is true $\alpha \tau_1 \cdots \tau_n = \beta$.

Text	book	Reading:	Chapters 5, 6,	7	Due Date: Friday, February 5, 2021 by 11:59pm		
Week	Date	Sections from FS2009	Part/ References	Topic/Sections	Notes/Speaker		
Inst	truct	ions.3	Combinatorial	Symbolic methods			
2 3	U_{21}^{14} Uploa	1.4, 1.5, 1.6 ad a copy o 11.1, 11.2, 11.3	Structures fS: Part A.1 A.2 f Xmlef74SSignme Handout #1	Unlabelled structures ent (pdf format) Labelled structures I	to the Crowdmark link you've received via email.		
4 •	Gørre	ctness,	irtey,5 👁 Concisei	ressented presentation	tion are reflected in the grading.		
5● 6	Golla derst	borative d anding & 1 IV.1, IV.2	iscussion parameters cosults. Acknow (self-study)	e assignment in Parameters ledge colleagues Multivariable GFs	encouraged, but the write-up should reflect you own un- a, TA, or other assistance you received.		
7 Qµe	19 estio	IV.3, IV.4 ns IV.5 V.1	Analytic Methods FS: Part B: IV, V, VI Appendix B4 Stapley 99: Ch. 6	Complex Analysis Singularity Analysis			
°1.	Swar	o Puzzle a	rrangements	afid mioves in c	Asst #2 Due cycle notation. The following diagram shows a sequence		
10	of mo	ves that h	ave been applie	d to a scrambling Introduction to Prob.	g ^S Of ^A the tiles in Swap. Mariolys		
11	18 20	IX.1 5 4	³ 2 ⁴ 8 ⁵ 1 ⁶ 3 ⁷ 6	${}^{8}7 \xrightarrow{\tau_{1}} 5 2 34$	$4 \stackrel{*}{8} \stackrel{*}{1} \stackrel{*}{3} \stackrel{7}{6} \stackrel{*}{7} \stackrel{\tau_2}{\rightarrow} 1 \stackrel{*}{2} 3 \stackrel{*}{4} \stackrel{*}{8} \stackrel{*}{5} \stackrel{*}{3} \stackrel{7}{6} \stackrel{*}{7}$		
12	23	IX.3	presentations)	$\xrightarrow{\tau_3} 1^2 2^{32}$	4 ⁴ 8 ⁵ 5 ⁶ 3 ⁷ 7 ⁸ 6		
	ω th	effollowing	g:	Continuous Limit Laws	Marni		
13	(a) Ex (b) Ex	xpress the xpress eacl	starting position in move τ_i as a 2-	n coa as cavepennut -cycle.	ation in cycle notation.		
14	(e) Express the whole move sequence $\tau_1 \tau_2 \tau_3$ as a permitted in cycle notation.						
	(d) Express the final position β as a permutation in cycle notation and show that the following equation						

2. Decomposing a permutation into 3-cycles. Write the permutation $\alpha = (1 \ 2)(3 \ 4)$ as a product of 3-cycles.

(Hint: Solve the corresponding Swap puzzle, under the variation where the legal moves are now 3-cycles, and write down the permutations representing your sequence of moves.)

3. **15-Puzzle position into cycle notation.** Express the scrambling of the 15-puzzle as a permutation in cycle form.

1 2	² 6	³ 5	⁴ 4
⁵ 1	$^{6}15$	7	⁸ 14
⁹ 8	¹⁰ 9	¹¹ 7	¹² 3
13	¹⁴ 11	¹⁵ 12	¹⁶ 10

4. 15-Puzzle arrangements from cycle notation. For the permutation $(1\ 10\ 5\ 15)(2\ 4\ 8)(6\ 7\ 12)$, draw the corresponding scrambling of the tiles on the 15 puzzle.

(A 15-puzzle templates is available as .png files from the Assignments page.)

- 5. **Oval Track Puzzle move sequence in cycle notation.** For the Oval Track puzzle in the diagram below do the following.
 - (a) Express the position of the puzzle configuration on the left as a permutation β in cycle form.
 - (b) Express the move sequence α as a permutation in cycle form.
 - (c) Verify that the permutation representing the position on the right is equal to the product of β and α .

Introduction to Prob.

6. For each of the formation is permutations, inalysecle form, write it as a product of 2-cycles. State whether the permutation is composed. Premutation is composed. Handout #1 Asymptotic methods Asymptotic methods

10 ${}^{9}(a) (2^{Vl_{4}1}79)(35^{(self-study)}) (35^{(self-study)})$

Asst #2 Due Sophie Mariolys (1 2 3 4 5)(6 7 8 9 10)

17. The parity of 15-puzzle scrambles. For each of the following arrangements of the 15-puzzle determine the parity of the corresponding permutations. Sophie

- 8. Show each of the following.
 - (a) The product of two even permutations is an even permutation.
 - (b) The product of two odd permutations is an even permutation.
 - (c) The product of one even permutation and one odd permutation is an odd permutation.
- 9. (a) If α is even, prove that α⁻¹ is even.
 (b) If α is odd, prove that α⁻¹ is odd.
 In other words, show that α and α⁻¹ have the same parity.
- 10. Let $\alpha, \beta \in S_n$. Prove that α and $\beta^{-1}\alpha\beta$ have the same parity.
- 11. (a) Give an example of an even permutation with even order.(b) Give an example of an odd permutation with even order.(c) Show that a permutation with odd order must be an even permutation.