Math 304 Assignment 4 - Solutions

1. For the oval track puzzle with 21 disks the basic moves are

$$
\begin{aligned}
& R=(21-\text { cycle }) \quad \Rightarrow \quad R, R^{-1} \text { even } \\
& T=(14)(23) \quad \Rightarrow T, T^{-1} \text { even }
\end{aligned}
$$

Therefore any solvable configuration is a product of $R, R^{-1}, T, T^{-1}$ which is even. Hence, odd permutations are not solvable.
Since the configuration shown is (13) which is odd, it is not solvable.

2 (a) Label the 12 edge cubies $1-12$, and label the 8 corner cubies 13-20. Then each of the six cube moves $R, L, L, D, F, B$ is a product of two 4-cycles. For example,

$$
R=(\underbrace{26 \quad 107}_{\text {edges }})(\underbrace{\left.\begin{array}{llll}
41819 & 18
\end{array}\right)}_{\text {corners. }}
$$

Therefore, each more is an even, permutation of cubbies, so any
 solvable position must be an even permutation.

Since swapping two corners is a 2-cycle, which is odd, it is impossible to perform.
(b) Label the 24 edge stickers from 1 to 24. Weill ignore comer cubies Each of the six cube moves $R, L, U, D, F, B$ is a permutation. on these 24 number, for example,

$$
R=\left(\begin{array}{llll}
3 & 11 & 20 & 14
\end{array}\right)\left(\begin{array}{llll}
4 & 12 & 19 & 13
\end{array}\right)
$$

Similarly for the other 5 moves.
Each move is therefore an even permutation (two 4-cycleg) of stickers. It follows that any product/inverse of them is also even. Hence, only even permutations of the edge stickers are possible.

Since flipping a single edge is a 2 -cycle,
 which is odd, it is impossible to perform.
3. (a) $(123456)(78) \in A_{9}$ contains a 6-cgcle.
(b) $\quad(123)(4567)(89) \in A_{10}$ contains a 3-cycle and a 4-cycle.
4.

$$
\begin{aligned}
\sigma & =(1258)(2547)(456)(14)(89) \\
& =(\underbrace{12)(15)}_{=(125)}(\underbrace{18)(25)}_{=(185)(125)}(\underbrace{(4)(27)}_{=(247)}(456)(\underbrace{14)(89)}_{=(149)(189)} \\
& =(125)(185)(125)(247)(456)(149)(189)
\end{aligned}
$$

Therefore, $\sigma$ can be written as a product of 3-cycles.
5. (a) Let $\alpha \in S_{n}$ be an odd permutation. Then (12) $\alpha$ is an even permutation, so by Parity Theorem it can be written as a product of 3 -cycles:
Therefore, $(12) \alpha=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$, where $\sigma_{i}$ are 3-cycles.

$$
\alpha=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \sigma_{1} \sigma_{2} \cdots \sigma_{k}
$$

is such an expression.
(b)

$$
\begin{aligned}
\beta & =(123)(4567)(8910) \\
& =(12)(\underbrace{13}_{=(135)(145)}(45)(\underbrace{46)(47)}_{=(467)}(8910)
\end{aligned}
$$

$$
=(12)(135)(145)(467)(8910) \quad \rightarrow \text { which is a 2-cycle followed }
$$ by four 3 -cycles.

6. The order of a permutation written in disjoint cycle form is the least common multiple of its cycle lengths, so an element has order 18 if its disjoint cycle form contains a cycle of length divisible by 9 and a cycle length divisible by 2. This means there must be at least $9+2=11$ distinct numbers in the cycless). But since we are in $A_{10}$ this is impossible.
$A_{10}$ has no element of order 18 .
7. An element of order 5 in $A_{5}$ must be a 5 -cycle:

$$
(----)
$$

There are 5 ! ways to arrange the numbers $1,2,3,4,5$ to make a 5-cycle, however each 5-cycle a 5 different representations:

$$
(a b c d e)=(b c d e a)=(c d e a b)=(\text { dea bc) }=(e a b c d)
$$

Therefore, there are $5!/ 5=4!=24$ distmet 5 -cycles. Hence there are 24 elements of order 5 .

An element of order 3 in $A_{5}$ must be a 3-cycle:

$$
(---)
$$

There are $5 \cdot 4 \cdot 3=60$ ways to make a 3 -cycle, but each 3 -cycle has 3 representations: $(a b c)=(b c a)=(c a b)$. Therefore, there are

$$
60 / 3=20
$$

dishnct 3-cycles, and thence 20 permutations of order 3 .
An element of order 2 in $A_{5}$ must be a product of two 2-cycles!

$$
(--)(--)
$$

There are $\binom{5}{2}\binom{3}{2}$ ways to pick the numbers to fill the slots ' but disjoint cycles commute so we've overcounted by a factor of 2. Hence there are

$$
\frac{\binom{5}{2}\binom{3}{2}}{2}=\frac{\frac{5!}{3!2!} \cdot \frac{3!}{2!}}{2}=\frac{5 \cdot 4 \cdot 3}{4}=15
$$

elements of order 2 .
8. Let $\beta$ be an odd permutation in $S_{n}$. Then $\beta \gamma^{-1} \in A_{n} \subset B$ So $\beta=\left(\beta \gamma^{-1}\right) \gamma \in B$
since $\gamma \in B$ and $B$ closed under multiplication.
Therefore, $O_{n} \subset B$, thus $B=S_{n}$.
9. Sage math Explorations:

Sample Data:

| a | b | b^(-1) a b |
| :--- | :--- | :--- |
| $(1,2,3,4)$ | $(1,18,9,11,4,15,16)(2,20)(6,8)(7,14,13)(10,17,19,12)$ | $(3,15,18,20)$ |
| $(1,2,3,4)$ | $(1,7,5,8)(2,18,4,20,11)(3,9,15)(6,19,10,14,13)(12,16,17)$ | $(7,18,9,20)$ |
| $(1,2,3,4)$ | $(1,15,3,2,19,4,17,7,18,11,10,9,16,14,5,8)(6,13,20,12)$ | $(2,17,15,19)$ |
| $(1,2,3,4)$ | $(1,14,6,19,9,17,11,12,15,4,7)(2,18,5,20,10,3,8,16)$ | $(7,14,18,8)$ |
| $(1,2,3,4)$ | $(1,6,7,17,3,9,18,11,10,12,14,13,20,19,4)(2,15,5,16)$ | $(1,6,15,9)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,14,18,15,19,10,9,11,8,2)(3,17,5,12,4,20,13,6,7,16)$ | $(1,17,20,14)(2,11,16)(7,12)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,10,7,19,5,12,11,18,8,20)(2,9,15,3,6,16,14,17,4,13)$ | $(6,13,10,9)(12,16)(15,19,20)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,4,12,8,10,14,6,19,13,2,7,15,9)(3,16)(5,20,11)$ | $(1,15,10)(4,7,16,12)(19,20)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,8,20,11,14,10,18)(3,13,16,5,7,4)(6,12)(17,19)$ | $(2,13,3,8)(4,20,9)(7,12)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,8,9,10,18,14,11,2,16,6)(3,4,7,5,15)(12,13)(17,20)$ | $(1,15)(4,7,8,16)(5,9,10)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,13,15,17,10,7,5,9,2,16,8,6,14,18)(3,11,12)(19,20)$ | $(2,5,6)(4,13,16,11)(9,14)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,19,4,9,15,17,18,10,16,13,5,8,2,20,12,11)(3,14,6,7)$ | $(2,15,3)(7,8)(9,19,20,14)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,2,4,12,5,13,17,15,3,19,6,7,20,9,14,18,11)(8,16)$ | $(2,4,19,12)(7,13)(14,20,16)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,17)(2,15,7,8,6,11,4,3,16,5)(10,12,19,14)(18,20)$ | $(2,11)(3,17,15,16)(6,9,8)$ |
| $(1,2,3,4)(5,6)(7,8,9)$ | $(1,14,12,11,8,10,4,15,7,13,19,5,18,6,2,3,20,16,9)$ | $(1,13,10)(2,18)(3,20,15,14)$ |

Consider the first row :

$$
\left.\begin{aligned}
\alpha= & \left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \\
& \mid \beta
\end{aligned}|\beta| \beta \quad \right\rvert\, \begin{array}{ll}
\beta & \text { seems like } \beta \text { gets applied to each } \\
\text { entry in the cycle }
\end{array}
$$

Check this is true for other entries in the table.
Observations: (1) $\alpha$ and $\beta^{-1} \alpha \beta$ have the same cycle structure. For example, if $\alpha$ is the product of two 3-cycles, for 5-cycles, and an 11 -cycle, then so is $\beta^{-1} \alpha \beta$. However, the individual numbers in the cycles may be different.
(2) If $\alpha$ has a cycle

$$
\left(a_{1} a_{2} \ldots a_{k}\right)
$$

in its decomposition, then the corresponding cycle in $\beta^{-1} \alpha \beta$ is:

$$
\left(\begin{array}{llll}
\beta\left(a_{1}\right) & \beta\left(a_{2}\right) & \cdots & \beta\left(a_{k}\right)
\end{array}\right)
$$

(This is Lemma 14.1.1 on page 176.)

