I(a) Legal moves : swap contents of any two boxes Here is one of many possible solutions :

which is a solution using 4 moves.

(b) Legal moves : swap contents of any box with box 1 :

2. Legal moves: 3-cycles

$$(a) \quad a_{6}4135 \rightarrow 164325 \rightarrow 124635 \rightarrow 123465$$

which is the desired arrangement.

(b)
$$264135 \rightarrow 614235 \rightarrow 612345$$
. Which is the arrangement.

We already know from (a) that we can put it in the order 123465. So if we can swap G and 5 by a sequence of (C) 3-cycles then we are done. However, this seems impossible. (will will develop the tools to show this is impossible shortly.)

Then

$$a+b = kd+ld = (k+l)d$$

which means $d[a+b]$.

5. (a) 306,702

$$\frac{\text{Evcludean Alg.}:}{\text{gcd}(702, 306)} = \frac{702}{9} = 2.306 + 90$$

$$= \text{gcd}(306,90) = 3.90 + 36$$

$$= 3.90 + 36$$

$$= 3.90 + 36$$

$$= 3.90 + 36$$

$$= 90 - 2(36)$$

$$= 90 - 2(36)$$

$$= 90 - 2(36) = -3.90$$

$$= 7(90) - 2(306)$$

$$= 7(90) - 2(306)$$

$$= 7(90) - 2(306)$$

$$= 7(702 - 2(306)) - 2(306)$$

$$= 7(702) - 16(306) = -7(702) - 16(306)$$

:.
$$gcd(702,306) = 18$$
 and $7(702) - 16(306) = 1$

Evelidean Alg: Extended Eve. Alg: gcd (3071,888) 3071 = 3(888) + 407= gcd (888,407) 888 = 2(407) + 74= g(a)(407,74)= g(a)(74,37)= g(a)(37,0)= 37407 = 5(74) + 37→ 37= 407-5(74) = 407 - 5 (888 - 2(407)) 74 = 2.37 +0 = 11(407) - 5(888)= 11(3071 - 3(888)) - 5(888)= 11(3071) - 38(888). gcd(3071,888) = 37 and 11(3071) - 38(888) = 37.

6. Let
$$gcd(a,b)=d$$
.
Suppose $g = gcd(34, 54)$. Then $g134$ and $g154$.
Therefore,
 $gd|a$ and $gd|b$
Since $gd is a common denser of a and b, bot d is the greatest
such common denser, then
 $gd \leq d$.
It bllaves that $g=1$, hence $gcd(34, 54)=1$.
7. If there were integers $2xy$ such that
 $(034) \times 444y = 1$
then since the LHS is even. But 1 is odd, thus we have a
contradiction. Therefore, no such integers ∞ and g exist.
8. No. For example, $G|^{23}$ but Gf^{2} and Gf^{3} .
9. (a) Let $gcd(a,b)=d$ and suppose cla,b .
Then by the East. Evolution Aff there exists integers 440 such that
 $Gu + bu = d$.
Since cla,b then $C|$ author $\Rightarrow C|d$.
(b) Let $d|ab$ and $gcd(d,a)=1$.
Then by the East. Evolution Afg . there exists integers $4,0$ such that
 $du + av = 1$.
Multiply by b we get 1
since d divides each term on the LHS (i.e. dl bold & d $|abv$)
then d divides each term on the LHS (i.e. dl bold & d $|abv$)
then d divides each term on the LHS (i.e. dl bold & d $|abv$)
then d divides d each d divides the RHS, so
 $d|b$.
10. $g(42) = g(2^{2} \cdot 5 \cdot 7) = 2^{2}(2 - 1)(3 - 1)(5 - 1)(7 - 1) = 2(2)(4)(6)$
 $= 96$
 $g(420) = g(2^{3} \cdot 3 \cdot 5^{3} \cdot 7) = 2^{2}(2 - 1)(3 - 1)(5 - 1)(7 - 1) = 2^{2} 2 \cdot 5 \cdot 4 \cdot 6$
 $= 960$
11. $1848 = 1914 \mod m$ $\iff m$ $\iff m$ $1944 - 1848 = 66$
 $\iff m = 1, 2, 3, 6, 11, 22, 33, 66$.$

12. We want to find 3²⁰²⁷ mod 10 and 3²⁰²⁷ mod 100.

mod 10: First notice that

Now,

$$3^2 \equiv 9 \mod 10$$

 $3^3 \equiv 7 \mod 10$
 $3^4 \equiv 1 \mod 10$ \longrightarrow this is the useful congruence.
Now,
 $3^{2027} = 3^{4.506+3}$
 $= (3^4)^{506} 3^3$
 $\equiv 1^{506} \cdot 3^3 \mod 10$
 $\equiv 7 \mod 10$

Therefore, the ones digit of 3²⁰²⁷ is 7.

mod 100: First notice that $3^{20} \equiv 1 \mod 100$ (this is the smallest power with this property). Now, $3^{2027} \equiv 3^{20(101) + 7}$ $\equiv (3^{20})^{101} 3^{7}$ $\equiv 1^{101} 3^{7} \mod 100$ $\equiv 2187 \mod 100$ $\equiv 87 \mod 100$

13. We wish to determine $1+2+2^2+2^3+\cdots+2^{2020}+2^{2021} \mod 3$.

First observe
$$2^{2} \equiv 1 \mod 3$$
, therefore,
 $2^{m} \equiv \begin{cases} 1 \mod 3 & \text{if } m \text{ even} \\ 2 \mod 3 & \text{if } m \text{ odd} \end{cases}$

Therefore,

$$1+2+2^{2}+2^{3}+\dots+2^{2020}+2^{2021} \equiv 1+2+1+2+\dots+1+2 \mod 3$$

 $= (1011)1+(1011)2 \mod 3$
 $\equiv 3(1011) \mod 3$
 $\equiv 0 \mod 3$
 $= 1+2+2^{2}+\dots+2^{2021}$ is dursible by 3.