

Determine each of the following:

- (a) $\alpha\beta$ (b) α^{-1} (c) $\operatorname{ord}(\alpha)$ (d) $\operatorname{ord}(\beta)$
- 8. There is always something that doesn't commute. Show that if $n \ge 3$, then for every element α in S_n , if α is not the identity permutation ε , then there is some other permutation β in S_n with which α does not commute: $\alpha \beta \neq \beta \alpha$.
- 9. What is the order of the product of three disjoint cycles of lengths 6, 12 and 26?

$rac{{\sf Week}}{10.}$	Date Show	Sections Sprcossoan	Part/ References as no element of	Topic/Sections order 7.	Notes/Speaker
11. 2 12. 4	$Let^{Sept 7}_{Let \alpha}$ (a) Gir (b) Gir (b) Gir	$ \begin{array}{c} \overset{1.1,12,13}{=} (1,7,4,5) \\ \overset{1.4,1.5,1.6}{=} \\ \text{ve}_{1,112,112,113} \\ \text{ve}_{2,11,12,114} \\ \text{ve}_{2,115,11,6} \\ \text{ve}_{2,115,11,6} \\ \end{array} $	Structures Structures FS: Part A.1, A.2 malee of permuta Handout#1 eself study/	Symbolic methods f α'' is a 3-cycle, Unlabelled structures tions α and β su Labelled structures I Labelled structures I	, what can you say about m ? ch that $\operatorname{ord}(\alpha) = 3$, $\operatorname{ord}(\beta) = 3$, and $\operatorname{ord}(\alpha\beta) = 5$. ch that $\operatorname{ord}(\alpha) = 3$, $\operatorname{ord}(\beta) = 3$, and $\operatorname{ord}(\alpha\beta) = 10$.
13. 5	Show Oct 5	that the n	umber of lelemen	nts _{nbln} in _{risn} such Parameters	that $\alpha^3 = \varepsilon$ is odd. In other words, show the set
6	12	IV.1, IV.2	FS A.III (self-study)	Multivariable GFs $\{lpha$ \in	$\equiv S_n \mid \alpha^3 = \varepsilon \}$
7	hås od	has odd cardinal to studie Methods		Complex Analysis	
8	26	IV 5 V 1	FS: Part B: IV, V, VI Appendix B4 Stanley 99: Ch. 6 Handout #1 (self-study) Random Structures and Limit Laws	Singularity Analysis	
9	Nov 2	14.5 4.1		Asymptotic methods	Asst #2 Due
10	9	VI.1			Sophie
	12	A.3/ C		Introduction to Prob.	Mariolys
11	18	IX.1		Limit Laws and Comb	Marni
	20	IX.2		Discrete Limit Laws	Sophie
12	23	IX.3	FS: Part C (rotating presentations)	Combinatorial instances of discrete	Mariolys
	25	IX.4	procentations,	Continuous Limit Laws	Marni
13	30	IX.5		Quasi-Powers and Gaussian limit laws	Sophie
14	Dec 10		Presentations		Asst #3 Due