Math 304 Assignment 6 - Solutions

1. (a) $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$
(b) $u(10)=\{1,3,7,9\}$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

-	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

2. (a) $f_{1} f_{2}$ Let 1 denote the "do nothing" symmetry.

Let r denote a rotation of $360 / 5=72^{\circ}$ in the clockwise $(c \omega)$ direction.

Then r^{2} denotes a rotation of $144^{\circ} \mathrm{C} \mathrm{\omega}$, and r^{3} " " " " $216^{\circ} \mathrm{cw}$, and r^{4} " " " " $288 \mathrm{c} \mathrm{\omega}$.

For each $1 \leq i \leq 5$, f_{i} denotes the corresponding reflechon across the axis drawn in the diagram.
There are 10 symmetries in all: $D_{5}=\left\{1, r, r^{2}, r^{3}, r^{4}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ each symmetry could also be represented by the permutation it induces on the labels on the vertices.

$$
\begin{array}{ll}
1 \mapsto \varepsilon & f_{1} \longmapsto(25)(34) \\
r \longmapsto(12345) & f_{2} \longmapsto(12)(35) \\
r^{2} \longmapsto(13524) & f_{3} \longmapsto(13)(45) \\
r^{3} \longmapsto(14253) & f_{4} \longmapsto(14)(23) \\
r^{4} \longmapsto(15432) & f_{5} \longmapsto(15)(24)
\end{array}
$$

(b) (c) Cayley table

	1	r	r^{2}	r^{3}	r^{4}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
1	1	r	r^{2}	r^{3}	r^{4}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
r	r^{2}	r^{2}	r^{3}	r^{4}	1	f_{5}	f_{1}	f_{2}	f_{3}	f_{4}
r^{2}	r^{2}	r^{3}	r^{4}	1	r_{2}	f_{4}	f_{5}	f_{1}	f_{2}	f_{3}
r^{3}	r^{3}	r^{4}	1	r^{2}	r^{2}	f_{3}	f_{4}	f_{5}	f_{1}	f_{2}
r^{4}	r^{4}	1	r^{3}	r^{2}	r^{3}	f_{2}	f_{3}	f_{4}	f_{5}	f_{1}
f_{1}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	1	r^{4}	r^{2}	r^{3}	r^{4}
f_{2}	f_{2}	f_{3}	f_{4}	f_{5}	f_{1}	r^{4}	1	r^{2}	r^{2}	r^{3}
f_{3}	f_{3}	f_{4}	f_{5}	f_{1}	f_{2}	r^{3}	r^{4}	1	r^{2}	r^{2}
f_{4}	f_{4}	f_{5}	f_{1}	f_{2}	f_{3}^{3}	r^{2}	r^{3}	r^{4}	1	r
f_{5}	f_{5}	f_{1}	f_{2}	f_{3}	f_{4}	r	r^{2}	r^{3}	r^{4}	1

D_{5} is not abelian since, for example, $r f_{1} \neq f_{1} r$.
(d) Since $\left|D_{5}\right|=10$ it can only have subgroups of orders $1,2,5,10$. The subgroup of order 1 is $\{1\}$, and the subgroup of order 10 is D_{5} itself.
Subgroups of order 2: There are 5 of them, each corresponding to an element of order 2 :

$$
\left\langle f_{1}\right\rangle,\left\langle f_{2}\right\rangle,\left\langle f_{3}\right\rangle,\left\langle f_{4}\right\rangle,\left\langle f_{5}\right\rangle
$$

Subgroups of order 5 : First observe that, by Corollary 11.1, every non-identity element in a subgroup of order 5 must have ordo 5 too. This means none of the reflections can be in a subgroup of order 5 . The only subgroup of order subgroup 5

$$
\langle r\rangle=\left\{1, r, r^{2}, r^{3}, r^{4}\right\} .
$$

3. Dr is not cyclic. To see why we will provide a few different arguments.
Reason 1: There is no element of order $2 n$. The rotations have order at most n (since thy form a subgroup of size n), and the reflections each have order 2.

Reason 2: Dr is not abeliain

For example, consider reflection f_{1} as drawn left, and rotation r. Then $f_{1} r$ takes vertex 1 to 2 but $r f_{1}$ takes vertex 1 to n.
Therefore,

$$
f_{1} r \neq r f_{1} .
$$

Since D_{n} is not abciian it cannot be cyclic.
Reason 3: Dh has at least noelements of order 2, namely the reflections. However, a cyclic group can have at most 1 element of order 2 (Theorem 11.5.3).
4. By Theorem $11,5.4$ (a) the generators of \mathbb{Z}_{22} are: $1,3,5,7,9,13,15,17,19,21$ Notice there are $\varphi(22)=10$ generators.
5. By Theorem $11.5 .4(c)$ the elements of order 6 are $k \cdot 100$ when $\operatorname{gcd}(k, 6)=1$.
There are 2 elements:

$$
100,500
$$

6. We'll use Theorem $11.5 .4(b)$ to find the subgroups and for each subgroup we use Theorem 11.9 (a) to get all generators.
(a) \mathbb{Z}_{12} : The subgroups of \mathbb{Z}_{12} are of sizes $1,2,3,4,6,12$.
order 12 subgroup: $\mathbb{Z}_{12}=\langle 1\rangle=\langle 5\rangle=\langle 7\rangle=\langle 11\rangle$
order 6 subgroup : $\langle 2\rangle=\{0,2,4,6,8,10\}=\langle 10\rangle$
order 4 subgroup: $\langle 3\rangle=\{0,3,6,9\}=\langle 9\rangle$
order 3 subgroup: $\langle 4\rangle=\{0,4,8\}=\langle 8\rangle$
order 2 subgroup: $\langle G\rangle=\{0, G\}$
order 1 subgroup: $\langle 0\rangle=\{0\}$
We can express this in the following diagram (graph):
order $6 \quad\langle 2\rangle=\{0,2,4,6,8,10\}=\langle 10\rangle$

$$
1
$$

$$
\langle 3\rangle=\{0,3,6,9\}=\langle 9\rangle \quad \text { order } 4
$$

order 3

$$
\begin{aligned}
& \langle 4\rangle=\{0,4,8\}=\langle 8\rangle \\
& \langle 6\rangle=\{0,6\} \\
& \langle 0\rangle=\{0\} \quad \text { order } 1
\end{aligned}
$$

$$
\langle 6\rangle=\{0,6\} \quad \text { order } 2
$$

(b) $I_{n} \mathbb{Z}_{17}$ the order of a subgroup divides 17, so it is either 17 (i.e. the whole group) or 1 (i.e. the trivial subgroup.

$$
\begin{array}{ll}
\mathbb{Z}_{17} & \text { order } 17 \\
\langle 0\rangle=\{0\} & \text { order } 1
\end{array}
$$

7. (a) $\langle(1234)\rangle=\{\varepsilon,(1234),(13)(24),(1432)\}<S_{4}$ has order 4.
(b) $D_{4}<S_{4}$ of order 8, where we view the elements of D_{4} as permutations of the vertices of a square under the 8 symmetries.
8. G has $\varphi(10)=4$ elements of order 10 by Theorem 11.5.3. If a is one element of order 10, then

$$
a, a^{3}, a^{7}, a^{9}
$$

are all the elements of order 10. Note: 1,3,7,9 are precisely the numbers less than, and relatively prime, to 10.
9. Since the order of an element divides the order of the group then any nonidentity element most have order P. Since $|G|=p$ then any nonidentity element generates the group. Therefore G is cyclic.
10. Let G be a group with the property that the square of every element is the identity. Let $g, h \in G$ be any two elements. Then

$$
\begin{aligned}
& (g h)^{2}=e, \text { by the property of this group } \\
& g h g h=e, \\
& g h g=h^{-1} \\
& g h=h^{-1} g^{-1} \\
& g h=h g, \text { since } h^{2}=c=g^{2} \text { then } h^{-1}=h, g^{-1}=g
\end{aligned}
$$

Therefore G is abeliain.
8. If $|G|=33$ then the possible orders of elements are $1,3,11$ and 33 .
Towards a contradiction suppose G does not have an element of order 3. Then it also can't have an element of order 33 (if g has order 33 then $9^{\prime \prime}$ has order 3). Therefore, under this assumption the elements of G have order either 1 or 11 . There is only one element of order 1, namely the identity. There would then need to be 32 elements of order 11 . We'll show that this is impossible.

First I'll give a quick argument as to why this is impossible. Afterwards, I'll give a more constructive argument.
Consider
(*) $\left\{x \in G \mid x^{\prime \prime}=e\right.$ and $\left.x \neq e\right\}$
Since every element in G is assumed to have order II (or 1), then this set is $G,\{e\}$ and must have 32 elements. However, for each element b of order 11 it has 10 related elements:

$$
b, b^{2}, b^{3}, \cdots, b^{9}, b^{10}
$$

all of which have order II. Therefore, (*) can be split up into disjoint sets of size 10, which means its cardmality. is divisible by 10 . But 10×32, so we have a contradiction.

We've seen this argument before (assignment $2 \not \# 13$)

The following is a more constructive argument showing that all non-identity elements cannot have order 11 .
Consider an element of order II, say a. Then

$$
\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{10}\right\}
$$

Pick another element in G that is not in $\langle a\rangle$, call this b. Then b has order II and

$$
\langle b\rangle=\left\{e, b, b^{2}, \ldots, b^{10}\right\}
$$

Claim: $\langle a\rangle n\langle b\rangle=\{e\}$
Pf: If $x \in\langle a\rangle n\langle b\rangle$ sit. $x=e$ then x has order II so $\langle a\rangle=\langle x\rangle=\langle b\rangle$ $\rightarrow \leftarrow \square$

Now $\langle a\rangle \cup\langle b\rangle$ consists of 21 elements of G (identity common to both). Let $c \in G,(\langle a\rangle u\langle b\rangle)$, and by a similar argument

$$
\langle a\rangle,\langle b\rangle,\langle c\rangle
$$

only share the identity element. Together they consist of 31 elements of G. So there is still another element

$$
d \in G \backslash(\langle a\rangle u\langle b\rangle v\langle c\rangle)
$$

which has order 11 . But

$$
\langle d\rangle=\left\{e, d, d^{2}, \cdots, d^{10}\right\}
$$

would consist of 10 elements in G which are not in $\langle a\rangle u\langle b\rangle \cup\langle c\rangle$. This is impossible since it would imply $|G| \geqslant 41$.

Therefore, G must have an element of order 3 .

