Questions

1. All about commutators.

(a) Let $\alpha, \beta \in S_{n}$. Show that the commutator $[\alpha, \beta]$ is an even permutation.
(b) Show that if $[g, h]=e$ then g and h commute.
(c) Show that $[g, h]^{-1}=[h, g]$.
2. Let $\alpha, \beta \in S_{n}$.
(a) If $\operatorname{mov}(\alpha)$ and $\operatorname{mov}(\beta)$ have no locations (elements) in common (i.e. $\operatorname{mov}(\alpha) \cap \operatorname{mov}(\beta)=\emptyset$), what is the permutation $[\alpha, \beta]$?
(b) If $\operatorname{mov}(\alpha)$ and $\operatorname{mov}(\beta)$ have two locations (elements) in common (i.e. $|\operatorname{mov}(\alpha) \cap \operatorname{mov}(\beta)|=2$), what is the largest $|\operatorname{mov}([\alpha, \beta])|$ can be?
3. Do exercises 14, 15 in Chapter 13 of the textbook. You do not need to hand anything in for these questions, I trust you did them. After all, you are in this course because you wanted to learn about the mathematics of the Rubik's cube, so you wouldn't deny yourself a valuable, and fun, learning opportunity ;-) Playing with these exercises should give you some insight into how to construct your own puzzle moves. Try to create some of your own using commutators.
4. Flip 2 adjacent edges. In this exercise you will construct a move to produce a double edge flip in the $u p$ layer, as shown in Figure 1b.

(a) Slice move M_{R}.

(b) Double edge flip

Figure 1: Diagrams for exercise 4
Let M_{R} denote the "slice move" which consists of rotating the middle slice, parallel to the R face, in the clockwise direction, from the perspective of the R face. See Figure 1a. Consider the move sequence

$$
\alpha=M_{R}^{-1} D M_{R} D^{-1} M_{R}^{-1} D^{2} M_{R} .
$$

(a) Verify α flips the edge in the $u f$ position, and fixes everything else in the $u p$ layer.
(b) Since α only affects one cubies in the $u p$ layer, what would be a good choice for move β, so that the commutator $[\alpha, \beta]$ affects only two edge cubies? With your choice of β can you predict the effect of $[\alpha, \beta]$ on the cubies?
(c) Perform the move $[\alpha, \beta]$ and verify your prediction from the previous part. The move sequence should produce the double edge flip as shown in Figure 1b (or similar).
5. Flip 2 opposite edges. Find moves α and β so that the commutator $[\alpha, \beta]$ flips two opposite edges (as shown in the diagram below), and fixes everything else. (Hint: Modify the moves in the previous exercise.)

6. Building a corner 3 -cycle. In this exercise we build a 3 -cycle of corners in the $u p$ layer.
(a) Verify the the conjugate $U L U^{-1}$ brings one new corner cubie into the right face.
(b) Since $U L U^{-1}$ brings one new corner cubie into the right face this makes a good candidate to form a commutator with R^{-1}. Verify the commutator $\left[U L U^{-1}, R^{-1}\right]$ moves the corner cubies as indicated in the diagram. The movement of pieces is also given notationally as follows

$$
u l f \mapsto r u f, \quad r u f \mapsto r b u, \quad r b u \mapsto u l f .
$$

7. For each of the following pairs of permutations state whether they are conjugate in S_{10}. That is, determine whether there exists a $\gamma \in S_{10}$ so that $\beta=\gamma^{-1} \alpha \gamma$. If they are conjugate give an example of a permutation $\gamma \in S_{10}$ so that $\beta=\gamma^{-1} \alpha \gamma$.
(a) $\alpha=(1234567)(8910), \quad \beta=(158)(26374109)$
(b) $\alpha=(158)(26)(374), \quad \beta=(12)(73)(8910)$
8. Let G be a group. Prove that every conjugate of a commutator is a commutator by showing that $g[a, b] g^{-1}=$ $\left[g a g^{-1}, g b g^{-1}\right]$ for all $a, b, g \in G$.
9. Show that for $g_{1}, g_{2}, h, h_{1}, h_{2} \in G$ the following hold.
(a) $\left(g_{1} g_{2}\right)^{h}=g_{1}^{h} g_{2}^{h}$
(b) $g^{h_{1} h_{2}}=\left(g^{h_{1}}\right)^{h_{2}}$
(Recall, the exponential notation g^{h} is shorthand for conjugation $h^{-1} g h$. These two properties indicate why this shorthand notation is used.)

