Math 304 Assignment 1 - Solutions
Ia) Legal moves: swap contents of any two boxes Here is one of many possible solutions:

$$
\begin{aligned}
& \rightarrow \quad \begin{array}{|l|l|l|l|l|l}
\hline 1 & 1 & 2 & 3 & 6 & 4 \\
\hline
\end{array} \\
& \rightarrow \quad \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & x^{2} & { }^{3} \\
\hline
\end{array}
\end{aligned}
$$

which is a solution using 4 moves.
(b) Legal moves: swap contents of any bore with bore 1:

$$
\begin{aligned}
& \rightarrow \begin{array}{|l|l|l|l|l|l|}
\hline & 4 & 1 & 3 & 2 & 5 \\
\hline
\end{array} \\
& \rightarrow \begin{array}{|l|l|l|l|l|l|}
\hline 2 & 2 & 3 & 4^{4} \\
\hline & & & \\
\hline
\end{array} \\
& \rightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 3 & 4^{4} & 4 & 5 \\
\hline
\end{array}
\end{aligned}
$$

(c) Legal moves: 3-cycles

$$
\begin{aligned}
& \rightarrow \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 3 & 4 & 4 \\
\hline
\end{array}
\end{aligned}
$$

2. Legal moves: 3-cycles
(a) $264 \underline{1} \underline{3} 5 \rightarrow 1 \underline{64} \underline{3} \underline{2} \rightarrow 12 \underline{4} \underline{\underline{3}} 5 \rightarrow 123465$
which is the desired arrangement.
(b) $264135 \longrightarrow 61 \underline{4} \leq 35 \longrightarrow 612345$. Which is the arrangement.
(c) We already know from (a) that we can put it in the order 123465 . So if we can swap 6 and 5 by a sequence of 3-cycles then we are done. However, this seems impossible. (will will develop the tool to show this is impossible shortly.)
3. (a) $\{0,2\}$
(b) $\{0,3,6,9,12,15,18,21,24\}$
(c) $\{7,13,19\}$
4. Since $d \mid a, b$ then there exists integers k, l such that $a=k d \quad$ and $b=l d$.
Then

$$
a+b=k d+l d=(k+l) d
$$

which means $d \mid a+b$.
5. (a) 306,702

Euclidean Alg.:

$$
\begin{aligned}
& \operatorname{gcd}(702,306) \\
& =\operatorname{gcd}(306,90) \\
& =\operatorname{gcd}(90,36) \\
& =\operatorname{gcd}(36,18) \\
& =\operatorname{gcd}(18,0) \\
& =18
\end{aligned}
$$

$\therefore \operatorname{gcd}(702,306)=18$ and $7(702)-16(306)=18$.
(b) 888,3071

Euclidean Alg:
$\operatorname{gcd}(3071,888)$
$=\operatorname{gcd}(888,407)$
$=\operatorname{gcd}(407,74)$
$=\operatorname{gcd}(74,37)$
$=\operatorname{gcd}(37,0)$ $=37$

Extended Euclidean Alg:

$$
\begin{aligned}
702 & =2 \cdot 306+90 \\
306 & =3 \cdot 90+36 \\
90 & =2.36+18 \cdots 18 \\
36 & =2 \cdot 18+0
\end{aligned}
$$

Extended Eve. Alg:

$$
\begin{aligned}
3071 & =3(888)+407 \\
888 & =2(407)+74 \\
407 & =5(74)+37 \longrightarrow 37 \\
74 & =2.37+0 \\
& =407-5(74) \\
& =11(407)-5(888) \\
& =11(3071-3(880))-5(888) \\
& =11(3071)-38(888)
\end{aligned}
$$

$$
\therefore \operatorname{gcd}(3071,888)=37 \text { and } 11(3071)-38(888)=37 .
$$

6. Let $\operatorname{gcd}(a, b)=d$.

Suppose $g=\operatorname{gcd}(a / d, b / d)$. Then $g \mid a / d$ and $g \mid b / d$.
Therefore,
gd $\mid a$ and $g d \mid b$
Since gd is a common divisor of a and b, but d is the greatest such common divisor, then gd $\leqslant d$.
It follows that $g=1$, hence $\operatorname{gcd}(a / d, b / d)=1$.
7. If there were integers x, y such that

$$
1034 x+444 y=1
$$

then since the LHS is even (divisible by 2) it most follow that the RHS is even. But 1 is odd, thess we have a contradiction. Therefore, no such integers x and y exist.
8. No. For example, $6 \mid 2.3$ but $6 \nless 2$ and $6 \nmid 3$.
9. (a) Let $\operatorname{gcd}(a, b)=d$ and suppose $c \mid a, b$.

Then by the Ext. Euclidean Alg there exists integers usu sock that

$$
a u+b v=d
$$

Since $c \mid a, b$ then $c|a u+b v \Rightarrow c| d$.
(b) Let $d \mid a b$ and $\operatorname{gcd}(d, a)=1$.

Then by the Ext. Euclidean Alg. There exists integers u, v such that $d u+a v=1$.
Multiplyi by b we get:

$$
b d u+a b v=b
$$

Since d divides each term on the LHS (i.e. $d \mid b o l u$ \& $d \mid a b v$) then d divides the LHS. Hence d divides the RHS, so a / b.
10. $\phi(42)=\phi(2.3 .7)=(2-1)(3-1)(7-1)=1.2 .6=12$

$$
\begin{aligned}
\varphi(420) & =\varphi\left(2^{2} \cdot 3 \cdot 5 \cdot 7\right)=2^{\prime}(2-1)(3-1)(5-1)(7-1)=2(2)(4)(6) \\
& =96 \\
\varphi(4200) & =\varphi\left(2^{3} \cdot 3 \cdot 5^{2} \cdot 7\right)=2^{2}(2-1)(3-1) 5(5-1)(7-1)=2^{2} 2 \cdot 5 \cdot 4 \cdot 6 \\
& =960
\end{aligned}
$$

11. $\quad 1848 \equiv 1914 \bmod m \Leftrightarrow m \mid 1914-1848=66$

$$
\Leftrightarrow \quad m=1,2,3,6,11,22,33,66 .
$$

12. We want to find $3^{2027} \bmod 10$ and $3^{2027} \bmod 100$.
$\bmod 10:$ First note that

$$
\begin{aligned}
& 3^{2} \equiv 9 \bmod 10 \\
& 3^{3} \equiv 7 \bmod 10 \\
& 3^{4} \equiv 1 \bmod 10
\end{aligned}
$$

\longrightarrow this is the useful congruence.
Now,

$$
\begin{aligned}
3^{2027} & =3^{4 \cdot 506+3} \\
& =\left(3^{4}\right)^{506} 3^{3} \\
& \equiv 1^{506} \cdot 3^{3} \bmod 10 \\
& \equiv 7 \bmod 10
\end{aligned}
$$

Therefore, the ones digit of 3^{2027} is 7 .
$\bmod 100:$ First notice that $3^{20} \equiv 1 \bmod 100 \quad$ (this is the smallest power with this property).
Now,

$$
\begin{aligned}
3^{2027} & =3^{20(101)+7} \\
& =\left(3^{20}\right)^{101} 3^{7} \\
& \equiv 1^{101} 3^{7} \bmod 100 \\
& \equiv 2187 \bmod 100 \\
& \equiv 87 \bmod 100
\end{aligned}
$$

Thereture, the last two digits are 87 .
13. We wish to determine $1+2+2^{2}+2^{3}+\cdots+2^{2020}+2^{2021} \bmod 3$.

First observe $2^{2} \equiv 1 \bmod 3$, therefore,

$$
2^{m} \equiv \begin{cases}1 \bmod 3 & \text { if } m \text { even } \\ 2 \bmod 3 & \text { if } m \text { odd }\end{cases}
$$

Therefore,

$$
\begin{aligned}
1+2+2^{2}+2^{3}+\cdots+2^{2020}+2^{2021} & \equiv 1+2+1+2+\cdots+1+2 \text { mod } 3 \\
& \equiv(\text { there are 1011 1's and wo11 2's listed here } \\
& \equiv(1011) 1+(1011) 2 \bmod 3 \\
& \equiv 3(1011) \bmod 3 \\
& \equiv 0 \bmod 3
\end{aligned}
$$

$\therefore \quad 1+2+2^{2}+\cdots+2^{2021}$ is divisible by 3 .

