Math 304 Assignment 2 - Solutions

1. (a) $\alpha^{-1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$

$$
\alpha \alpha^{-1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 \\
1 & 1 & 3 & 4
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

$$
=\left(\begin{array}{llll}
1 & 2 & 4 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)=\varepsilon
$$

2.

$$
\begin{aligned}
& \alpha=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 2 & 3 & 7 & 1 & 8 & 5 & 4
\end{array}\right), \beta=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 4 & 6 & 7 & 1 & 3 & 8 & 2
\end{array}\right) \\
& \gamma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 7 & 6 & 5 & 4 & 3 & 2 & 8
\end{array}\right)
\end{aligned}
$$

(a) $\alpha \beta=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 2 & 3 & 7 & 1 & 8 & 5\end{array}\right)\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right) 8 .\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 6 & 7 & 1 & 3 & 8 \\ 3 & 4 & 6 & 8 & 5 & 2 & 1\end{array}\right)$
(b)

$$
\begin{aligned}
\alpha \gamma_{\beta} & =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 2 & 3 & 7 & 1 & 8 & 5 & 4
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 \\
1 & 7 & 6 & 5 & 4 & 3 & 2
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 4 & 6 & 7 & 1 & 3 & 8 \\
\hline
\end{array}\right) \\
& =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 8 & 3 & 4 & 5 & 2 & 7 & 1
\end{array}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
\alpha^{-1} \gamma \alpha & =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 2 & 3 & 8 & 7 & 1 & 4 & 6
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 \\
7 & 6 & 5 & 4 & 3 & 2 & 8
\end{array}\right)\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 2 & 3 & 7 & 1 & 8 & 5 & 4
\end{array}\right) \\
& =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
7 & 5 & 8 & 4 & 2 & 6 & 1 & 3
\end{array}\right)
\end{aligned}
$$

3. If $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3\end{array}\right)$, then it has order 6 since it is a 2 -cycle and a 3 -cycle:

(a) Therefore, $\alpha^{42}=\left(\alpha^{3}\right)^{14}=\varepsilon^{14}=\varepsilon$.
(b) Since $\alpha^{2021}=\alpha^{2019} \alpha^{2}=\left(\alpha^{3}\right)^{673} \alpha^{2}=\varepsilon \cdot \alpha^{2}=\alpha^{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 5 & 5\end{array}\right)$ then

$$
\alpha^{2021} \neq \varepsilon
$$

$$
\begin{aligned}
& \text { (b) } \beta^{-1}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 5 & 6 & 1 & 4 & 8 & 3 & 7
\end{array}\right) \\
& \beta \beta^{-1}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 1 & 7 & 5 & 2 & 3 & 8 \\
1
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 5 & 6 & 1 & 4 & 8 & 3 \\
1
\end{array}\right) \\
& =\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right)=\varepsilon
\end{aligned}
$$

4. Let $m=\operatorname{ord}(\alpha)$ and $n=\operatorname{ord}\left(\alpha^{-1}\right)$.

Then $\quad \alpha^{m}=\varepsilon \Rightarrow \alpha^{m} \cdot \alpha^{-m}=\alpha^{-m} \Rightarrow \varepsilon=\alpha^{-m} \Rightarrow \operatorname{ord}\left(\alpha^{-1}\right) \leqslant m$.

$$
\Rightarrow \quad n \leq m .
$$

On the other hand,

$$
\begin{aligned}
\alpha^{-n}=\varepsilon & \Rightarrow \alpha^{-n} \alpha^{n}=\alpha^{n} \Rightarrow \varepsilon=\alpha^{n} \Rightarrow \operatorname{ord}(\alpha) \leq n \\
& \Rightarrow m \leq n .
\end{aligned}
$$

Therefore $m=n$ so $\operatorname{ord}(\alpha)=\operatorname{ord}\left(\alpha^{-1}\right)$.
5. (a) For $n=0$ the result is trinal (bot hsides are ε).

For $n>0$,

$$
\begin{aligned}
\left(\alpha^{-1} \beta \alpha\right)^{n} & =\left(\alpha^{-1} \beta \alpha\right)\left(\alpha^{-1} \beta \alpha\right) \cdots\left(\alpha^{-1} \beta \alpha\right) \\
& =\alpha^{-1} \beta(\underbrace{\alpha \alpha^{-1}}_{\varepsilon}) \beta(\underbrace{\alpha \alpha^{-1}}_{\varepsilon}) \beta \cdots(\underbrace{\alpha \alpha^{-1}}_{\varepsilon}) \beta \alpha \text {, by associatuict } \\
& =\alpha^{-1} \beta^{n} \alpha^{1} .
\end{aligned}
$$

Therefore, result is true for positive integer n.
For $n<0$,

$$
\left(\alpha^{-1} \beta \alpha\right)^{n}=\left(\left(\alpha^{-1} \beta \alpha\right)^{-1}\right)^{-n}=\left(\alpha^{-1} \beta^{-1} \alpha\right)^{-n}=\alpha^{-1}\left(\beta^{-1}\right)^{-n} \alpha \text {, since }-n>0
$$

$$
=\alpha^{-1} \beta^{n} \alpha
$$

Therefore, result is tire for all integers n.
(b) Let $m=\operatorname{ord}(\beta)$ and $k=\operatorname{ord}\left(\alpha^{-1} \beta \alpha\right)$. Then

$$
\begin{aligned}
\left(\alpha^{-1} \beta \alpha\right)^{m} & =\alpha^{-1} \beta^{m} \alpha, \text { by part }(a) \\
& =\alpha^{-1} \varepsilon \alpha, \text { since } m=\operatorname{ord}(\beta) \\
& =\alpha^{-1} \alpha \\
& =\varepsilon
\end{aligned}
$$

Therefore, k / m by Theorem 3.8..2.
On the other hand,

$$
\begin{aligned}
\varepsilon & =\left(\alpha^{-1} \beta \alpha\right)^{k} & & \text { since } k=\operatorname{ord}\left(\alpha^{-1} \beta \alpha\right) \\
& =\alpha^{-1} \beta^{k} \alpha & & \text { by part (a) } \\
& =\beta^{k} & & \text { by cancellation }
\end{aligned}
$$

Therefore, m / k by Theorem 3.8 .2 .
Since k / m and m / k then $m=k$.
6. $\quad \alpha \beta \gamma \beta^{-1} \alpha=\alpha \beta \sigma \beta^{-1} \alpha \Leftrightarrow \gamma \beta^{-1} \alpha=\sigma \beta^{-1} \alpha$ by leftcancellahai of $\alpha \beta$ $\Leftrightarrow \gamma=\sigma$ by right cancellahai of $\beta^{-1} \alpha$.
7. $\alpha=(374), \beta=(5106)(2947)(38)$
(a)

$$
\begin{aligned}
\alpha \beta & =(374)(5106)(2947)(38) \\
& =(29483)(5106)
\end{aligned}
$$

(b) $\alpha^{-1}=(347)$
(c) $\operatorname{ard}(\alpha)=3$
(d) $\operatorname{ord}(\beta)=\operatorname{lcm}(3,4,2)=12$
8. Let's start with an example, though this isn't necessary in prounding a general proof it may provide' insight into how to find a general argument.
Consider α such that $\alpha(1)=2$. (note: I haven't assumed anything else about α, and well see it doesn't matter.) Then clearly $\alpha(3) \neq 2$ since α is one-to-one. This will be important to remember for later in this argument. We'll create a new funchoin β in which

$$
(\beta \alpha)(1) \neq(\alpha \beta)(1)
$$

from which it will follow that $\alpha \beta \neq \beta \alpha$.

In the diagram above we want $(\alpha \beta)(1)$ to end up with a different value than $(\beta \alpha)(1)$. So we'll define β by

$$
\beta(1)=1, \beta(2)=3 \quad \text { (and so } \beta(3)=2)
$$

This means $\beta=(23)$. We see that $(\alpha \beta)(1)=3$ and $(\beta \alpha)(1)=2$.
Therefore,

$$
\alpha \beta \neq \beta \alpha
$$

General argument: Here we don't make reference to particular numbers since we don't know what numbers α affects. We'll use variables a, b, c in place of $1,2,3$.

Proof: Let $\alpha \in S_{n}$ where $\alpha \neq \varepsilon$. Then there are two numbers $a, b \in[n]$ such that $\alpha(a)=b$. Since $n \geqslant 3$ there is another number $c \in[n]$ different from a and b.
Define β to be the 2 -cycle

$$
\beta=(b c)
$$

Then

$$
\begin{aligned}
& (\alpha \beta)(a)=\beta(\alpha(a))=\beta(b)=c \\
& (\beta \alpha)(a)=\alpha(\beta(a))=\alpha(a)=b
\end{aligned}
$$

Therefore $\quad \alpha \beta \neq \beta \alpha$.

9. By Theorem 4.4.1 we have order is

$$
\operatorname{lcm}(6,12,26)=4.3 \cdot 13=156
$$

10. Suppose $\alpha \in S_{5}$ has order 7. Then the disjoint cycle form of α must contain at least one cycle of length 7 (since the order is the lcm of cycle lengths, and 7 is prime). But it is impossible to have a 7 -cycle on only 5 objects.. Therefore, no such α exists.
11. For $\alpha=(17459)(38)(1062)$ we have

$$
\alpha^{m}=(17459)^{m}(38)^{m}(1062)^{m} .
$$

If this is a 3 -cycle then

$$
(17459)^{m}=\varepsilon, \quad(38)^{m}=\varepsilon, \&(1062)^{m} \text { is a } 3 \text {-cycle }
$$

Therefore, m must be divisible by 10 but not divisible by 3 . (So m could be 10 or 20 , but not 30 .)
12. (a) Consider $\alpha=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), \quad \beta=\left(\begin{array}{lll}1 & 4 & 5\end{array}\right)$. Then $\operatorname{ard}(\alpha)=\operatorname{ord}(\beta)=3$ but

$$
\alpha \beta=(123)(145)=(12345)
$$

has order 5 .
(b) Consider $\alpha=(123)(678), \beta=(145)(679)$. Then $\operatorname{ard}(\alpha)=\operatorname{ord}(\beta)=3$ but

$$
\alpha \beta=(12345)(69)(78)
$$

has order 10 .
13. If $\beta^{3}=\varepsilon$ then β^{-1} also satishes $\left(\beta^{-1}\right)^{3}=\varepsilon$. That is, (non-identity) solutions to come in pairs $\left\{\beta, \beta^{-1}\right\}$. If $\beta=\beta^{-1}$ then $\beta^{2}=\varepsilon$, and $\beta^{3}=\varepsilon$, so $\beta=\varepsilon$. Therefore, in only one case do we not get a pair of distinct solutions. We can label the solutions as follows

$$
\underbrace{\varepsilon}_{\text {singh }}, \underbrace{\alpha_{1}, \alpha_{1}^{-1}}_{\text {pair }}, \underbrace{\alpha_{2}, \alpha_{2}^{-1}}_{\text {pair }}, \cdots
$$

Therefore, we have an odd number of solutions.

