Math 304 Assignment 2 - Solutions (b) $\beta^{-1} \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 6 & 1 & 4 & 8 & 3 & 7 \end{array} \right)$ $(a) \ \alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ $\beta \beta^{-1} = \begin{pmatrix} 12345678\\ 41752386 \end{pmatrix} \begin{pmatrix} 12345678\\ 25614837 \end{pmatrix}$ $dx^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \\ = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \mathcal{E}$ $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} = \varepsilon$ $a, \quad \alpha = \begin{pmatrix} 12345678 \\ 62371854 \end{pmatrix}, \quad \beta = \begin{pmatrix} 12345678 \\ 54671382 \end{pmatrix}$ (a) $\alpha\beta = (12345678) (12345678) = (12345678$ (b) $\alpha \delta \beta = \begin{pmatrix} 12345678 \\ 62371854 \end{pmatrix} \begin{pmatrix} 12345678 \\ 17654328 \end{pmatrix} \begin{pmatrix} 12345678 \\ 54671382 \end{pmatrix}$ $= \begin{pmatrix} 12345678\\ 68345271 \end{pmatrix}$ (c) $\alpha^{-1} \delta \alpha = \begin{pmatrix} 12345678 \\ 52387146 \end{pmatrix} \begin{pmatrix} 12345678 \\ 17654328 \end{pmatrix} \begin{pmatrix} 12345678 \\ 62371854 \end{pmatrix}$ $= \begin{pmatrix} 12345678\\75842613 \end{pmatrix}$

3. If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$, then it has order G since it is a 2-cycle and a 3-cycle :

(a) Therefore, $\alpha^{42} = (\alpha^3)^{14} = \epsilon^{14} = \epsilon$.

(b) Since $\alpha^{2021} = \alpha^{2019} \alpha^2 = (\alpha^3)^{673} \alpha^2 = \varepsilon \cdot \alpha^2 = \alpha^2 = (12345)^{12345}$ then $\alpha^{2021} \neq \varepsilon$.

4. Let
$$m = \operatorname{ord}(\alpha)$$
 and $n = \operatorname{ord}(\alpha^{-1})$.
Then $\alpha^m = E \implies \alpha^m \cdot \alpha^{-m} = \alpha^{-m} \implies E = \alpha^{-m} \implies \operatorname{ord}(\alpha^{-1}) \le m$.
 $\implies n \le m$.
On the other hand,
 $\alpha^{-n} = E \implies \alpha^{-n} \alpha^n = \alpha^n \implies E = \alpha^n \implies \operatorname{ord}(\alpha) \le n$
 $\implies m \le n$.

Therefore m=n so $ord(\alpha) = ord(\alpha^{-1})$.

5. (a) For n=0 the result is trivial (both sides are E).
For n>0,

$$(\alpha^{-1}\beta\alpha)^n = (\alpha^{-1}\beta\alpha)(\alpha^{-1}\beta\alpha) \cdots (\alpha^{-1}\beta\alpha)$$

 $= \alpha^{-1}\beta(\alpha\alpha^{-1})\beta(\alpha\alpha^{-1})\beta\cdots (\alpha\alpha^{-1})\beta\alpha$, by associability
 $= \alpha^{-1}\beta^n\alpha$.
Therefore, result is true for positive integers n.
For n<0,
 $(\alpha^{-1}\beta\alpha)^n = ((\alpha^{-1}\beta\alpha)^{-1})^{-n} = (\alpha^{-1}\beta^{-1}\alpha)^{-n} = \alpha^{-1}(\beta^{-1})^{-n}\alpha$, since -n>0
 $= \alpha^{-1}\beta^n\alpha$.
Therefore, result is true for all integers n.
(b) Let m = ord(p) and k = ord(\alpha^{-1}\beta\alpha). Then
 $(\alpha^{-1}\beta\alpha)^m = \alpha^{-1}\beta^m\alpha$, by part (a)
 $= \alpha^{-1}\alpha$
 $= \epsilon^{-1}\alpha$
Therefore, k|m by Theorem 3.8.2.
On the other hand,
 $\epsilon = (\alpha^{-1}\beta\alpha)^k$ since k= ord($\alpha^{-1}\beta\alpha$)
 $= \alpha^{-1}\beta^{-1}\alpha$ by part (a).
 $= \alpha^{-1}\beta^{-1}\alpha$ by part (

6.
$$\alpha\beta\gamma\beta^{-1}\alpha = \alpha\beta\sigma\beta^{-1}\alpha \iff \gamma\beta\alpha = \sigma\beta\alpha$$
 by left cancellabai of $\alpha\beta$
 $\iff \gamma = \sigma$ by right cancellabai of $\beta^{-1}\alpha$.
7. $\alpha = (374)$, $\beta = (5106)(2947)(38)$

(a)
$$\alpha \beta = (374)(5106)(2947)(38)$$

= (29483)(5106)

(b)
$$\alpha' = (347)$$

(d)
$$ord(\beta) = lcm(3,4,2) = 12$$

8. Let's start with an example, though this isn't necessary in providing a general proof it may provide insight into how to find a general argument.

Consider \propto such that $\alpha(1) = 2$. (note: I haven't assumed anything else about \propto , and we'll see it doesn't matter.) Then clearly $\alpha(3) \neq 2$ since \propto is one-to-one. This will be important to remember for later in this argument. We'll create a new kinchon β in which

In the diagram above we want $(\alpha\beta)(1)$ to end up with a different value than $(\beta\alpha)(1)$. So we'll define β by

$$\beta(1) = 1$$
, $\beta(2) = 3$ (and so $\beta(3) = 2$)

This means $\beta = (23)$. We see that $(\alpha \beta)(1) = 3$ and $(\beta \alpha)(1) = 2$. Therefore, $\alpha \beta \neq \beta \alpha$.

General argument: Here we don't make reference to particular numbers since we don't know what numbers & affects. We'll use variables a,b,c in place of 1,2,3.

9. By Theorem 4.4.1 we have order is

lcm(6, 12, 26) = 4.3.13 = 156

10. Suppose $\alpha \in S_5$ has order 7. Then the disjoint cycle form of α must contain at least one cycle of length 7 (since the order is the lam of cycle lengths, and 7 is prime). But it is impossible to have a 7-cycle on only 5 objects. Therefore, no such α exists.

11. For
$$\alpha = (17459)(38)(1062)$$
 we have

$$\alpha^{m} = (17459)^{m} (38)^{m} (1062)^{n}.$$

If this is a 3-cycle then

$$(17459)^{m} = E, \quad (38)^{m} = E, \quad \& \quad (1062)^{m} \text{ is a 3-cycle}$$

Therefore, m most be divisible by 10 bot not divisible by 3.
(so m could be 10 or 20, but not 30.)

S

12. (a) Consider
$$\alpha = (1 \ 2 \ 3)$$
, $\beta = (1 \ 4 \ 5)$. Then $\operatorname{ord}(\alpha) = \operatorname{ord}(\beta) = 3$
but $\alpha \beta = (1 \ 2 \ 3)(1 \ 4 \ 5) = (1 \ 2 \ 3 \ 4 \ 5)$
has $\operatorname{order} 5$.
(b) Consider $\alpha = (1 \ 2 \ 3)(6 \ 7 \ 8)$, $\beta = (1 \ 4 \ 5)(6 \ 7 \ 9)$. Then $\operatorname{ord}(\beta) = \operatorname{ord}(\beta) = 3$
but $\alpha \beta = (1 \ 2 \ 3 \ 4 \ 5)(6 \ 9)(7 \ 8)$
has $\operatorname{order} 10$.

13. If $\beta^3 = \varepsilon$ then β^{-1} also satisfies $(\beta^{-1})^3 = \varepsilon$. That is , (non-identity) solubous to $\alpha^3 = \varepsilon$
come in pairs $\{\beta, \beta^{-1}\}$. If $\beta = \beta^{-1}$ then $\beta^2 = \varepsilon$, and $\beta^3 = \varepsilon$, so $\beta = \varepsilon$.
Therefore, in only one case do we not get a pair of distinct
solubois. We can label the solutions as follows
 ε , $\alpha_{1}, \alpha_{1}^{-1}$, $\alpha_{2}, \alpha_{2}^{-1}$, ...
single pair pair
Therefore, we have an odd number of solubois.