (2007)
isted popular models, such as kriging models (Joseph et al., 2008),
adial basis functions (RBF) models (Fang and Horstemeyer, 2006),
esponse surface models (RSM) (Hill and Hunter, 1966), and support
ector machines (SVM) (Collobert and Bengio, 2001). Recently, more
ariables tend to be considered in design processes to improve flexi-
ility, which means the new design can be adapted to different tasks.
ith the increase of dimensionality, the accuracy of metamodels will

ecrease even if increasing the number of samples, where accuracy is
aken as the ability of the metamodel to provide predicted responses
lose to the actual values, measured by the 𝑅2 value as defined here by
q. (5). As a result, High-Dimensional Model Representation (HDMR)
Sobol’, 1990) is applied to approximate high-dimensional simulation
odels.

To simplify the process of metamodel construction and develop
eneral methodologies, simulation is usually treated as a black-box

∗ Corresponding author.
E-mail addresses: dwa88@sfu.ca (D. Wu), gary_wang@sfu.ca (G.G. Wang).

function when constructing a metamodel, which means only the input
and output data are considered in the process. An issue of treating
simulation models as black-box functions is that users are assumed
not to know about information such as functional form, importance
of variables, (non)linearity of the objective/constraint function with
respect to each variable, and variable correlations. The shortcoming of
the black-box assumption is that more computational cost is involved
since the properties of the problem are unknown. A totally unknown
design space implies that more sample points are needed to estab-
lish enough information to construct an accurate metamodel in the
design space. In real-world engineering design, however, practitioners
usually have some knowledge of the problem such as the variables
involved, input–output relations, values of some intermediate variables,
and so on. Such information is not commonly used in approximating
simulation-based engineering models. By employing appropriate infor-
mation in the right situations, the efficiency of the engineering design
process can be improved. The potential applications of knowledge
for engineering optimizations are discussed in Wu and Wang (2020),
where multiple research directions are identified in knowledge as-
sisted optimization (KAO). In Wu et al. (2019), knowledge, specifically
cause–effect relations, is employed to reduce the dimensionality and de-
compose high-dimensional engineering design problems. In this work,
a method of incorporating knowledge in metamodeling is developed
to increase the computational efficiency by reducing the number of
samples used to capture the behavior of the design functions.
ttps://doi.org/10.1016/j.engappai.2020.104089
eceived 5 August 2019; Received in revised form 8 October 2020; Accepted 6 No
vailable online 24 November 2020
952-1976/© 2020 Elsevier Ltd. All rights reserved.
vember 2020

https://doi.org/10.1016/j.engappai.2020.104089
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2020.104089&domain=pdf
mailto:dwa88@sfu.ca
mailto:gary_wang@sfu.ca
https://doi.org/10.1016/j.engappai.2020.104089


D. Wu and G.G. Wang Engineering Applications of Artificial Intelligence 97 (2021) 104089

t
p
(
e
o
A
i
n
u
o
i
A
i
t
i
o
j
W
t
i
e

c
C
o
d
B
a
t
m
p
s

i
S
s
p
S

2

2

l
e
t
n
t
1
l
i
s
n
o
b
n
o
b
1
n
k
c

i

How to systematically incorporate knowledge and information of
he design problem into metamodeling for engineering design? In this
aper, cause–effect relations combining with artificial neural networks
ANN) are employed to help in metamodeling. ANNs are metamod-
ling methods for nonlinear problems (Bishop, 2006). The number
f nodes, layers, and training methods can affect the accuracy of an
NN model. Thus, how to determine the topology of a neural network

s one of the issues for ANN approximation. On the other hand, a
etwork graph with nodes and links, namely a causal graph, is usually
sed to represent the cause–effect relations between variables and
bjectives. Thus, with a similar network structure, the causal graph
s employed as a guide in generating the ANN structure in this work.
dditionally, even in a black-box function model, actual values of some

ntermediate variables can be obtained by simulation. After employing
he causal graph to determine the structure of an ANN, values of
ntermediate variables are used to improve the approximation accuracy
f ANN. Thus, the designer is assumed to know the design problem
ust enough to be able to derive high-level cause–effect relationships.

ith this premise, a causal-ANN is defined and developed that involves
he cause–effect knowledge and values of intermediate variables to
mprove the accuracy of metamodels, especially for high dimensional
ngineering design problems.

Apart from predicting responses close to their actual values, the
ausal-ANN can be used in different applications in engineering design.
onsidering the structural representation of a causal-ANN, not only the
bjective values, but also values of intermediate variables can be pre-
icted from the causal-ANN. Therefore, combining with the theory of
ayesian Networks (Ben-Gal et al., 2007), distribution of the variables
nd objectives can be estimated through the causal-ANN. By analyzing
he distribution, attractive design subspaces can be identified, which
eans the subspace where the optimum solution may locate. In this
aper, the application of causal-ANN in identifying attractive design
paces is also developed.

The paper is organized as follows. ANN architecture and the def-
nition of Bayesian network and causal graph are briefly reviewed in
ection 2. The proposed causal-ANN and its application in attractive
ub-space identification are introduced in Section 3. To illustrate the
erformance of the proposed method, two case studies are tested in
ection 4. Section 5 is the conclusion.

. Related works

.1. Artificial neural network architecture

ANNs have been widely used in different fields for real-world prob-
em approximation and prediction (Ebrahimi et al., 2016; Fonseca
t al., 2003; Hippert et al., 2001), and feedforward ANN is one of
he most popular types. Building a proper ANN, however, is still a
ontrivial task due to difficulties of determining the architecture of
he networks, which affects the prediction accuracy (Zhang et al.,
998). The architecture of an ANN includes the number of hidden
ayers, number of hidden nodes, and connections between nodes. An
mproper architecture of ANN may lead to overfitting, which will
ignificantly reduce the accuracy of the metamodel. In general, the
umber of layers and number of hidden nodes are determined based
n experience. An ANN with two hidden layers usually provides more
enefits for different types of nonlinear problems compared with the
etwork with one hidden layer (Cheng and Titterington, 1994). On the
ther hand, different guidelines for the number of hidden nodes have
een developed, including ‘‘2n + 1’’ (Lippmann, 1987), ‘‘2n’’ (Wong,
991), ‘‘n/2’’ (Kang, 1992), and so on, where n is the number of input
odes, but none of them outperforms the others when considering all
inds of problems. A fully connected layer structure, i.e., all nodes are
onnected with each other, is usually used in ANN.

The main issue of determining the ANN architecture by experience

s that the guidelines may not perform well in every situation. Research
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has been conducted to develop a more intelligent architecture determi-
nation method for different approximation tasks. Akaike’s Information
Criterion (AIC) was used to determine the number of hidden nodes in
ANN (Kang, 1992), where statistic properties of the training set were
considered to generate the network structure. Another architecture
determination method is based on the performance of the network.
Different structures are tested and the most accurate selected as the
structure. Srivastava et al. (2014) used the dropout method to find
the appropriate structure of ANN to avoid overfitting. Nodes in the
ANN are randomly dropped out during the training process to find
the most accurate structure. Optimization is also employed to search
for the structure with the highest accuracy. A layer-wise structure-
learning method based on multi-objective optimization is developed to
construct a deep neural network (Liu et al., 2018). By employing the
structure-learning method, the network is no longer fully connected,
and some of the connections will be deleted based on approximation
accuracy. Moreover, some researchers focus on breaking the layer-
wise structure of the neural network, which means there exists links
connecting nodes not in adjacent layers. For instance, genetic evolution
methods are employed to find out the optimum topology of the network
(Maniezzo, 1994). In these aforementioned methods, the architecture of
the network is determined purely from data. To find a more accurate
structure of ANN, a large amount of computation is usually required.

Another structure determination method is based on knowledge
and a knowledge based neural network was developed for microwave
design problems (Wang and Zhang, 1997). The existing knowledge,
such as empirical formulations, is involved to construct the knowledge
layer in the network. In Morris et al. (2017), the intermediate variables
in a Bayesian network are used as the hidden nodes to construct an
ANN. However, the Bayesian network can only represent the input–
output relations between variables, and mathematical relations cannot
be captured from the Bayesian network. Therefore, in this paper, the
Bayesian network is employed to guide the modeling of the structure
of the causal-ANN rather than using the Bayesian network directly.
Also, mathematical relations involved in the Bayesian network and
causal-ANN will be used to construct a more accurate metamodel by
considering the values of intermediate variables in Bayesian network.

2.2. Bayesian network and causal graph

Bayesian networks (BNs), also known as belief networks, belong
to the family of probabilistic graphical models (GMs) (Ben-Gal et al.,
2007). These graphical structures can be used to represent knowledge
about an uncertain domain. BNs can also be regarded as a directed
acyclic graph (DAG), which means that there is no circle or loop in
the graph (Pearl, 2014). A more formal definition of a BN is given
as follows: a Bayesian network is an annotated acyclic graph that
represents a joint probability distribution over a set of random variables
(Friedman et al., 1997). Hence, in a BN, there are two main mem-
bers, the variables and the conditional probability distribution of each
variable.

A causal graph is one of the variances of BN, representing the cause–
effect relations embedded in human thinking. Compared to the original
BN, the edges in a causal graph contain directions, which express the
judgment that certain events or actions will lead to particular outcomes.
Causal graphs have been used in the decision-making field to represent
relationships between different factors. Besides, the causal graph is
also a useful tool in representing structures of engineering systems.
Based on causal graphs, the Dimensional Analysis Concept Modeling
(DACM) framework was developed to gather and organize information
associated with an engineering problem during the concept design
phase (Coatanea et al., 2016).

Constructing causal graphs often depends on expert knowledge,
which may lead to errors in some parts of the graph. The proposed
approach does not demand a detailed causal graph in order to alleviate
or at least minimize such risk. In addition, Bayesian networks can repre-
sent the conditional and joint probability distributions of the variables
in the network. Those distributions can give useful information about
the objective function and interesting design subspaces.
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3. Causal ANN and application in attractive sub-space identifica-
tion

In this section, the utilization of cause–effect relations to help neural
network construction is presented. According to the causal graph, the
entire network is divided into multiple sub-networks. Intermediate vari-
ables are used together with the design variables and objective to train
each sub-network. The constructed causal-ANN can be used to identify
the attractive sub-spaces where the optimum design may locate. The
likelihood of design variables can be estimated from the causal-ANN
and the attractive sub-spaces selected through the likelihood distri-
bution. In this section, the process of constructing a causal-ANN is
described and its application in identifying attractive sub-spaces is
represented. Case studies are given in Section 4 for more detailed
description of each step.

3.1. Causal artificial neural network

The main purpose of the causal-ANN is to overcome the high
computational cost challenge of ANNs caused by the unknown structure
of the network. We note that engineers typically have certain under-
standing of the problem at hand, and furthermore, during engineering
simulation, values of some intermediate variables can be obtained
through one simulation along with the objective value. But those values
are not employed in constructing metamodels. Causal relations are
used to form the structure of the ANN and values of the intermediate
variables are used in training the ANN. The process of constructing the
ANN is as follows.

Step 1. Generate the causal relations of the design problem. A high-
level causal relations map (i.e., simplified causal graph) is needed
before constructing a causal-ANN. The simplified causal graph needs
inputs, output, and key intermediate variables. Such intermediate vari-
ables can be the coupling variables, the outputs from each sub-system,
or variables whose values can be obtained from simulations as by-
products. Usually, key intermediate variables can be selected according
to the problem simulation process and experience of the designers.

There are two ways to generate a high-level causal graph. One
method is to simplify an existing causal graph. A causal graph of
an engineering problem usually contains all variables involved in the
problem, however not all of the variables in the complete causal graph
are important to the design. By keeping the key variables and removing
others, a complete causal graph can be simplified into a high-level
causal graph. If the causal graph does not exist, knowledge of the design
problem, such as flow charts, can be used to generate the high-level
causal relations. By connecting inputs and output with the selected
key intermediate variables, a high-level causal graph can be generated.
Case studies in Section 4 will show examples and some guidelines of
high-level causal relation map construction will be discussed.

Step 2. Generate sub-networks according to the causal relations.
The high-level causal graph is divided into multiple sub-graphs, which
include only two layers, inputs and outputs. For example, for the causal
graph in Fig. 1, three sub-graphs can be generated, [A, B] to D, [A, B,
C] to E and [D, E] to F, where A, B, and C are design variables, D and
E are value-known intermediate variables, and F is the objective.

Step 3. Construct neural network according to the sub-graphs and
values of the intermediate variables. In the paper, an ANN with two
hidden layers is employed to generate the metamodel. Since the inter-
mediate values are defined as the by-product variables, the values of
the intermediate variables and the objective can be obtained through
one simulation. The sampling data of design variables, intermediate
variables and objective are used to train each sub-network respectively.
If the sub-ANN is between intermediate variables and the objective
(e.g., [D, E] to F in Fig. 1), the actual values of the intermediate
variables D and E are used as the inputs of the ANN. Note that when
using the system causal-ANN in prediction after the model is completely
3

Fig. 1. An example of high-level causal graph.

constructed, values of the intermediate variables are estimated from
previous sub-networks.

The purpose of the causal-ANN constructing method is to employ
knowledge in constructing more accurate metamodels using a limited
number of samples. It is often difficult to train an ANN to approximate
large-scale nonlinear problems. In causal-ANN, the existing knowledge,
i.e., cause–effect relations, is used to decompose the complex ANN
network into small sub-networks. Then, the sub-ANNs are trained based
on the values of intermediate variables. By achieving high accuracy
of each sub-network, the accuracy of the entire metamodel can be
improved. The main advantage of causal-ANN is thus the reduction of
the complexity of ANN. It is also important to note that there is no
extra simulation involved in constructing a causal-ANN. Compared to
the time spent in simulation, the cost of constructing a high-level causal
graph is thus negligible.

The key step in causal-ANN is the generation of the high-level
causal graph. As aforementioned, a high-level causal graph can be
generated from simplifying an existing causal graph or from known
input–output relations. Since it is difficult to construct a complete and
correct causal graph for a complex system, this work only requires a
high-level causal graph with key variables. The cause–effect links with
doubts can be removed from the high-level causal graph. If the removed
links are not important, the causal-ANN can remain high accuracy. On
the other hand, if the removed links are important, it can be detected by
checking the accuracy of the sub-networks. The high-level causal graph
construction and failure tolerance of the causal graph are discussed in
Section 4.3 with the case studies.

3.2. Attractive sub-space identification method

Once an accurate causal-ANN is constructed, it can be used in
multiple scenarios. In this section, an attractive sub-space identification
method using causal-ANN is proposed, where the attractive sub-space
is defined as the small space where the best design may be located.
Because the attractive sub-space is always a smaller design space as
compared to the original space, the effort used to search the attractive
sub-space is much smaller than searching the original space. In the
Mode-Pursuing Sample (MPS) method (Wang et al., 2004), a large
number of samples are generated by evaluating the metamodel and
an attractive sub-space is estimated through those cheap samples and
their responses. In this work, causal-ANN combined with Bayesian
theorem is applied in attractive sub-space identification. By generating
sample points from the causal-ANN, Bayesian probability inference
can be performed with lower computational cost than on the actual
simulation.

Bayesian networks (BNs) are one kind of belief graphic modeling
method that gives the joint distribution of each variable. By con-
structing a Bayesian network of the engineering design problem, the
distribution of the objective p(f |x, D, G) can be found, where f is
he objective, x is the design variable vector, D is the data and G is
he graph structure. After obtaining the distribution of the objective,
he likelihood of the objective 𝑝(𝒙|𝑓,𝐷,𝐺) can be calculated via the
ayesian theorem as shown in the following equation

(𝒙|𝑓,𝐷,𝐺) =
𝑝(𝑓 |𝒙, 𝐷,𝐺)𝑝(𝒙) (1)
𝑝(𝑓 )
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Fig. 2. Variable discretization.

Fig. 3. Discretization for the variable without fixed bounds.

here, p(x) and p(f ) are the distribution of the design variables and the
objective respectively, which can be estimated through analyzing the
sample data. In general, for an individual engineering design problem,
designers or the decision makers often have an expected objective value
or range. The likelihood of the objective gives the information about
what area (or range) of the design variables has a higher probability to
generate expected designs. Details of the method are shown as follows.

Step 1. Generate sample points. Sample points are generated follow-
ing the uniform distribution (or other variable distributions if known).
The causal-ANN model is evaluated to calculate the responses of the
sample points. Note that the responses include the objectives and also
the intermediate variables.

Step 2. Discretize all the variables and objective. Most of BNs only
deal with discrete variables, while the variables in design problems
are usually continuous. One method to deal with the problem is to
discretize variables and the objective.

At the beginning, all the variables including inputs, intermediate
variables and outputs are assumed to follow the uniform distribution.
Then, the range of each variable is divided into n intervals with certain
indices, as shown in Fig. 2.

𝑙𝑏 and 𝑢𝑏 are lower and upper bounds of the variables, respectively.
If the sample falls between (𝑚(𝑢𝑏−𝑙𝑏)𝑛 + 𝑙𝑏) and ( (𝑚+1)(𝑢𝑏−𝑙𝑏)𝑛 + 𝑙𝑏), 𝑚 =
,… , 𝑛, the index of the sample is m + 1. Note that when the variable
oes not have a fixed lower bound or upper bound, a rough bound can
e determined and then two additional sections, which are smaller than
he lower bound and larger than the upper bound are added, as shown
n Fig. 3.

Step 3. Calculate the joint probability of the objective, 𝑝(𝑓 |𝒙, 𝐷,𝐺).
he approximate inferencing method is employed to generate the con-
itional distribution of the variables, 𝑝(𝑥𝑖|𝑃𝑥𝑖,𝐷,𝐺), where, 𝑥𝑖 is the
ntermediate variables, 𝑃𝑥𝑖 is the parents of 𝑥𝑖. The conditional distri-
ution can be calculated as follows

(𝑥𝑖 = 𝑎|𝑃𝑥𝑖 = 𝑏,𝐷,𝐺) =
𝑁𝑥𝑖=𝑎,𝑃𝑥𝑖=𝑏

𝑁𝑃𝑥𝑖=𝑏
(2)

here, 𝑁𝑃𝑥𝑖=𝑏 is the number of samples that 𝑃𝑥𝑖 = 𝑏, and 𝑁𝑥𝑖=𝑎,𝑃𝑥𝑖=𝑏 is
he number of samples that 𝑥𝑖 = 𝑎 as well 𝑃𝑥𝑖 = 𝑏. Because the design
ariables are generated following the uniform distribution, the prior
robability of the design variable can be calculated as 𝑝 (𝑥 = 𝑎) = 1∕𝑛.
hen, the joint probability of objective can be calculated as follows

(𝑓 = 𝑎|𝑥,𝐷,𝐺)

=
𝑛1
∑

𝑖1=1

…
𝑛𝑘
∑

𝑖𝑘=1

𝑛𝑥
∑

𝑖𝑥=1

(

𝑝
(

𝑓 = 𝑎|𝑃𝑥𝑖1
)

𝑝
(

𝑃𝑥𝑖1|𝑃𝑥𝑖2
)

⋯ 𝑝
(

𝑃𝑥𝑖𝑘|𝑥
)

𝑝 (𝑥)
)

(3)

=
𝑛1
∑

𝑖1=1

(𝑝(𝑓 = 𝑎|𝑃𝑥𝑖1)⋯
𝑛𝑘
∑

𝑖𝑘=1

𝑝
(

𝑃𝑥𝑖𝑘|𝑥
)

𝑛𝑥
∑

𝑖𝑥=1
𝑝 (𝑥))

where, 𝑛𝑘 gives the discrete number of each parent variable (i.e., inter-

mediate variables), and 𝑛𝑥 represents the number of discrete sections f

4

Table 1
Design variables in power converter design.

Variables Name Description Lower
bound

Upper
bound

𝑥1 𝐶𝑤 Core center leg width (m) 0.001 0.1
𝑥2 𝑇 𝑢𝑟𝑛𝑠 Inductor turns 1.0 10
𝑥3 𝐴𝑐𝑝 Copper size (m2) 7.29e−8 1.0e−5

𝑥4 𝐿𝑓 ∕𝑃𝐼𝑁𝐷𝑈𝐶 Inductance (H) 1.0e−6 1.0e−5

𝑥5 𝐶𝑓 Capacitance (F) 1.0e−5 0.01
𝑥6 𝑤𝑤 Core window width (m) 0.001 0.01

of design variables. By counting the data and analyzing the Bayesian
network, the joint probability of objective can be estimated.

Step 4. Estimate the likelihood of the design variables and find the
interesting area of each variable. The likelihood is estimated accord-
ing to the Bayesian theorem. 𝑝(𝑓 ) is estimated through the function,
𝑝 (𝑓 = 𝑎) =

𝑁𝑓=𝑎
𝑁 , where 𝑁 is the number of samples and 𝑁𝑓=𝑎 is the

umber of samples where the objective value falling in the section a.
inally, the likelihood of the design variable is estimated via (3). The
nterval with the largest likelihood of the design variables is selected
s the interesting area.

Note that when there are multiple parents for one variable, the
orrelations of those parents should be considered. However, to es-
imate the joint distribution considering the correlations of multiple
arents, a huge amount of samples are needed to cover all the possible
ombinations of the multiple parents. One of the methods is assuming
he probability distribution when given each parent is independent. For
xample, if A and B are the parents of C, the distribution 𝑝 (𝐶|𝐴) and
(𝐶|𝐵) are calculated independently. However, ignoring the correla-
ions between parents may lead to wrong likelihood estimation when
he correlations between parents are very strong. Therefore, a method
amed ‘‘Noisy-or’’ is employed to estimate the probability distribution.
n Noisy-or method, the joint distribution given multiple parents can
e calculated as follows.
(

𝑓 = 𝑎|𝑥1, 𝑥2,… , 𝑥𝑛
)

= 1 −
𝑛
∏

𝑖=1
𝑃 (𝑓 ≠ 𝑎|𝑥𝑖) (4)

In the Noisy-or method, the probability distribution considering
orrelation can be estimated by the probability distribution given each
arent, which can reduce the number of samples significantly.

By comparing the likelihood of each interval, the interesting sub-
pace can be determined. However, the number of samples used in
ikelihood estimation is usually very large. In this work, we use causal-
NN to generate the samples and thus the computational cost of

dentifying attractive sub-spaces is negligible.

. Case studies

Two cases are employed to illustrate the performance of the pro-
osed method, the power converter design problem and the aircraft
esign problem. First the Causal-ANN is constructed for both problems
nd then the attractive sub-space in each problem is identified. To
ntroduce the method clearly, the power converter problem is presented
tep-by-step to represent the process of the proposed method.

.1. Power converter design problem

A power converter design problem (Padula et al., 1996; Wang
t al., 2007) is used to test the performance of the proposed dimension
eduction methodology. The design problem has six design variables,
s shown in Table 1.

The upper and lower bounds defined in Wang et al. (2007) are used
n this paper. The objective of the problem is to minimize the weight
f the power converter. The formulation of the problem is defined as

ollows and all constant values are taken from Wang et al. (2007).
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Fig. 4. Causal graph of the power converter problem.
Fig. 5. High-level causal graph of the power converter design problem.

The problem is mainly dominated by the coupling between the
circuit efficiency (𝑦2) and the duty circle (𝑦3). To show the cause–effect
relations in the power converter design problem clearly, the complete
causal graph is presented in Fig. 4. The guidelines of how to construct a
high-level causal graph are discussed in Section 4.3. The six variables
at the left side are the six design variables and the one at the right
side is the objective. There are 21 intermediate variables involved in
the problem, which are shown between the design variables and the
objective in Fig. 4. The definitions of those variables can be found in
Kott and Gabriele (1993). As shown in Fig. 4, 𝑦2 is influenced by 𝑦3
through different routes; while 𝑦2 influences 𝑦3 directly. All the design
variables are involved in loops through different links and then finally
influence the objective.

4.1.1. Constructing causal-ANN
The causal graph can be simplified to generate the high-level causal

graph. Since the objective of the problem is to minimize the total mass
of the power converter, the mass of the four components, i.e., 𝑊𝑐 ,
𝑊𝑤, 𝑊𝑐𝑎𝑝, and 𝑊ℎ𝑠 can be outputs from the simulation. Additionally,
the circuit efficiency 𝑦2 as one coupled variable can also be an output
from the simulation. Thus, the simplified causal graph can be formed in
Fig. 5. Please note the simplified causal graph, or the high-level causal
graph, does not have to be generated from the detailed causal graph,
and can be created directly from a designer’s knowledge, which we

assume is a more likely situation.

5

Table 2
Comparison of 𝑅2 values among three metamodels.

Causal-ANN ANN RBF

𝑅2 0.967 0.691 0.732

According to the high-level causal graph, six sub-networks are
divided as shown in Fig. 6. For each sub-network, an ANN network with
two hidden layers and four hidden nodes in each layer is constructed.
Note that the objective is a sum of the mass of each component. Thus,
the sixth sub-graph is represented by the summation of each component
and the other five graphs are used to construct ANN. For constructing
the fourth ANN, the actual values of 𝑦2 are used as the input of this
ANN.

In this case, 200 sample points are generated for training. The
Matlab neural network toolbox is employed to construct the ANN. In
this work, the 𝑅2 value (Torrie, 1960) shown in (5), which measures
the extrapolation error on new test points (2000 in this work), is used
to calculate the approximation accuracy of the causal-ANN.

𝑅2 = 1 −
∑

𝑖(𝑓𝑖 − 𝑓𝑖)2
∑

𝑖(𝑓𝑖 − 𝑓 )2
(5)

where 𝑓 is the actual output value; 𝑓 is the predicted value, and 𝑓
is the average value of the actual output. 𝑅2 value is always smaller
than one. The closer the 𝑅2 value is to one, the more accurate is the
metamodel. Additionally, an RBF model and an ANN with two hidden
layers between the design variables and the objective are constructed
on the same 200 training samples. The 𝑅2 value is also calculated with
the same 2000 test points and compared in Table 2.

As shown in Table 2, the 𝑅2 value of the causal-ANN is the highest
among the three metamodeling methods, which means the causal-ANN
is the most accurate metamodel. The lower value of 𝑅2 of ANN and
RBF is caused by the high non-linearity of the problem, especially for
ANN. To further illustrate the performance of the causal-ANN, the 𝑅2

value of each sub-network is shown in Table 3. It can be found that all
sub-networks are accurate. Note that the third network is between all
the six design variables and 𝑦2, which has the same number of inputs as
the entire design problem. The accuracy of this sub-network (0.994) is
very high compared with the accuracy of the entire model (0.967). By
dividing the entire network to sub-networks to reduce the complexity

of each one, the accuracy of each sub-network can be improved.
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Fig. 6. Six sub-networks for the power converter design problem.

Table 3
𝑅2 value of each sub-network.

𝑦2 𝑊𝑐 𝑊𝑤 𝑊ℎ𝑠 𝑊𝑐𝑎𝑝

𝑅2 0.994 1.000 0.974 0.934 1.000

4.1.2. Attractive sub-space identification
After constructing the causal-ANN, the probability distribution of

the objective values and likelihood of the design variables can be
estimated on the samples generated from the causal-ANN. At the be-
ginning, the design variables, intermediate variables, and objective are
discretized. For this case, the upper and lower bounds are used to
determine the interval of design variables. While for the intermediate
variables and objective, the minima and maxima are selected to deter-
mine the boundary of the intervals. Thus, all the variables and objective
are divided into five intervals based on their own bounds.

The objective of the power converter problem is to minimize the
mass, which means a smaller objective value is desired. Therefore, the
first interval of the objective, i.e., 𝑦 = 1, is selected and the conditional
robability 𝑃 (𝑦 = 1|𝒙) and likelihood 𝑃 (𝒙|𝑦 = 1) are estimated in this
roblem. Considering the correlations among the six design variables,
he Noisy-or method is employed and the probability distribution of
ach design variable 𝑃

(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 = 1, 2,… , 6 is calculated. To esti-
ate the probability distribution and the likelihood, 10,000 samples

re generated from both the actual model via expensive simulation
nd the causal-ANN. The probability distributions estimated from the
ctual model and causal-ANN, 𝑃

(

𝑦 ≠ 1|𝑥𝑖
)

and 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 =
, 2,… , 6, are shown in Tables 4 and 5, where 𝑥𝑖 = 1 means the sample
ocates in the first interval of 𝑥𝑖.

As shown in Tables 4 & 5, the probability distributions estimated
rom the predicted model is the same as the distribution calculated
6

Table 4
Probability distribution 𝑃

(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 = 1, 2,… , 6 on actual model.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
𝑥𝑖 = 1 0 0.0005 0.038 0.004 0.007 0.007
𝑥𝑖 = 2 0.002 0.002 0 0.0095 0.009 0.006
𝑥𝑖 = 3 0.0055 0.0075 0 0.009 0.012 0.009
𝑥𝑖 = 4 0.0105 0.014 0 0.011 0.006 0.007
𝑥𝑖 = 5 0.02 0.014 0 0.0045 0.004 0.009

Table 5
Probability distribution 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 = 1, 2,… , 6 on causal-ANN.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
𝑥𝑖 = 1 0 0.0005 0.038 0.004 0.007 0.007
𝑥𝑖 = 2 0.002 0.002 0 0.0095 0.009 0.006
𝑥𝑖 = 3 0.0055 0.0075 0 0.009 0.012 0.009
𝑥𝑖 = 4 0.0105 0.014 0 0.011 0.006 0.007
𝑥𝑖 = 5 0.02 0.014 0 0.0045 0.004 0.009

Table 6
Probability distribution 𝑃

(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 = 1, 2,… , 6 with new upper bound.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
𝑥𝑖 = 1 0.0505 0.5775 0.7915 0.6455 0.6290 0.6035
𝑥𝑖 = 2 0.2245 0.6075 0.6315 0.6470 0.6345 0.6160
𝑥𝑖 = 3 0.9270 0.6580 0.6215 0.6360 0.6295 0.6570
𝑥𝑖 = 4 1 0.6695 0.5780 0.6425 0.6455 0.6435
𝑥𝑖 = 5 1 0.6895 0.5795 0.6310 0.6635 0.6820

Table 7
Probability distribution 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 = 1, 2,… , 6 with new upper bound.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
𝑥𝑖 = 1 0.0495 0.5820 0.7915 0.6445 0.6290 0.6035
𝑥𝑖 = 2 0.2215 0.6060 0.6295 0.6465 0.6355 0.6145
𝑥𝑖 = 3 0.9265 0.6540 0.6200 0.6340 0.6290 0.6530
𝑥𝑖 = 4 1 0.6670 0.5765 0.6420 0.6420 0.6435
𝑥𝑖 = 5 1 0.6885 0.5800 0.6305 0.6620 0.6830

Table 8
Interesting variable intervals with the largest likelihood.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
Actual model 1 1 5 5 1 1
Predicted model 1 1 5 5 1 1
Optimal solution 1 2 5 5 1 1

from the actual model, which means that the causal-ANN is accurate
estimating the predicted distribution. In some cases, the probability dis-
tribution is equal to zero, for example when 𝑥3 = 2, which means that if
the third coordinate of the sample is located in the second interval, all
the objective values will be located in its first interval. This is caused
by the distribution of the objective values. By setting the upper bound
of the objective at the maximum value, over 95% objective values will
locate at the first interval. The ill-defined boundary of the objective
may render the likelihood estimation useless because the likelihood of
some intervals may reach 100% according to Eq. (5). Therefore, the
upper bound of the objective should be reduced to avoid 0% appearing
in the probability distribution. In this case, 11 is selected as the upper
bound according to the distribution of the objective values and then
the objective is discretized into six intervals. The first interval of the
objective is still the desired space. Then, the probability distributions
estimated on the actual model and the causal-ANN is shown in Tables 6
and 7.

As shown in Tables 6 and 7, the probability distributions estimated
from the predicted model are close to the values estimated from the
actual model. Note that only 200 expensive simulation points are used
to construct the causal-ANN, and probability estimation is performed
on the causal-ANN, whose computation cost is negligible. No extra
simulation is required to perform the probability estimation.
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Fig. 7. Causal graph of the aircraft concept design problem.
able 9
esign variables in aircraft concept design.

Variables Description Lower bound Upper bound

1 𝑀 Mach number 1.4 1.8
2 𝑇 Throttle setting 0.1 1.0
3 𝑆𝑅𝐸𝐹 Wing surface area (ft2) 500 1500
4 𝐴𝑅 Aspect ratio 2.5 8.5
5 𝑡∕𝑐 Thickness/chord ratio 0.01 0.09
6 𝜆 Wing taper ratio 0.1 0.4
7 𝛬 Wing sweep (deg) 40 70
8 𝑥 Wing box x-section area (ft2) 0.9 1.25
9 𝐶𝑓 Skin friction coefficient 0.75 1.25

Then, by employing the Noisy-or method and the Bayes theory,
he interval of the design variable with the largest likelihood can be
etermined, which is shown in Table 8. In the table, the number of
ach design variable represents the interval of each variable. As with
he above comparison, the likelihood is estimated on both the actual
nd predicted models. Additionally, the interval that the optimum is
ocated in is also represented in the table. As shown in the table, the
nteresting interval generated from the prediction model is the same
s the result from the actual model, which is almost the same as
he interval where the actual optimum locates, except for 𝑥2. This is

because that the second design variable of the optimum point is located
near the boundary of the first and the second interval and the likelihood
distribution cannot capture it accurately.

4.2. Aircraft concept design problem

The aircraft concept design problem (Sobieszczanski -Sobieski et al.,
2000) is used to test the performance of the proposed method. There
are nine design variables (listed in Table 9 and three coupled disci-
plines (structure, aerodynamics and propulsion). The objective of the
problem is to maximize the range computed by the Breguet equation
(Sobieszczanski -Sobieski et al., 2000). The causal graph is shown in
Fig. 7, which is given only for reference as it is not needed to construct
a high-level causal graph to build the causal-ANN.

Two coupled variables, total weight of the aircraft, 𝑊𝑇 and the
drag 𝐷 are selected as two intermediate variables. Also, the weight
of the fuel (𝑊 ) from the structural discipline and the specific fuel
𝐹

7

Fig. 8. High-level causal graph for aircraft concept design.

consumption (𝑆𝐹𝐶) from the propulsion discipline are selected as the
other two intermediate variables. Thus, the high-level causal graph is
shown in Fig. 8.

The high-level causal graph can be divided into five sub-networks as
shown in Fig. 9. The ANN with two hidden layers and four hidden nodes
in each layer is constructed based on each sub-network. Note that for
the fifth network, the actual values of 𝑊𝑇 , 𝑊𝐹 , 𝑆𝐹𝐶, and 𝐷 are used as
the input of the network. 200 training samples are generated according
to the simulation model. The Matlab toolbox is employed to train the
neural network. Additional 2000 testing points are generated and the
𝑅2 value is calculated on the testing points to measure the estimation
error of the causal-ANN. Additionally, the 𝑅2 values of an RBF model
and an ANN on the entire problem are also calculated for comparison.
The 𝑅2 values of the three metamodels are shown in Table 10. As
shown in Table 10, the 𝑅2 value of the causal-ANN is the largest
among the three metamodeling methods, which means the causal-ANN
outperforms other two metamodeling methods on modeling accuracy.
In this case, the ANN and RBF are also accurate due to their high 𝑅2

values. Table 11 gives the 𝑅2 value of each sub-network. The accuracy
of the sub-network between all design variables and 𝑊𝑇 is the lowest
compared with other networks, which brings down the overall accuracy
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able 10
omparison of 𝑅2 value among three metamodels.

Causal-ANN ANN RBF

𝑅2 0.968 0.943 0.940

Table 11
𝑅2 value of each sub-network.

𝑊𝑇 𝑊𝐹 𝑆𝐹𝐶 𝐷

𝑅2 0.906 0.987 0.983 0.980

of the causal-ANN. The reason of the lower accuracy of the first sub-
network is that coupling among the three disciplines is involved in this
network, which increases the complexity of the sub-problem.

Once the causal-ANN is constructed, the likelihood is estimated
based on the samples generated from the neural network. To illustrate
the performance of the likelihood estimation on the neural network,
10,000 testing samples are generated on the actual model and the
causal-ANN. The design variables, intermediate variables and objective
are discretized into five intervals. As the objective is to maximize the
range, the fifth interval of the objective is desired. To estimate the

likelihood through the Noisy-or method, the probability distribution

8

𝑃
(

𝑦 ≠ 5|𝑥𝑖
)

, 𝑖 = 1, 2,… , 9 is estimated on the actual model and the
causal-ANN as shown in Tables 12 and 13. It can be found that the
probability distribution estimated from causal-ANN is similar with the
results from the actual model. Then, the likelihood is calculated via
Bayes theory and the interval with the largest likelihood is represented
in Table 14. The interval where the optimal solution locates in is
also shown in the same table. It can be found that the interesting
intervals generated from causal-ANN are the same as those obtained
from the actual model. Additionally, these interesting variable intervals
are exactly where the optimal solution locates.

4.3. Discussion

4.3.1. Generation of high-level causal graph
The causal relations are employed as the premier knowledge in

constructing a causal-ANN. However, it is hard to generate an accurate
and complete causal graph. In this paper, only a high-level causal graph
including key intermediate variables is needed to represent the causal-
effect relations in the design problem. As described in Section 3, finding
the important intermediate variables is the key step in constructing
a high-level causal graph. One of the criteria to select intermediate
variables is if the variable value can be calculated or is an output from
simulation. These intermediate variables can thus be called by-product
variables. Basically, the coupling variables, outputs of each discipline,
and by-product variables can be selected as key intermediate variables
in the high-level causal graph. Another suggestion is to simplify the
structure of an existing causal graph. Involving many variables in the
causal graph may cause difficulty in constructing a causal-ANN. Thus,
a causal graph with less than two intermediate layers is recommended.
Additionally, for the problem with coupling loops, one variable in each
coupling relation is selected to avoid coupling in the causal graph
since the BN cannot deal with coupling well. Finally, the intermediate
variables that have directly and prominent impact on the objective are
usually selected as key variables.

In this paper, the complete causal graph exists for the two case
study problems. Thus, the high-level causal relations can be gener-
ated through simplifying the causal graph. For the power converter
problem, considering the objective is to minimize the total weight of
the converter, the weight of each component can be selected as the
key intermediate variables. Also, one of the coupling variables, circuit
efficiency (𝑦2) is kept in the high-level causal graph. For the aircraft
design problem, the total weight of the aircraft (𝑊𝑇 ), drag (𝐷), weight
of the fuel (𝑊𝐹 ), and specific fuel consumption (𝑆𝐹𝐶), which directly
influence the final objective, i.e., range, are picked as the key variables.
Additionally, 𝑊𝑇 and 𝐷 are the coupled variables, while 𝑊𝐹 and 𝑆𝐹𝐶
are the outputs from the structure and propulsion disciplines. If a
complete causal graph does not exist, high-level knowledge about the
design problem can be utilized to generate the causal relations in the
causal-ANN.

4.3.2. Fault tolerance studies on causal relations
Even though only high-level causal relations are required in con-

structing causal-ANNs, there might be errors in defining these causal re-
lations, which may influence the accuracy of the causal-ANN. Thus, the
impact of the faulty causal relations on the accuracy of the causal-ANN
is discussed in this section.

First, the influences of the number of layers in the causal relations
are discussed. Fig. 5 illustrates a high-level causal relation including
two intermediate layers. As shown in Fig. 10, one intermediate vari-
able, 𝑦2, is removed from the causal graph to reduce the number of
intermediate layers to one. Compared with the original causal-ANN,
the sub-network,

[

𝑥1,… , 𝑥6
]

− 𝑦2 − 𝑊ℎ𝑠 is replaced by the direct links
from the design variables to 𝑊ℎ𝑠. Thus, the total number of sub-
networks to be trained is four. The causal-ANN with one intermediate
layer is trained with 200 samples and the 𝑅2 values of the objective
and different intermediated variables are calculated on 2000 testing
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Table 12
Probability distribution 𝑃

(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 = 1, 2,… , 9 on real model.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9
𝑥𝑖 = 1 1 0.9955 0.9950 1 1 0.9965 0.9990 0.9985 0.9975
𝑥𝑖 = 2 1 0.9980 0.9995 1 0.9990 1 0.9990 0.9985 0.9960
𝑥𝑖 = 3 0.9990 1 0.9990 1 0.9995 0.9990 0.9965 0.9980 1
𝑥𝑖 = 4 0.9970 1 1 0.9995 0.9985 0.9995 0.999 0.9985 1
𝑥𝑖 = 5 0.9975 1 1 0.9940 0.9965 0.9985 1 1 1
Table 13
Probability distribution 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

(

𝑦 ≠ 1|𝑥𝑖
)

, 𝑖 = 1, 2,… , 6 on causal-ANN.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9
𝑥𝑖 = 1 1 0.9875 0.9830 1 0.9965 0.9905 0.9920 0.9940 0.9900
𝑥𝑖 = 2 1 0.9930 0.9945 1 0.9955 0.9975 0.9950 0.9955 0.9875
𝑥𝑖 = 3 0.9985 0.9965 0.9980 1 0.9985 0.9960 0.9940 0.9940 0.9975
𝑥𝑖 = 4 0.9880 0.9990 0.9990 0.9995 0.9950 0.9950 0.9980 0.9940 1
𝑥𝑖 = 5 0.9885 0.9990 1 0.9755 0.9895 0.9960 0.9960 0.9975 1
Table 14
Interesting variable intervals with the largest likelihood.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9
Actual model 5 1 1 5 5 1 1 1 2
Predicted model 5 1 1 5 5 1 1 1 2
Optimal solution 5 1 1 5 5 1 1 1 2

Table 15
R2 value of objective and intermediate variables for the causal-ANN without y2.

𝑦1 𝑊𝑐 𝑊𝑤 𝑊ℎ𝑠 𝑊𝑐𝑎𝑝

𝑅2 0.886 1.000 0.969 0.805 1.000

Fig. 10. Causal graph with one intermediate layer for power converter design.

amples and shown in Table 15. Note that the same training samples
nd test samples as in Section 4 are used in this test and the following
est. Compared with the causal-ANN with 𝑦2, the accuracy of the new
ausal-ANN decreases. Comparing the 𝑅2 values of 𝑊ℎ𝑠 in Tables 3 and
5, it can be found that involving more intermediate variables in the
omplex networks can improve the prediction accuracy. On the other
and, compared with ANN and RBF model, the accuracy of the new
ausal-ANN is still better, which means a very simple high-level causal
raph can still improve the accuracy of the prediction model.

Second, the influence of missing links is studied. Six causal graphs
ith one of the links from

[

𝑥1,… , 𝑥6
]

to 𝑦2 missing in each graph
re created to construct six variations of the causal-ANNs and the
ccuracies of those causal-ANNs are calculated. The 𝑅2 values of the
bjective and the intermediate variables, 𝑦2 and 𝑊ℎ𝑠, are listed in

Table 16. It can be found that, missing the links will decrease the
accuracy of the causal-ANN model. If any of the links from

[

𝑥1, 𝑥2, 𝑥3
]

o 𝑦2 is removed, the causal-ANN fails. In the causal-ANN with multiple

ayers, the accuracy of the previous sub-network has large impact on

9

Table 16
Comparison of R2 values when missing links in causal graphs.
Missing link(s) 𝑦1 𝑦2 𝑊ℎ𝑠

None 0.967 0.994 0.934
𝑥1 − 𝑦2 −60.280 0.0913 −122.265
𝑥2 − 𝑦2 −4.120 0.6768 −9.300
𝑥3 − 𝑦2 −62.245 −1.002 −126.222
𝑥4 − 𝑦2 0.922 0.992 0.844
𝑥5 − 𝑦2 0.949 0.992 0.897
𝑥6 − 𝑦2 0.931 0.993 0.861
[𝑥4 , 𝑥5 , 𝑥6] − 𝑦2 0.909 0.993 0.818

Table 17
ANOVA analysis results of

[

x1 ,… , x6
]

to y2.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
Prob > F 0 0 0 0.111 0.165 0.565

the next sub-network and the errors will accumulate through the sub-
networks. Thus, the low accuracy of 𝑦2, when removing the links from
[

𝑥1, 𝑥2, 𝑥3
]

to 𝑦2, leads to a failed prediction of 𝑦1 as the negative 𝑅2

value. However, if any of the links from
[

𝑥4, 𝑥5, 𝑥6
]

to 𝑦2 is missed, the
prediction accuracy will not decrease much compared with the correct
causal graph. Table 17 gives the ANOVA analysis results of

[

𝑥1,… , 𝑥6
]

to 𝑦2, which illustrates that
[

𝑥1, 𝑥2, 𝑥3
]

are important variables while
[

𝑥4, 𝑥5, 𝑥6
]

are not. Therefore, missing the links of the important vari-
ables will decrease the prediction accuracy significantly while missing
the links of unimportant variables will influence the accuracy slightly.
In engineering design, the chance of missing less important variables is
much larger than missing important variables and missing those less
important variables will influence the accuracy of the causal graph
slightly. On the other hand, if important variables are missed from
the causal graph, the prediction of the causal-ANN will be poor or
unacceptable.

4.3.3. Impact of variable correlations
In engineering problems, design variables usually correlate with

each other. But considering the correlations may lead to higher simula-
tion expenses because a large number of variable combinations should
be considered and more samples should be generated. To reduce the
computational cost, the multiple parents usually are assumed to be
independent from each other in common probability inference. In this
case, each design variable is considered independently and the inter-
val of each design variable with the largest likelihood is determined
separately and finally those intervals of variables are put together to
form the interesting design subspace (Backlund et al., 2015). However,
ignoring variable correlations may bring extra errors in probability
inference. Thus, the impact of variable correlations is discussed in
this section. To illustrate the differences between considering variable
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Table 18
Interesting area detected with independent assumption in power converter design.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
Actual model 1 2 5 5 1 1
Predicted model 3 5 2 4 4 2

Table 19
Interesting area detected with independent assumption in aircraft concept design.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9
Actual model 5 1 1 5 5 1 1 1 2
Predicted model 5 1 1 5 4 1 1 1 2

correlations or not, the interval with the largest likelihood is estimated
with the independence assumption on the same 10,000 samples, and
the results are shown in Tables 18 and 19 for both the power converter
design problem and aircraft design problem. By comparing the results
between Tables 8 and 18 for the power converter design problem, it
can be found that in the power converter design problem, ignoring the
variable correlations may lead to completely wrong results. It can be
explained that for a highly nonlinear problem, optimizing it along each
dimension cannot find the optimal solution. When the design variables
are highly correlated, the combined influence of design variables may
dominate the objective value variance. On the other hand, as shown in
Table 19 for the aircraft design problem, the fifth design variable tends
to be in a different interval compared with the results considering corre-
lations and the interval where the optimal solution is in from Table 14.
In this case, the correlation influence of the design variables is weaker
than that in the power converter problem. Thus, the interesting interval
estimated independently is near the actual one. Therefore, correlations
between design variables should be considered in probability inference.

5. Conclusion

To improve metamodel accuracy and efficiency, knowledge of the
engineering design problem is employed in building the metamodel.
The cause–effect relations are combined with ANN to develop the
causal-ANN model. The entire ANN is divided into several sub-networks
according to the causal graph. Values of intermediate variables are
employed in constructing sub-networks. Therefore, by reducing the
complexity of each sub-networks, the accuracy of the entire ANN is
improved and the computational cost of building the model is reduced.
The causal-ANN is employed in two engineering case studies and the re-
sults show that the prediction accuracy of the causal-ANN outperforms
ANN or RBF model.

The developed causal-ANN can be used to replace the expensive
simulation for design exploration and optimization. In this work, a
causal-ANN based attractive space identification method is developed.
Likelihood distributions of the design variables are estimated through
Bayesian networks according to samples estimated from the causal-
ANN. By comparing the likelihood distributions, the attractive sub-
spaces can be identified, which can be used to improve the design
efficiency by reducing the large design space to some small regions.
In the two engineering cases, by employing the proposed method, the
attractive sub-spaces can be found in both cases. Since the samples
used in the distribution estimation come from the causal-ANN, there
is no expensive simulation involved and thus has negligible costs.
Additionally, the impacts of errors in the causal graph and variable
correlations are discussed based on the testing results. For the causal
graph, involving intermediate variables in the complex sub-networks
can improve the prediction accuracy. Missing less important links will
not influence the accuracy much but missing important links will cause
the prediction to fail, which will in turn help to validate the quality
of the knowledge. The variable corrections have influences on the
likelihood estimation and they should be considered in attractive design
space detection.
10
This paper offers a novel view on metamodel construction, which
combines knowledge about the engineering problem and data-based
modeling. For future work, different applications of the causal-ANN will
be researched in support of engineering design.
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