Math 304 Assignment 3 - Solutions
1.(a) $\alpha=\left(\begin{array}{ll}1 & 5\end{array}\right)\left(\begin{array}{llll}2 & 3 & 7 & 8\end{array}\right)$
(b) $\tau_{1}=(23), \tau_{2}=(15), \quad \tau_{3}=(78)$
(c) $\tau_{1} \tau_{2} \tau_{3}=(23)(15)(78)$
(d)

$$
\begin{aligned}
& \beta=(3684) \\
& \alpha \tau_{1} \tau_{2} \tau_{3}=(15)(236784)(23)(15)(78) \\
&=(3684)
\end{aligned}
$$

It follows that $\alpha \tau_{1} \tau_{2} \tau_{3}=\beta$.
2.

From the puzzle moves on the left

$$
\varepsilon \sigma_{1} \sigma_{2}=(12)(34)
$$

Therefore,

$$
\underbrace{(123)(143)}_{\text {product of } 3 \text {-cycles }}=(12)(34)
$$

Alternate solution: Here we use the factorization fact $(a b c)=(a b)(a c)$.

$$
\begin{aligned}
(12)(34) & =(\underbrace{(12)(13)}(\underbrace{13)(34)}, \text { since }(13)(13)=\varepsilon \\
& =(123)(314), \text { since }(13)(34)=(31)(34)=(314) \\
& =(123)(143), \text { sinci }(314)=(143) .
\end{aligned}
$$

3. $\left(\begin{array}{lllllll}1 & 5 & 3 & 12 & 15 & 6 & 2\end{array}\right)\left(\begin{array}{lllllll}7 & 11 & 14 & 8 & 9 & 10 & 16\end{array}\right)$
4.

15	2	3	3
4	2		
5	6	12	6

5.

(a) Starting position:

$$
\beta=\left(\begin{array}{ll}
1 & 11
\end{array}\right)\left(\begin{array}{lllllllllllll}
2 & 18 & 5 & 13 & 17 & 3 & 6 & 15 & 12 & 4 & 7 & 9 & 16 \\
14 & 8
\end{array}\right)
$$

(b) $\alpha=\left(\begin{array}{lllllllllllllll}1 & 11 & 7 & 18 & 2 & 8 & 14 & 16 & 9 & 3 & 17 & 13 & 4 & 12 & 15 \\ 6\end{array}\right)$
(C)

$$
\begin{aligned}
\beta \alpha & =\left(\begin{array}{lllllllllllllll}
1 & 11
\end{array}\right)\left(\begin{array}{llllllllll}
2 & 18 & 5 & 13 & 17 & 3 & 6 & 15 & 12 & 4 \\
7 & 9 & 16 & 14 & 8
\end{array}\right) \\
& \left(\begin{array}{llllllllll}
1 & 11 & 7 & 5 & 18 & 2 & 8 & 14 & 16 & 9 \\
3 & 17 & 13 & 4 & 12 & 15 & 6
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 7 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 5
\end{array}\right)
\end{aligned}
$$

This is the configuration of puzzle on the right.
6. (a) $(2479)(358)=(24)(27)(29)(35)(38)$ product of 5 2-cycles \Rightarrow odd
(b) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)\left(\begin{array}{llll}67 & 8 & 9 & 10\end{array}\right)=(12)(13)(14)(15)(67)(68)(69)(610)$ product of 8 2-cycles \Rightarrow even
7.

| ${ }^{1} 1$ | 2 | 2 | 3 |
| :---: | :---: | :---: | :---: | $\mathbf{4}^{4} 4$.

(a)

(b)
permutation: $\left(\begin{array}{lll}9 & 13 & 14\end{array}\right)\left(\begin{array}{lll}11 & 15 & 12\end{array}\right)$

$$
=(913)(914)(1115)(1112)
$$

product of 4 2-cycles
\therefore permutation is even
permutation: $\left.\left(\begin{array}{llllll}1 & 6 & 15 & 10 & 8 & 12 \\ 13\end{array}\right)\left(\begin{array}{lll}2 & 5 & 3\end{array}\right) 169\right)(1114)$
Can be expressed as 12 -cycles.
\therefore permutation is even.
8. Let $\alpha, \beta \in S_{n}$. Write each as a product of 2 -cycles:

$$
\alpha=\tau_{1} \tau_{2} \cdots \tau_{k} \quad, \quad \beta=\sigma_{1} \sigma_{2} \cdots \sigma_{l}
$$

the the product $\alpha \beta$ can be written in terms of $k+l$ 2-cycles!

$$
\alpha \beta=\tau_{1} \tau_{2} \cdots \tau_{k} \sigma_{1} \sigma_{2} \cdots \sigma_{l} .
$$

(a) α, β even $\Rightarrow k, l$ even $\Rightarrow k+l$ even $\Rightarrow \alpha \beta$ even
(b) α, β odd $\Rightarrow k, l$ odd $\Rightarrow k+l$ even $\Rightarrow \alpha \beta$ even
(c) α odd, β even $\Rightarrow k$ odd, leven $\Rightarrow k+l$ odd $\Rightarrow \alpha \beta$ odd Similarly, α even, β odd $\Rightarrow \alpha \beta$ odd.
9. (a)(b) Let $\alpha=\tau_{1} \tau_{2} \cdots \tau_{k}$, where τ_{i} is a 2-cycle. Then $\alpha^{-1}=\tau_{k} \cdots \tau_{2} \tau_{1}$, so α and α^{-1} can be expressed using the same number of 2 -cycles. Therefore, α and α^{-1} have the same parity.
10. Let $\alpha=\tau_{1} \tau_{2} \cdots \tau_{k}$ and $\beta=\sigma_{1} \sigma_{2} \cdots \sigma_{m}$ where τ_{i}, σ_{j} are 2-ycles.

Then

$$
\beta^{-1} \alpha \beta=\sigma_{m} \cdots \sigma_{2} \sigma_{1} \tau_{1} \tau_{2} \cdots \tau_{k} \sigma_{1} \sigma_{2} \cdots \sigma_{m}
$$

is a product of $m+k+m=k+2 m \quad 2$-cycles.
since $k+2 m$ and k have the same parity
(both are odd or both are even) then part α and $\beta^{-1} \alpha \beta$ have the same parity.
II. (a) $(12)(34)$ is an even permutation with an even order (it has order 2)
(b) (12) is an odd permutation with an even order. (it has order 2)
(c) Let α be a permutation with odd order.

Writing α in disjoint cycle form:
$\alpha=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$, where σ_{i} is an ℓ_{i}-cycle.
It follows that l_{i} must be odd for each i since $\operatorname{ard}(\alpha)=\operatorname{lcm}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$ is odd.
Now, a cycle of odd length is an even permutation, and 'the product of even permutations is even.
Therefore, α is an even permutation.

