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ABSTRACT
Particle swarm optimization (PSO) is a well-known optimization algorithm
that shows good performance in solving different optimization problems.
However, PSO usually suffers from slow convergence. In this article, a rein-
forcement learning strategy is developed to enhance PSO in convergence
by replacing the uniformly distributed random number in the updating
function with a random number generated from a selected normal distri-
bution. In the proposed method, the mean and standard deviation of the
normal distribution are estimated from the current state of each individual
through a policy net. The historic behaviour of the swarm group is used to
update the policy net and guide the selection of parameters of the normal
distribution. The proposed method is integrated into the original PSO and
a state-of-the-art PSO, called the self-adaptive dynamic multi-swarm PSO
(sDMS-PSO), and tested with numerical functions and engineering prob-
lems. The test results show that the convergence rate of PSO methods can
be improved with the proposed reinforcement learning strategy.
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1. Introduction

Metaheuristic optimization algorithms have been widely studied in the past decades and applied
in various engineering fields due to their gradient-free property (Beheshti and Shamsuddin 2013).
Among them, swarm intelligence algorithms, such as particle swarm optimization (PSO) (Kennedy
and Eberhart 1995), ant colony optimization (ACO) (Dorigo, Maniezzo, and Colorni 1996), arti-
ficial bee colony (ABC) (Karaboga 2005), grey wolf optimization (GWO) (Mirjalili, Mirjalili, and
Lewis 2014), and so on, show high performance in solving a variety of optimization problems. In
this group of algorithms, the behaviour of social animals/insects is studied and simulated to find the
global optimum. Those algorithms, however, have issues such as converging only to a local optimum
and low convergence rate (Beheshti and Shamsuddin 2013). One way to alleviate such problems is to
adjust the parameters in the algorithm according to different optimization problems. Other methods
may include changing the topology of the algorithm or simulating different animal social behaviours.
However, those modifications are all based on the experiences of researchers. No matter what topol-
ogy structure is used or what kind of behaviour is simulated, those structures or behaviours are
defined by the algorithmdevelopers throughmathematical functions. Parameters in suchmathemati-
cal functions are usually fixed and themathematical relations are all defined a priori. Such parameters
and relations are assumed to be applicable to all problems,which is a very audacious presumption. The
research question is then, ‘is there a way to improve the intelligence of swarm-intelligence algorithms
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by self-learning from previous iterations or swarm behaviour?’ In the artificial intelligence field, rein-
forcement learning is a method of learning the behaviour and determining actions based on the
learned policy (Sutton and Barto 1998). In this article, the reinforcement learning method is applied
in PSO to give more intelligence to each individual to select their preference in the optimization
process.

Reinforcement learning has been used in multiple metaheuristic optimization algorithms includ-
ing PSO (Wauters et al. 2013), while Q-learning is the most widely used reinforcement learning
method. In Samma, Lim, and Mohamad Saleh (2016), five different operations for the particles in
PSO are defined, including exploration, convergence, high-jump, low-jump and fine-tuning, and Q-
learning is applied to each particle to select one operation from the five candidates based on the
current state. Y. Xu and Pi (2020) employed the Q-learning method to select different communi-
cation topologies at each iteration of the PSO process. The Q-learning method was also applied in
a simulated annealing (SA) algorithm to solve constrained engineering problems, where reinforce-
ment learning was used to choose the best parameter values from a set of candidates (Samma et
al. 2020). In Misir et al. (2009), learning automata (LA) were also used to determine the parameter
values from six candidates in the iteration limited threshold acceptance (ILTA) method. Addition-
ally, reinforcement learning methods were applied in specific fields, such as Cytosine phosphodiester
Guanine (CpG) islands prediction (Chuang et al. 2011) and noisy problems (Piperagkas et al. 2012),
where the operations in the PSO process were selected by reinforcement learningmethods. One char-
acteristic of the existing reinforcement learning enhanced metaheuristic optimization algorithms is
that reinforcement learning is limited to the selection of actions from a given candidate set. The use
of reinforcement learning methods in the parameter tuning of optimization algorithms has not been
explored.

There are other works that used reinforcement learning to assist optimization. Li andMalik (2017)
used a reinforcement learning method to learn from existing gradient-based optimization methods
and employed a well-trained policy net to optimize the weights of different neural networks in classi-
fication. A continuous reinforcement learning method based on the normal distribution was applied
to find the policy/updating function that has the highest convergence rate. In these works, once the
policy (updating function) was trained, the policy would not change when used to optimize other
problems. This method, however, has limitations in practice. First, gradient information is required
in the method, which is not easy to obtain in most real-world optimization problems. Secondly, the
policy is not updated according to the optimization problem, which means that the problem to be
solved needs to be the same or sufficiently similar to the problems that have been used to train the
policy net.

In this article, a continuous reinforcement learning strategy is proposed and applied in PSO and
its modifications to improve the convergence rate of the original method. Multiple studies on the
parameters in the PSO method, including the inertia weight and the acceleration coefficients, have
been performed (Clerc and Kennedy 2002; Y. Shi and Eberhart 1998, 1999). Except for those parame-
ters, the other two uniformly distributed random numbers in the updating function have never been
studied before by other researchers. In PSO, these two random numbers are used to increase the
uncertainty of the algorithm to help the algorithm to converge to the global optimum. The question
is, ‘does the uniform distribution assumption limit the performance of PSO?’ This work will replace
the uniform distribution with the normal distribution and report the effect of such a change.

A normal distribution with selected mean and standard deviation is used to represent the prefer-
ence of each individual, which is estimated from a policy net according to the current state of each
individual and the state of the swarm group. The policy net will be updated during the optimiza-
tion process by promoting the positive actions and punishing the negative actions in the historical
behaviour.

The rest of this article is organized as follows. Section 2 briefly introduces the PSO and rein-
forcement learning methods. Section 3 explains the proposed reinforcement learning strategy in the
original PSO method. The experimental results of adapting reinforcement learning into the original
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PSO and the self-adaptive dynamic multi-swarm PSO (sDMS-PSO) are shown in Section 4. Section
5 concludes the article.

2. Relatedmaterials

2.1. Particle swarm optimization

PSO is one of themost popular swarm intelligencemetaheuristic algorithms simulating themotion of
birds or insects to pursue the best solution of optimization problems (Koziel and Yang 2011). Initially,
the birds or insects, called particles, are randomly distributed in the design space. At the ith iteration,
the position of each particle is updated by Equation (1):

xi+1 = xi + vi+1, (1)

where xi is the current position of the particle while xi+1 is the newly generated position. vi+1 is
the velocity of the particle, which is updated according to the current velocity (vi), the best personal
position (pBset), and the best position of all particles (gBest), as shown in Equation (2):

vi+1 = wi × vi + c1 × rnd × (pBest − xi) + c2 × rnd × (gBest − xi), (2)

wherew is the inertia weight, c1 and c2 are acceleration coefficients, and rnd is a uniformly distributed
random number between zero and one. In practice, w is usually decreased from 0.9 to 0.4 (Y. Shi and
Eberhart 1999).

Not only being applied in different fields, PSO is also a widely studied optimization algorithm.
Multiple convergence analysis and stability studies have been presented in Clerc and Kennedy (2002),
Kadirkamanathan, Selvarajah, and Fleming (2006) and Trelea (2003), which try to explain why PSO
suffers from the issues of slow convergence and easily falling into a local optimum. There are two
types of modification in PSO studies to improve the performance: topological structures and param-
eter studies. Different topological structures, such as ring topology (LPSO) (Kennedy and Mendes
2002) andVonNeumann topology (VPSO) (Mendes 2006) are developed to increase the convergence
rate and avoid trapping into local optima. In the dynamic multi-swarm particle swarm optimizer
(DMS-PSO), swarms are regrouped frequently to form a dynamic population (X. Xu et al. 2015).
In guided adaptive search-based particle swarm optimizer (GuASPO) (Rezaei and Safavi 2020), the
personal best particles are all divided into different clusters and the unique global best at a cluster
is obtained as a weighted average calculated over other clusters’ best particles. Tian, Zhao, and Z.
Shi (2019) use three different kinds of mutation strategy (Gaussian, Cauchy and chaotic mutations)
to tackle the premature convergence issue of PSO. A normal-distribution-based update mechanism
is proposed (Kiran 2017). The new positions are generated from a normal distribution, where the
mean and standard deviation are calculated according to the personal best and the global best. On
the other hand, experiments are applied to show that both acceleration coefficients c1 and c2 have
obvious impact on the performance of PSO. The most popular choice is to fix the values of c1 and
c2 at two (Kennedy and Eberhart 1995). Additionally, time-varying acceleration coefficients are also
studied in Ratnaweera, Halgamuge, and Watson (2004) to find the best coefficient values during the
optimization process. This work focuses on the two random numbers in the PSO updating func-
tions. The normal distribution generated from reinforcement learning methods is used to replace the
uniform distribution.

2.2. Reinforcement learning and policy gradient

Reinforcement learning is to determine how agents take actions in an environment, in order to max-
imize the cumulative reward (Kaelbling, Littman, and Moore 1996). In the standard reinforcement
learning model, an agent is connected to its environment via perception and action. At each time
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step, the agent observes the current state of the environment and then takes actions to a new state.
The environment will provide a reward or punishment for this action. After all actions are taken, a
score can be generated by summation of the reward or punishment provided for each action in the
entire process, where a sequence of the actions is generated from a programmed policy. The goal of
reinforcement learning is to generate the optimal policy for the agent to maximize the score of this
action.

Reinforcement learning can be described as a Markov decision process (MDP) (Arulkumaran et
al. 2017), which consists of a set of states S, a set of actionsA and an immediate/instantaneous reward
function R. In general, the policy π is a mapping from states S to a probability distribution over a
given action set A = a

π : S → p(A = a|S), (3)

After a time step of length T, every rollout of a policy accumulates rewards from the environment
resulting in the return

R =
T−1∑
t=0

γ trt+1, (4)

where r is the reward or punishment caused by the current action, and γ is a discount fac-
tor between zero and one to determine the importance of immediate rewards. A low value of γ

means more emphasis on the immediate reward. Hence, the goal of reinforcement learning can be
formulated as follows:

π∗ = argmax
π

E[R|π]. (5)

There are two main strategies for solving reinforcement learning problems: methods based on value
functions (Bellman 1952) and methods based on policy search (Deisenroth 2011). Instead of finding
a general policy, value function methods tend to find the best action for a given state and then link all
actions to generate the entire policy. The main drawback of this kind of method is that the number of
states and actions needs to be finite and known.On the other hand, policy searchmethods do not need
to maintain a value function but directly search for an optimal policy π∗, which can be performed
in a continuous space. In this kind of method, neural networks are usually used to encode policies.
In this work, the policy gradient method is chosen as one of the policy search methods (Deisenroth
2011).

In the policy gradientmethod, the gradient ascentmethod is used tomaximize the expected return
E[R|π]. Assuming that a neural network, called a policy net, is used to represent the policy and θ is
the weight vector in the neural network, θ is updated at each time step according to the following
equation:

θt+1 = θt + α · ∇θE[R|π], (6)

where α is a user-specified learning rate and ∇θE[R|π] is the policy gradient. One way to estimate
the policy gradient is by using the ‘likelihood-ratio’ trick as shown in Equation (7) (Williams 1992):

∇θE[R|π] = E[∇θ log(pθ (τ )R(τ ))], (7)

where the expectation over pθ (τ ) is approximated by using a sum over the sampled trajectoriesτ =
(s0, a0, s1, a1, . . .).
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For example, if there are N sampled trajectories (τ (1), τ (2), . . . , τ (N)), the expectation can be
estimated as

E[log(pθ (τ )R(τ ))] = 1
N

N∑
i=1

log(pθ (τ
(i))R(τ (i))). (8)

The policy gradient method can be extended to continuous spaces by assuming the policy follows a
normal distribution,

πw(at|St) = N(μw(St), σw(St)), (9)

whereN(μw(St), σw(St)) denotes the probability density function of a normal distributionwithmean
μw(St) and standard deviation σw(St).

3. Reinforcement learning in particle swarm optimization

Compared to the uniform distribution, a normal distribution allows for a higher sample preference
by changing themean and standard deviation. To givemore intelligence to the swarms, the uniformly
distributed randomnumber is replaced by a randomnumber following a normal distribution. A rein-
forcement learning method is used to determine the mean and standard deviation of the normal
distribution according to the particle position, the personal best position and the global best posi-
tion. The original PSO is used to explain how to utilize reinforcement learning in PSO algorithms.
Following a similar process, the proposed strategy can be applied to different PSO modifications.

3.1. Using reinforcement learning in the original PSO (RL-PSO)

As shown in Equation (2), two uniformly distributed random numbers are involved in the updating
function to increase the exploration ability of the PSOmethod, but this may decrease the exploitation
of the algorithm. InRL-PSO, the randomnumbers are generated from twonormal distributions rather
than the uniform distribution, as shown in Equation (10):

vi+1 = wi × vi + c1 × a1 × (pBest − xi) + c2 × a2 × (gBest − xi)

a1 ∼ N(μ1, σ1)

a2 ∼ N(μ2, σ2), (10)

where a1 and a2 are the random numbers following the normal distribution with means μ1 and μ2
and standard deviations σ1 and σ2, respectively.

At each iteration, μ and σ are updated according to the current position, personal best position
and global best position to balance the exploration and exploitation by the current state and historical
experience. A policy net using a neural network is constructed to realize themapping from the current
state to the values ofμ andσ . The policy net is updated at each iteration by learning from the historical
behaviour of the swarm group. Hence, the RL-PSO algorithm is presented as follows.

As shown in Figure 1, two policy nets (i.e. π1 and π2) are constructed to respectively determine
the means and standard deviations for two normal distributions. According to the associated terms
in Equation (10), the input state of π1 includes the current position and the personal best position
of this individual, while the input state of π2 includes the global best position as well as the current
position. The structure and the updating process of the policy net are introduced in Section 3.2.

In each iteration of the RL-PSO, two normal distributions, [μ1, σ1] and [μ2, σ2], are generated
from the policy net with the current state of the individuals and the weight vector. Two random
numbers, a1 and a2, are generated following the two generated normal distributions. After updating
the position of each individual according to Equation (10) and calculating the response values for the
individual, the weight vector policy net is updated according to the score, i.e. the objective function
value at the new position, via the policy gradient method.
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Figure 1. Algorithm of reinforcement learning enhanced PSO (RL-PSO).

3.2. Policy network

In RL-PSO, two policy nets are used to learn from previous behaviours and guide the behaviour in
the next iteration. Since there are two random numbers in the updating function, two policy nets are
employed to generate two different normal distributions with different inputs: one using the personal
best position as the input state and the other using the global best position. In this section, one policy
net π1 is used to introduce the construction and updating method. The other policy net π2 follows
the same process.

As shown in Figure 2, a multi-layer feedforward neural network with two hidden layers and four
neurons in each layer is constructed to realise the mapping from the state to action. In this policy
network, the position of the individual and the position of the personal best are defined as the state,
while the position of the global best along with the individual position are selected as the state in
the other policy net, π2. A μ, σ pair is calculated by the neural network. Next, the random number
a is generated from the normal distribution with the obtained μ and σ . The bounds of μ and σ

are set to be [0, 1]. When the values of a is outside the bounds, the action a value is scaled from
[μ − 3σ ,μ + 3σ ] to [0, 1]. After updating the position of the individual, the response of the new
point is obtained as f2, while f1 stands for the function value at the previous position. The new function
value f2 along with f1 are used to update the weight vector in the neural network.

A modified policy gradient method is used to update the policy net. Instead of the cumulative
reward, the instant reward obtained from the current action is considered in the proposed strategy
to maximize the reduction of the function value at each iteration of the optimization process. Hence,
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Figure 2. Policy net π1 and its updating process.

the goal of the policy net is modified as follows:

π∗ = argmax
π

[
− log(p(a))

f2 − f1
fmax − fmin

]
. (11)

In Equation (11), two relations between f2 and f1 are considered, f2 < f1 or f2 ≥ f1. When f2 < f1, this
means that the action taken can find a smaller function value, whichmeans this action is positive and
the probability of taking this action needs to be improved. On the other hand, if f2 ≥ f1, the action is
negative, the probability of which needs to be reduced. The maximum function value (fmax) and the
minimum function value (fmin) in history are used to normalize the differences between f2 and f1.

The policy net will be trained after an individual updating using Equation (12):

θi+1 = θi + α · g, (12)

where θ are the weights of the policy net, α is a pre-defined learning rate and g is the gradient of
Equation (11), which is calculated as follows:

g = −∇θ log(p(a))
f2 − f1

fmax − fmin
. (13)

For a given normal distribution with μ and σ , the probability of the action a, p(a), can be calculated
by the normal distribution probability density function as defined by Equation (13):

p(a) = 1√
2πσ 2

exp

{
−1
2

(
a − μ

σ

)2
}
. (14)

When a = μ, the probability has its largest value. Sincep(a) ≤ 1,σ should be larger than 0.398. There-
fore, the boundary of σ output from the policy net is set to be [0.4,1], while the boundary of μ is set
to be [0, 1].

By updating the weight vector at each iteration, the positive action (i.e. decreasing function value)
can be promoted by increasing the probability and the negative (i.e. increasing function value) will
be punished by reducing the probability. Therefore, each individual can learn from previous states to
determine the action taken at the current state.

It should be noted that updating of the policy net does not add extra objective function evaluations
in RL-PSO since the function values, f1 and f2, have already been computed and do not change when
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calculating the gradient. Additionally, the policy nets update once for each individual at one iteration,
which means the policy nets update nP (the population size) times at one iteration in RL-PSO and
update nP × MaxIter times in the entire RL-PSO process. As updating happens within the RL-PSO
process and is agnostic with respect to specific optimization problems, the policy nets can adapt to
any optimization problem without change.

4. Tests of themethod

In this section, the reinforcement learning strategy is applied in the original PSO first and the per-
formance of the RL-PSO is tested by multiple numerical benchmark problems. A modification of the
RL-PSO is developed to deal with high-dimensional problems. Next, the proposed strategy is applied
to a participating algorithm of CEC 2015, called the self-adaptive dynamicmulti-swarmPSO (sDMS-
PSO) (Liang et al. 2015), as one of the state-of-the-art PSO algorithms, and compared to the original
sDMS-PSO using CEC 2015 benchmark problems (Liang et al. 2014). Finally, the reinforcement
learning strategy is applied in the original PSO to solve an engineering design problem.

4.1. Numerical tests of RL-PSO

The formulae of the problems are shown as follows.
Six-hump camel function (SC)

f (x) =
(
4 − 2.1x21 + x41

4

)
x21 + x1x2 + (−4 + 4x22)x

2
2 x1 ∈ [−3, 3], x2 ∈ [−2, 2] (15)

Bukin function (BF)

f (x) = 100
√

|x2 − 0.01x21| + 0.01|x1 + 10|
x1 ∈ [−15,−5], x2 ∈ [−3, 3] (16)

Rosenbrock function

f (x) =
d−1∑
i=1

100(xi+1 − x2i )
2 + (xi − 1)2

xi ∈ [−10, 10], d = 2, 10, 20, 30 (17)

Branin function (BR)

f (x) =
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos(x1) + 10 x1 ∈ [−5, 10], x2 ∈ [0, 15]

(18)

Goldstein–Price function (GP)

f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]

× [30 + (2x1 − 3x2)2(18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

x1, x2 ∈ [−2, 2] (19)

Griewank function

f (x) =
d∑

i=1

x2i
4000

−
d∏

i=1
cos

(
xi√
i

)
+ 1
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xi ∈ [−100, 100], d = 2, 10, 20, 30 (20)

Hartmann 3-D function (HN)

f (x) = −
4∑

i=1
αiexp

⎡
⎣−

3∑
j=1

Aij(xj − Pij)2
⎤
⎦

x1, x2, x3 ∈ [0, 1]

α = [1, 1.2, 3, 3.2]T, A =

⎡
⎢⎢⎣
3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎤
⎥⎥⎦ ,

P = 10−4

⎡
⎢⎢⎣
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8808

⎤
⎥⎥⎦ (21)

Ackley function

f (x) = −20exp

⎡
⎣−0.2

√√√√1
d

d∑
i=1

x2i

⎤
⎦ − exp

[
1
d

d∑
i=1

cos(2πxi)

]
+ 20 + e

xi ∈ [−32, 32], d = 10, 20, 30 (22)

Rastrigin function

f (x) = 10d +
d∑

i=1
[x2i − 10cos(2πxi)]

xi ∈ [−5.12, 5.12], d = 10, 20, 30. (23)

RL-PSO is compared to the original PSO to illustrate the performance of the reinforcement learning
strategy. Additionally, a PSO algorithm using normally distributed random numbers for both the
pbest and gbest terms in Equation (2) is also tested, and referred to as PSO-normal. In PSO-normal,
the mean and standard deviation are both fixed at 0.5, and the random number generated from the
normal distribution is normalized to [0, 1]. In all the three algorithms, the inertia weightw is reduced
from 0.9 to 0.4. Both acceleration coefficients are set to be two. In this experiment, the number of
function evaluations is limited to a small number to test the efficiency of the RL-PSO method. For
2-D and 3-D problems, the population size is set to be five and themaximal number of iterations is set
to be 20 for both methods. Thus, the maximum number of function evaluations is 100. For 10-D, 20-
D and 30-D problems, themaximal number of function evaluations is set to be 1000, with population
size 10 and 100 iterations. Each problem is run 20 times and the mean optimization results are shown
in Table 1.

As shown in Table 1, RL-PSO outperforms PSO in all of the seven low-dimensional problems. The
convergence curves of the seven low-dimensional optimization problems are shown in Figure 3. It can
be seen that the objective function value in RL-PSO drops faster than in the original PSO for most
of the problems for the first five to ten iterations except for the Rosenbrock and GP functions. For
low-dimensional problems, PSO-normal performs better than the original PSO but worse than RL-
PSO. The boxplots of the optimal results for the low-dimensional optimization problems are shown in
Figure 4. In all problems, the range of the optimization results of RL-PSO is smaller than those from
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Table 1. Comparison between RL-PSO and PSO on benchmark problems.

Theoretical PSO PSO-normal RL-PSO

Dim optimum Mean Std Mean Std Mean Std

SC 2 −1.032 −0.944 0.250 −0.954 0.187 −1.030 0.003
BF 2 0 6.517 3.983 2.317 1.227 2.073 1.152
BR 2 0.398 0.425 0.063 0.435 0.101 0.400 0.004
GP 2 3 5.148 6.157 25.037 32.984 4.772 6.221
HN 3 −3.863 −3.678 0.634 −3.535 0.647 −3.757 0.242
Rosenbrock 2 0 3.574 4.028 2.259 3.563 2.174 3.351

10 0 417.035 602.236 479.854 1034.7 11433 20006
20 0 9.291e4 1.186e5 4.046e4 3.209e4 6.165e5 8.251e5
30 0 1.452e6 8.858e5 1.375e6 1.072e6 7.114e5 1.132e6

Griewank 2 0 0.197 0.171 0.185 0.182 0.168 0.132
10 0 0.750 0.185 0.742 0.225 2.237 2.106
20 0 2.121 0.573 1.550 0.287 5.738 4.451
30 0 7.006 2.325 3.198 0.725 6.431 6.131

Ackley 10 0 5.274 4.016 5.008 2.813 10.896 6.987
20 0 17.316 2.544 12.314 2.267 15.678 3.434
30 0 20.034 0.616 15.228 0.946 18.141 1.389

Rastrigin 10 0 44.463 14.495 25.742 10.575 44.014 30.439
20 0 175.026 38.516 93.109 17.672 123.324 74.784
30 0 355.131 58.392 188.241 32.923 263.409 138.183

Note: Boldface numbers indicates the best performance among the three algorithms.

Figure 3. Convergence curves for low-dimensional optimization problems for PSO and RL-PSO.
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Figure 4. Boxplots of optimization results for low-dimensional problems for PSO and RL-PSO.

PSO. RL-PSO also shows overall smaller ranges than PSO-normal for these functions. For the high-
dimensional problems, however, the proposed RL-PSO can only obtain better optimum results for
seven out of twelve test problems as compared to the original PSO. PSO-normal is the best algorithm
for the high-dimensional test problems, yielding better results than RL-PSO.

The reinforcement learning in RL-PSO seems to limit the exploitation ability of the algorithm,
which causes early convergence in RL-PSO tests, especially for high-dimensional problems. In the
early stage of the optimization, RL-PSO can find a better solution than the original PSO due to the
aggressive updating strategy. Since the networks related to the personal bests and the global best
are trained independently, the trained network related to the personal best tends to generate a new
point close to the personal best, while the global best based network tends to force the point close
to the global best. This independent training can explore the space faster at an early stage of the
optimization, but it makes it hard for the RL-PSO algorithm to converge to the global best point
because the samples usually spread everywhere in the design space rather than gather around the
global best point. As a result, RL-PSO cannot find better solutions in the ensuing iterations.

To improve the performance of RL-PSO for high-dimensional problems, the exploitation ability
needs to be enhanced in the RL-PSO process. In other words, the aggressiveness of RL-PSO pursuing
the personal best should be reduced to improve the searching ability around the global best. Therefore,
the randomnumber for the personal best term (a1) is generated from a uniformdistribution, the same
as in the original PSO, while the random number in the global best term (a2) remains following the
normal distribution generated from the reinforcement learning. Because of the normal distribution
for the global best term, individuals tend to pursue the global best rather than the personal best. As
a result, more individuals will gather around the global best, and the exploitation aspect of RL-PSO
algorithmmay be improved. The modified RL-PSO, called RL-PSO-G, is employed to solve the high-
dimensional problems. Similarly, the original PSO-normal is adjusted to be PSO-normal-G, in which
only the random number for the gbest term in Equation (2) is changed to be a normal distribution.
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Table 2. Comparison results of PSO-normal, PSO-normal-G and RL-PSO-G on high-dimensional
problems.

PSO-normal PSO-normal-G RL-PSO-G

Dim Mean Std Mean Std Mean Std

Rosenbrock 10 479.854 1034.7 156.734 209.716 120.804 172.382
20 4.046e4 3.209e4 8.585e3 8.792e3 7.411e3 6.070e3
30 1.375e6 1.072e6 9.261e4 8.721e4 9.172e4 6.884e4

Griewank 10 0.742 0.225 0.308 0.182 0.210 0.145
20 1.550 0.287 1.438 0.213 1.419 0.307
30 3.198 0.925 3.043 0.825 2.761 0.708

Ackley 10 5.008 2.813 3.251 1.876 2.896 1.731
20 12.314 2.267 11.141 3.584 10.812 2.761
30 15.228 0.946 15.256 1.400 14.158 2.540

Rastrigin 10 25.742 10.575 21.553 8.519 20.240 7.949
20 93.109 17.672 89.376 25.417 79.951 19.910
30 188.241 40.717 186.322 30.320 169.028 23.216

Note: Boldface numbers indicates the best performance among the three algorithms.

Figure 5. Convergence curves for the Rosenbrock function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

Figure 6. Convergence curves for the Griewank function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

RL-PSO-G is then compared to PSO-normal and PSO-normal-G. The comparison results are shown
in Table 2.

As shown inTable 2, themodifiedRL-PSO-Gperforms better in all problemswith different dimen-
sionalities compared to others, including PSO and RL-PSO, data for which can be found in Table 1.
The convergence curves, shown in Figures 5–8, illustrate that RL-PSO-G has an average drop rate at
an early stage as compared to others but keeps finding better optimal results in the following iterations.
Compared to the original PSO, RL-PSO-G can find smaller solutions and the improvement over PSO
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Figure 7. Convergence curves for the Ackley function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

Figure 8. Convergence curves for the Rastrigin function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

Figure 9. Boxplots of optimization results for the Rosenbrock function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

Figure 10. Boxplots of optimization results for the Griewank function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

becomes greater with increasing dimensionality. Figures 9–12 show boxplots for the five optimiza-
tion algorithms and RL-PSO-G has the highest robustness compared to the other methods except for
the Ackley function. The unmodified RL-PSO has the worst robustness for these high-dimensional
problems, which confirms the earlier observation that the points spread out in the design space.

By involving the normal distribution in the PSOprocess, amore aggressive position updating func-
tion can be formed since themean and the standard deviation in the normal distribution represent the
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Figure 11. Boxplots of optimization results for the Ackley function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

Figure 12. Boxplots of optimization results for the Rastrigin function for PSO, PSO-normal, RL-PSO, PSO-normal-G and RL-PSO-G.

preference of the selection. Additionally, this aggressive updating function is enhanced by learning
the behaviour from history through reinforcement learning. By updating policy nets with historical
behaviour, a preferred normal distribution can be found to accelerate the convergence speed of PSO.
Thus, under the limitation of the available number of function evaluations, RL-PSO outperforms the
original PSO. The aggressive updating strategy of RL-PSO, however, causes a convergence issue on
high-dimensional problems. Therefore, to extend the exploitation of the RL-PSO algorithm, a nor-
mal distribution for the personal best term is changed back to a uniform distribution. As compared
to PSO with normal distributions, PSO-normal and PSO-normal-G, reinforcement learning offers
clear value and leads to stronger algorithms.

4.2. Applying reinforcement learning in sDMS-PSO

To test the performance of the proposed reinforcement learning strategy in different PSO algorithms,
the proposed method is applied in sDSM-PSO and compared to the original algorithm using the
CEC 2015 Learning-Based Benchmark Suite. sDMS-PSO is a modification of DMS-PSO, which uses
the local best position (lBest) within a neighbourhood to replace the global best in the original PSO
(Liang et al. 2015). The velocity update rule is calculated as follows:

vi+1 = wi × vi + c1 × rnd × (pBest − xi) + c2 × rnd × (lBest − xi). (24)

Instead of a fixed group of particles, sDMS-PSO regroups the particles frequently to form a dynamic
population. The details of sDMS-PSO can be found in Liang et al. (2015) and the parameters of sDMS-
PSO follow the default settings in that reference.

In this test, the uniformly distributed random number of the local best (which corresponds to the
global best in the original PSO) is replaced by a normally distributed number generated from the
reinforcement learning structure, as shown in Equation (25):

vi+1 = wi × vi + c1 × a1 × (pBest − xi) + c2 × a2 × (lBest − xi)

a2 ∼ N(μ2, σ2). (25)
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Table 3. Comparison results for 10-D benchmark functions on sDMS-PSO.

Function sDMS-PSO RL-sDMS-PSO

number Mean Std Mean Std

1 1.164E+04 8.35E+03 9.531E+03 7.48E+03
2 2.016E+04 5.88E+03 1.817E+04 6.09E+03
3 8.574E+00 1.39E+00 8.450E+00 1.84E+00
4 5.474E+02 1.72E+02 5.371E+02 2.48E+02
5 1.622E+00 5.09E-01 1.581E+00 4.86E-01
6 4.370E-01 1.15E-01 3.840E-01 1.35E-01
7 5.040E-01 2.44E-01 4.795E-01 2.26E-01
8 4.672E+00 1.45E+00 6.621E+00 3.49E+00
9 3.741E+00 2.46E-01 3.486E+00 4.45E-01
10 1.012E+05 9.78E+04 6.098E+04 5.65E+04
11 7.507E+00 2.20E+00 6.952E+00 1.69E+00
12 1.545E+02 7.16E+01 1.418E+02 5.96E+01
13 3.254E+02 3.93E+00 3.236E+02 3.75E+00
14 2.000E+02 4.23E+00 1.970E+02 4.65E+00
15 3.000E+02 1.85E+02 2.682E+02 1.77E+02

Note: Boldface numbers indicates the best performance between two algorithms.

Table 4. Comparison results for 30-D benchmark functions on sDMS-PSO.

Function sDMS-PSO RL-sDMS-PSO

number Mean Std Mean Std

1 7.732E+09 2.50E+09 7.687E+09 2.47E+09
2 9.870E+04 1.87E+04 8.549E+04 2.10E+04
3 3.660E+01 2.47E+00 3.587E+01 2.35E+00
4 4.759E+03 6.01E+02 4.498E+03 4.97E+02
5 3.436E+00 8.53E-01 3.434E+00 6.34E-01
6 1.718E+00 7.61E-01 1.640E+00 7.51E-01
7 2.203E+01 4.25E+00 1.677E+01 4.29E+00
8 1.992E+05 2.27E+05 1.557E+05 1.09E+05
9 1.369E+01 2.47E-01 1.366E+01 1.77E-01
10 2.061E+07 1.16E+07 1.801E+07 9.57E+06
11 1.188E+02 4.41E+01 1.261E+02 6.10E+01
12 8.789E+02 2.62E+02 7.591E+02 2.58E+02
13 4.558E+02 3.34E+01 4.662E+02 5.59E+01
14 3.060E+02 2.99E+01 3.045E+02 1.47E+01
15 1.132E+03 2.51E+02 1.100E+03 2.04E+02

Note: Boldface numbers indicates the best performance between the two algorithms.

To illustrate the performance of the reinforcement learning strategy with limited computational bud-
get, the maximum number of function evaluations of all the tests is set to be 1000. The tests are run
20 times and the results of 10-D and 30-D tests are shown in Tables 3 and 4. For 10-D problems,
using reinforcement learning in sDMS-PSO leads to smaller objective values on 14 out of 15 test
functions and smaller standard deviations in eight tests. For 30-D problems, sDMS-PSO including
reinforcement learning performs better on 13 benchmarks. The limitation of the maximum number
of function evaluations is themost difficult challenge of these tests. It can be seen that both algorithms
maymiss the global optimum under a tight computational budget. RL-sDMS-PSO, however, can find
smaller objective values. Overall, the reinforcement learning strategy proposed in this work improves
the performance of sDMS-PSO.

4.3. Power converter design problem

The power converter design problem has six design variables (Kott and Gabriele 1993), as shown in
Table 5. The upper and lower bounds defined in D. Wang, G.G. Wang, and Naterer (2007) are used
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Table 5. Design variables in power converter design.

Variable Name Description Lower bound Upper bound

x1 Cw Core centre leg width 0.001 0.1
x2 Turns Inductor turns 1.0 10
x3 Acp Copper size 7.29e−8 1.0e−5

x4 Lf /PINDUC Inductance 1.0e−6 1.0e−5

x5 Cf Capacitance 1.0e−5 0.01
x6 ww Core window width 0.001 0.01

Table 6. Mean optimum comparison for PSO, RL-PSO, and RL-PSO-G for the power converter
design problem.

No. of function PSO RL-PSO RL-PSO-G

evaluations Mean Std Mean Std Mean Std

100 0.358 0.191 1.020 0.076 0.271 0.216
200 0.178 0.116 1.010 0.047 0.142 0.066
300 0.128 0.078 1.006 0.024 0.088 0.060
400 0.090 0.054 0.999 0.012 0.084 0.067
500 0.098 0.060 0.998 0.039 0.070 0.024

Note: Boldface numbers indicates the best performance among the three algorithms.

in this article. The objective of the problem is to minimize the weight of the power converter. The
formulations of the problem are defined as follows and all constant values are taken from D. Wang,
G.G. Wang, and Naterer (2007):

min y1 = Wc + Ww + Wcap + Whs, (26)

where Wc = |DIy6(ZP1 + y7)|, ZP1 = 2(1 + K2)x6, Ww = |(XMLT)(DC)x2x3|, XMLT = 2x1(1 +
K1)FC,Wcap = |DK5x5| andWhs = |PO/KH((1/y2)/ − 1).

Electrical design state analysis duty cycle:

y3 = EO(
y2EI/2 (XN)

) . (27)

Minimum duty cycle:

y4 = EO
(y2EIMAX/2(XN))

. (28)

Inductor resistance:

y5 = XMLTx2(RO)

x3
. (29)

Core cross-sectional area:

y6 = K1x21. (30)

Magnetic path length:

y7 = π

2
x1. (31)

Inductor value:

y8 = (EO + VD)(1 − y3)
y6x2(FR)

. (32)
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Figure 13. Convergence curves of PSO, RL-PSO and RL-PSO-G for the power converter design problem.

Figure 14. Boxplots of PSO, RL-PSO and RL-PSO-G for the power converter design problem.

Loss design state analysis:

y2 = PO
PQ + PD + POF + PXFR

. (33)

PSO, RL-PSO and RL-PSO-G are used to solve the power converter design problem. The popula-
tion size is set to be ten and the maximal number of iterations is set to be 10, 20, 30, 40 and 50.
Thus, the maximal number of function evaluations is 100, 200, 300, 400 and 500, respectively, to
test the performance of the proposed method with different computational costs. Note that the iner-
tia weight (w in Equation 10) is related with the maximal number of iterations. Therefore, the tests
for different numbers of function evaluations are performed independently. Each algorithm is run
20 times for each number of function evaluations and the results are shown in Table 6. The aver-
age convergence curves and the boxplots for the three algorithms are shown in Figures 13 and 14,
respectively. As shown in Table 6, RL-PSO-G obtains the smallest optimal results among the three
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algorithms for all of the five scenarios. In particular, RL-PSO-G performs much better than the orig-
inal PSO when the number of function evaluations is limited because RL-PSO-G is more aggressive
in position updating. By employing the normal distribution and the historical information, RL-PSO-
G can find a smaller solution with fewer iterations compared to the original PSO using a uniform
distribution. The convergence curves in Figure 13 also illustrate the aggressive updating strategy in
RL-PSO-G. With increasing numbers of function evaluations, the differences between PSO and RL-
PSO-G become smaller, but RL-PSO-G remains better performing as compared to PSO. The boxplots
in Figure 14 show that the robustness of RL-PSO-G is better than that of PSO overall. On the other
hand, owing to the aggressive position updating strategy of RL-PSO, no better optimal solution can
be found after an early stage of the optimization. Thus, as shown in Table 6, although the optimal
results of RL-PSO improve with increasing numbers of function evaluations, the improvements are
small. Figure 13 shows the convergence issue of RL-PSO. In Figure 14, even though the results of 20
repeated runs of RL-PSO show the smallest ranges among the three algorithms, they also manifest
that the large number of iterations in RL-PSO cannot improve the optimal solution further.

5. Conclusion

In this article, reinforcement learning is employed in Particle Swarm Optimization (PSO) methods
to tune the random coefficients in the PSO updating function automatically and adaptively. A nor-
mal distribution is formed to replace the uniform distribution for the random coefficients for each
individual in the swarm. The mean and standard deviation of the normal distribution are predicted
from a policy net according to the current state of the individual and the swarm group. The policy
gradient method is used to update the policy net by learning from the previous states, i.e. promot-
ing positive actions and punishing negative actions. The basic goal of reinforcement learning is to
give more intelligence to each individual in the swarm group by learning from historical behaviours.
The proposed reinforcement learning strategy is therefore expected to enhance not only the original
PSO, but also other variants of PSO-based algorithms. This work tested the proposed method with
the original PSO and a start-of-the-art PSO variant, sDSM-PSO. The test results show that employing
the proposed strategy in different PSO-based algorithms can improve their respective performances
under the constraint of a limited number of function evaluations. Finally, the proposed strategy with
the original PSO is applied to a power converter design problem and the results show that the mod-
ified RL-PSO-G yields better optima with a higher convergence rate throughout the optimization
process with different computational budgets.

For futurework, the present authors will apply the reinforcement learning strategy to other swarm-
intelligence based algorithms, as well as multi-objective optimization algorithms.
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