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ABSTRACT

Today’s increasingly competitive industrial environment demands shorter product development
lead-times, lower costs, and higher quality products. These requirements produce more complex design
problems that are characterized by multiple design objectives as well as complex design objective and
constraint relations. The optimization of these computationally intensive design problems leads to new
technical challenges.  This work applies a new global optimization search scheme, the Adaptive Response
Surface Method (ARSM), to the optimal design of a complex mechanical system -- the radiator stack
PEM fuel cell system. The design optimum manifests a significant increase in system performance and
decrease in cost.  The proposed method can also be applied to the solution of other complex design
optimization problems.
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OPTIMIZATION DU CONCEPT D’UN SYSTÈME MÉCANIQUE COMPLEXE PAR LA

MÉTHODE DE SURFACE À RÉPONSE ADAPTIVE

L’environnement industriel de plus en plus compétitif qui pévaut de nos jours, éxige des délais de
développement de plus en plus courts, des coûts réduits, ainsi qu’une amélioration de la qualité.  Ces
besoins mènent à des problèmes de conception plus complexes, caracterisés par des objectifs de
conception multiples ainsi que des fonctions de contraintes complexes.  L’optimization de ces problèmes
de conception nécéssite des calculs numériques intensifs et mène à de nouveaux défis techniques. Dans
cet article, nous appliquons un nouveau schéma d’optimization globale, la méthode de surface à réponse
adaptive (ARSM). Cette méthode est appliquée a un système mécanique complexe: la pile a combustible
PEM basée sur le concept de radiateur. L’optimization du concept de base résulte en une amélioration
substantielle de la performance et une diminution du coût du système. La méthode peut être également
appliquée pour  la résolution d’autres problèmes complexes de conception-optimization.



INTRODUCTION

With the advance of Computer-Aided
Design (CAD), Computer-Aided Engineering
(CAE) and virtual reality software, virtual
prototyping technique are emerging as a new tool
that is used by leading manufacturing industry to
shorten product development lead-times and to
meet the challenges from today's competitive
industrial environment.

Virtual prototyping involves two major
tasks: (a) the construction of a “soft prototype” of
the design using a CAD system, and (b) the “tests”
on the soft prototype through various analyses,
simulations, and evaluations using CAE tools, as if
they would be performed physically on a physical
prototype.  Expert feedbacks are also included.
These are carried out by the specialists on the
difficult-to-evaluate product performance issues,
such as manufacturability, maintainability, service-
ability and appearance. With virtual prototyping,
numerous design tests can be quickly made for
various product configurations without the lengthy
and costly physical prototyping process.  The
number of necessary physical prototypes can be
radically reduced [1][8]. At present though virtual
prototyping can give an accurate prediction of
product performances, a designer has to manually
go through the design-evaluation-redesign process
many times before a satisfactory solution is
achieved. An ideal approach is to use virtual
prototyping as product performance evaluation
means and to optimize the design based upon these
evaluations. However, virtual prototyping involves
computationally intensive and time-consuming
processes and results in complex optimization
problems with multiple design objectives and
complex design functions.

Numerical optimization is a powerful tool
in search of the best design solution [6] , and a
large number of optimization algorithms have been
developed for a single-modal objective function.
As today’s industrial designs are usually complex
and multi-objective, resulting in multi-modal
objective functions, conventional optimization
methods often stop at local design minima [17].

Global optimization algorithms with both
deterministic and probabilistic methods are used to
handle these multi-modal problems.  However,
these methods cannot be directly used in virtual
prototyping-based design optimization. Most
present deterministic global optimization methods
require the knowledge on the forms of the design
objective and constraints [7][10][11]. While virtual
prototyping is carried out using implicit computer
models and software tools, explicit design
objective and constraint functions are often
unavailable. Two probabilistic global optimization
algorithms, Simulated Annealing (SA) and Genetic
Algorithms (GA), are widely used today due to
their good reliability.  Both of these two methods,
however, need a large number of design function
evaluations[4][30]. The numerous iterations
required in their search make them computation
intensive procedures and preclude their use in
combination with the computation intensive virtual
prototyping process. Consequently, a new design
optimization method is needed to efficiently carry
out the search for the global optimum in these
complex design optimization problems.

Designs of Experiment (DOE) methods are
used to explore unknown systems and implicit
design objectives. The Response Surface Method
(RSM) is one of the DOE schemes to approximate
and simplify design optimization problem
[3][13][19][18][26]. The method is suitable for
problems in which the system output is influenced
by several variables and the design objective is to
optimize the output, or system response.  Recently,
RSM were broadly applied to the approximation of
complex objective and constraint functions
[4][12][9] [22][15].

The RSM is based on a series of planned
experiments. A first or second-order regression
model is used to fit the experimental points to
approximate the unknown or complex relationship
between design variables and design functions.
This approach approximates the unknown system
through only one pass.  It is thus regarded as one-
time RSM in this work.  If one considers a virtual
prototyping process as a simulation of a physical
experiment, RSM bears a number of appealing



features for the virtual prototyping-based design
optimization.  These include supporting distributed
computation, providing explicit function
expression and variable sensitivities, and allowing
both continuous and discrete design variables [9].
Nevertheless, the present one-time RSM has two
major limitations:
• It is difficult to determine the appropriate

experimental designs for the response surface
fitting.
The response surface obtained from regression
depends upon the number and distribution of
the experimental designs.  The selection of
design experiments is case dependent to the
function to be approximated. The one-time
RSM cannot ensure an adequate fitting for
some design problems due to its one-size-for-
all nature.

• The response surface model cannot adequately
represent a high-order design function.
One-time RSM uses a first or second order
regression model to approximate a complex
design function that is often in a higher order
form, leading to significant modeling errors
over the design space.

These limitations undermine the creditability of the
obtained response surface and the design optimum.
To overcome these problems, the Adaptive
Response Surface Method (ARSM) was introduced
in the authors' recent work [27][30][28]. The
approach extended one-time RSM by eliminating
the two stated drawbacks, and made virtual
prototyping based design optimization feasible.

ADAPTIVE RESPONSE SURFACE METHOD

Description of the ARSM Algorithm
1. Carrying out design experiments to produce a

data set of design variables and the
corresponding function values.
A formal experimental design method, e.g.
Central Composite Design (CCD), is applied to
explore the unknown design space with
normalized variables [18].

2. Building a second-order approximation model
of the design function using data in the design

experiment data set and the least square
method.

3. Calculating the optimum of the fitted response
surface and updating the experimental designs.
The optimum of the fitted model is obtained
using the simulated annealing method.  The
use of this global optimization method allows a
complex problem with nonlinear constraints to
be handled with confidence. The design
function value at the optimum of the
approximation model is calculated through an
evaluation of the original design function.  If
this estimated optimum presents a better
solution than all other probe points in the
design experiments, the point is added to the
set of experimental designs for the following
iteration as this point represents a promising
search direction.

4. Reducing the design space using a threshold
according to the function value of
experimental designs in the data set and the
correlation of design variables.
Part of the original design space in which the
function values of possible design points are
higher than the threshold is discarded.  In this
algorithm, the second highest value of the
design function in the set of experimental
designs is chosen as the cutting plane.  If this
second highest value of the design function
cannot help to reduce the design space, the
next highest value of the design function will
be chosen, and so on.

5. Stop when a satisfactory design appears in the
design library or the design space cannot be
further reduced. Otherwise, go to Step 1 with
the reduced design space.

Reduction of the Design Space
Within each ARSM iteration, the design

space is continuously reduced, given the cutting
plane and the fitted function. Identification of the
reduced design space for a generic, multiple-
variable design problem is carried out through an
optimization on the fitted model:
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where the iβ  and ijβ  represent regression

coefficients; )1(, nix i L=  are design variables
and y is the response. Given a design threshold, y0,
the possible solutions for xk, can be calculated by:
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DESIGN OPTIMIZATION OF A COMPLEX
MECHANICAL SYSTEM

ARSM is introduced to solve an ill-shaped,
complex design optimization problem that requires
extensive computation in evaluating its objective
and constraint functions.  The method applies an
iterative process to progressively improve the
approximation to the unknown design function
using a second-order polynomial response surface
model, thus not relying on the initial selection of

experimental designs. As the design space is
reduced, the response surface can accurately
represent a high-order design function in a
sufficiently small region. The method has been
extensively tested using benchmark problems, and
applied to a number of industrial design problems
[27,28,30].  In this work, the optimal design of a
complex mechanical system - the transportation
fuel cell system is presented.

A Fuel Cell
A fuel cell is an electric power-generating

element based on the controlled reaction of fuel
and oxidant. A typical fuel cell is illustrated in Fig.
1, in which hydrogen is shown as the fuel and
oxygen as the oxidant.

Fig. 1 Illustration of a fuel cell

The overall reaction equation is:

PotentialElectricalHeatOHOH ++→+ 222 2
1    (7)

In principle, fuel cells are more efficient in energy
transfer and much cleaner than internal combustion
engine [16].  Due to many attractive features such
as low temperature, compact structure, and less
corrosion concern, the proton exchange membrane
(PEM) fuel cell has received increasing attentions,
especially in the automotive industries. A PEM
fuel cell forms the basic element of a transportation
fuel cell system.  Dozens of fuel cells are bundled
together to form a modular power unit, the fuel cell
stack.  To satisfy the need of a stationary power
plant or to serve as the power source of a vehicle,
multiple fuel cell stacks are connected.  Together
with ancillary components, these fuel cell stacks
form a fuel cell system.
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The operation of a fuel cell involves very
complex mass transfer processes. The performance
of a fuel cell cannot be considered in isolation of
the stack and the system. Design optimization, if
conducted, has to be carried out at a stack and
system level to optimize the performance and
minimize the costs of fuel cells as an “engine” or
“generator.” The fuel cell stacks also have to
satisfy structural integrity requirements and the
fuel cell system has to meet the space constraint of
a vehicle for the transportation application.

As the high cost of transportation fuel cells
hampers its commercialization, the task of fuel cell
system design is thus to lower the cost while
maintaining high functional performances. While
the fuel cell system cost is highly interlaced with
the system performance, the design problem
represents a real challenge to the design
optimization.  This work applies virtual prototyping
to simulate the fuel cell performances and calculate
the system cost of a new stack design, the Tri-
stream, External Manifolding, and Radiator Stack
(TERS), and its fuel cell system. The ARSM is
used to perform the design optimization.

Integrated Modeling of System Performances
and Costs

The TERS fuel cell system configuration is
illustrated in Fig. 2. Its system model is based on
the work of [20] with the following modifications:
• Improvement of the cell performance model

from pure empirical to a model with both
theoretical and empirical bases. The pure
empirical cell performance model can only
give a fixed performance reading for a given
design, while the improved model can reveal
the internal relations among design variables
and system performance.

• Development of a cost model for the TERS
fuel cell system, and

• Integration of the performance and cost models.

The central components of the TERS fuel cell
system are the TERS stacks. The function and
configuration of the stacks determine ancillary
components. The configuration of the stack is
illustrated in Fig. 2.
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Fig. 2  Schematic Layout of TERS Fuel Cell System





System Performance Model

The cell performance is evaluated based on a
few widely accepted assumptions [14][1]. These
include
• The proton exchange membrane used in TERS

is Nafion 117TM, which has a good reliability
and published property data.

• The fuel cell operates at around 85oC, where
Nafion 117TM gives the best performance.

• The reactant pressure, P, is 3 bars for both
hydrogen and air.  This value is given by
Amphlett based on experiments on Nafion
117TM.

• The membrane is fully hydrated to maintain a
normal performance.

As the cell conditions used in the model are close
to the benchmark Ballard Mark IV stack, the
thermodynamic potential of the fuel cell reaction
thus can be described using the same mechanistic
formula [1]:
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for hydrogen and oxygen along the channel,
respectively.  T is the fuel cell operating
temperature.  Amphlett also gave formulas for the
activation potential and ohmic potential losses
obtained by fitting empirical data of fuel cells
using pure oxygen. In this work, the model
parameters are determined using data from an
ambient air system.

The fitted voltage loss and the resultant
cell voltage formulas are
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where, I is the total current, and *

2OC is the oxygen
concentration, calculated by [1].
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and nitrogen among the gas stream, respectively.
For the water vapor, its saturation pressure is only
a function of the cell temperature. It can be defined
using empirical equation [5].

TT

TPsat

ln0000.9006952085.0

/6981.7362434643.70)ln(

−
+−=

  (15)

where, T is temperature in Kelvin and Psat is the
saturation pressure in atmosphere.  With the water
saturation pressure known, the mole fraction of
water along the flow channel can be obtained as
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The nitrogen mole fraction is the log mean
average mole fraction in the humidified gas at the
inlet and the outlet of the gas flow channel.
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The rest of the fuel cell system modeling,
including the heat and mass balance, follows the
work of [20]. The performance simulation involves
many recursive procedures and non-linear
functions.  The relation between design variables
and performance output is hidden in these complex
and computation intensive processes.



System Cost Model
The total cost of the TERS fuel cells

system, C, is calculated by
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where, stackN  is the number of stacks and the five
C terms represents the cost of each stack, the cost
of the hydrogen supply module, the cost of the air
supply module, the cost of the cooling module, and
the cost of the control module, respectively. The
costs of the hydrogen and air supply modules are
calculated based upon the sum of fixed costs for
each system and the cost of gas consumption. The
control and cooling unit cost is chosen as a fixed
value given in [23]. Due to the embedment of the
radiator in the stack, the cost of cooling panels is
taken into account in the stack cost. The number of
stacks is determined by the gross power output
divided by the gross power output per stack. The
stack cost is calculated by
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where, Ncell is the number of fuel cells per stack;
Ccell is the fuel cell cost; Ccolumn , Cmani , and Cpanel

are the material and manufacturing cost for the
supporting columns, manifolds, and the cooling
panels, respectively (See Fig. 2).  Cassem is the stack
assembly cost.

overheaddpltmeacell CCCC ++= 2 (21)

where, Cmea,  Cdplt, and Coverhead are the cost for
membrane electrode assembly (MEA), delivery
plates, and overheads, respectively.  The cell cost
is a function of geometric variables such as the
stack width, column width, and so on.  The cost for
delivery plates is estimated based on the screen
printing technique developed within the RSA
research group [21], considering the cost for
graphite, ink, and the manufacturing.  Material cost
for MEA and delivery plates is proportional to
their volume.

DESIGN INTEGRATION AND
OPTIMIZATION

Design Objectives and Constraints
The design optimization considers both

performances and costs of the fuel cell system.
The performance measures include the United
States Advanced Battery Consortium Dynamic
Stress Test (USABC DST) efficiency [23][29], net
power output, volumetric power density, and
gravitational power density.  The system cost
measures include the operational cost, material
cost, manufacturing cost and assembly cost.  The
fuel cell, as an engine for vehicles, has to fit within
the given space of a passenger car.  According to
[24], the space is limited to 0.5 m ×  1 m2.  In
addition, the stack structural integrity is to be
ensured.

Design Variables
The design optimization is carried out

based on a given system gross power output of 64
kW and the operating current density 600 ASF.
These conditions are chosen as in [20].  Based on
these design conditions, a group of design
variables are chosen as below:
Operational variable : the air stoichiometry,
denoted by airSt;
Geometric dimensions of the stack and number of
cells per stack : 
• Stack width (assumed square cross-section),

denoted by stackW,
• Supporting column width (assumed square

cross-section), denoted by colW,
• Number of cells per stack, denoted by nCell,
• Height of the panel (fin), denoted by finH,
• Thickness of the stack end plate, denoted by

tEnd, and
• Thickness of manifold covers, denoted by

tMani.
Based upon a sensitivity study, the thickness of the
endplate and the thickness of the manifolding
cover are ruled out. These two variables only affect
individual design objectives and behave
independently to other design variables.



Fig. 2 TERS Stack Configuration and Chosen
Design Variables

Design Optimization
Five variables: airSt, stackW, colW, nCell,

and finH were chosen as the design variables,
denoted as ,,,, 4321 xxxx and 5x , respectively.  A
reference design, or base case, was chosen from
[20] for design comparison,
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where, f i stands for function values (or life-cycle
performance readings) of a given design, including
the system USABC efficiency, net power output,
two power densities, and the system cost; f i0

represents the function values for the base case.
Equal weights are assigned to each of the design
objectives.  The resultant function value is a non-
dimensional evaluation index considering all the
design functions.

Based on the insights gained from the
design exercises, the range limits for the five
variables are set as in

Table 1, where the limits for the number of
cells per stack are dependent on the system layout,
which is discussed in the following section.

Table 1 Variable Ranges for TERS System Design

Range

AirSt 1.3 ~ 2.5

StackW 100 ~ 240 mm
ColW 10 ~ 30 mm

NCell 10 ~ 130 mm (Layout (b))
or 10 ~ 60 mm (Layout (a))

FinH 4 ~ 15 mm

System Layout Comparison
The number of cells per stack is partially

determined by the stack layout. Two possible stack
layouts are illustrated in Fig. 3, given a fixed
space. Intuitively, layout (b) can reduce the total
number of stacks and present a better solution.
This is to be verified through design optimization.

Optimization was carried out using ARSM
through 88 function evaluations for both cases,
with Layout (b) identified as the optimum.

Fig. 3 Two Possible Spatial Layouts of Stacks
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A comparison of the two layouts is given in

Table 2.  Further design optimization was carried
out on Layout (b).

Variable Sensitivity Analysis

One of the advantages of the RSM is that
one can analyze the relative importance and
interrelation between the design variables by
comparing the coefficients of each term in the
response function. For Layout (b) a sensitivity
analysis was performed in the design space:
xlv=[1.3 100 10 42  4];  xuv=[2.5 240 30 130 15]
(‘xlv’ denotes the lower bound and the ‘xuv’
denotes the upper bound.).

With the normalized function in [-1 1] for
all the variables, the response function is
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The normalized relative importance of
each term is illustrated in Fig. 4. The horizontal
coordinate indicates the sequence of terms as they
appeared in the expression. Terms with negligible
value are not shown.  All terms are normalized
with respect to the smallest coefficient.

The analysis shows air stoichiometry a less
important variable and a week correlation between
airSt and other variables. The value of air
stoichiometry is chosen to be 2 based upon
experiments. The analysis also shows a very week
correlation between x5, the fin height, and other
design variables, although x5 is a relatively
important variable. The fin height is then assigned
using its minimum value, 4 mm, to achieve better
system power density and lower material cost.

Design Optimization on Other Variables

Three other design variables, panel height
(h), number of cells per stack (nCell), and the stack

width (stackW) are optimized next following two
design scenarios. The first follows the same
balanced performance and cost scenario, while the
second follows the minimum cost design scenario
that considers cost as design objective and
functional performances as design constraints.
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Optimization results are given in Tables 3
and 4.  The optimal design following Scenario I
converged after only two search iterations (32
function evaluations), while the optimal design
following Scenario II converged after nine
iterations (144 function evaluations). Design
improvements over the reference design or base
case are illustrated in Table 5.

Within the constrained design space, the
optimum following Scenario I presents a balanced
performance and cost solution, while the optimum
following Scenario II shows a minimum cost
design at the sacrifice of system performance.
Both design optima are superior to the reference
design with improvements as much as 43 percent
increase in power density and 16 percent reduction
of system cost.

In the search of design optima, ARSM
progressively approximates implicit and complex
design objective and constraint functions through
virtual prototyping.  Through a limited number of
design function evaluations, design optima with
significant improvements are achieved within
hours.



CONCLUSION
The method of modeling and evaluating

the functional performances and costs of a
complex mechanical system using mathematical
models and virtual prototyping technique was
discussed.  A process of global design optimization
based upon these evaluations and solved using the
newly introduced ARSM scheme was presented.
The method to model the functional performances
and costs of a complex mechanical system was
illustrated through the TERS transportation fuel
cell system that involves complex electrochemical
phenomena and heat/mass transfer processes.  In
the design optimization, seven design variables,
both in continuous and discrete forms, are chosen
to optimize the fuel cell system configuration.  The
optimization led to significant design
improvements. In addition, the study also
illustrated the capability and efficiency of the
ARSM as a feasible design optimization tool for
complex engineering design problems.
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Table 2  A Comparison of the Two Different System Layouts

Layout
Efficiency

(%)

Net
Power
(kw)

Power
Density

(w/l)

Power
Density
(w/kg)

System Cost
Reduction

(%)

Length

(m)

Space

(m2)

(a) 53.345 57.249 171.427 137.323 7.172 0.499 0.27
(b) 54.163 57.453 173.328 143.051 11.527 0.998 0.14

Base 46.3 51.0 121.2 100.1 0 0.33 0.84

Table 3  Optimization Results for Balanced Performance and Cost Design (Scenario I)

Design
Iteration Design Space

Obtained
Optimum Function Index

1
xlv=[100 10 10]

xuv=[240 30 114]
[140 10 114] -0.210

2
Xlv=[100 10 10]
xuv=[198 30 114] [100 10 114] -0.235

Table 4  Optimization Results for Minimum Cost Design (Scenario II)

Design
Iteration

Design
Space

Obtained
Optimum

Percent Cost
Lowered (%)

1
xlv=[100 10 10]

xuv=[240 30 114] [156 10 114] 14.978

2
xlv=[100 10 10]

xuv=[235 30 114]
[154 10 114] 15.180

3
xlv=[111 10 10]

xuv=[209 30 114] [111 10 114] 14.406

4
xlv=[111 10 60]

xuv=[209 30 114] [147 10 114] 15.733

5
xlv=[111 10 60]

xuv=[193 22 114]
[142 10 114] 15.982

6
xlv=[111 10 60]

xuv=[181 17 114] [139 10 114] 16.071

7
xlv=[111 10 60]

xuv=[172 17 114] [138 10 114] 16.091

8
xlv=[111 10 60]

xuv=[170 15 114]
[137 10 114] 16.105

9
xlv=[130 10 105]
xuv=[146 15 114] [135 10 114] 16.120

Table 5  Design Improvements over the Reference (Base) Design

Designs
Efficiency

Increase (%)
Net Power
Increase

(%)

Volumetric
Power Density
Increase (%)

Gravi-metric
Power Density
Increase (%)

System Cost
Lowered

(%)
Scenario I 12.02 6.20 43.49 43.49 12.07
Scenario II 6.09 3.83 40.59 40.75 16.12


