Math 304 Assignment 8 - Solutions

1. First we find a move sequence β^{-1} which takes disk 1 to position 1 and disk 7 to position 3 .

Note: we can write β^{-1} as $(367)(458)$, so $\beta=(376)(485)$.
Therefore,

$$
\beta^{-1} \sigma_{2} \beta=\beta^{-1}(13) \beta=(\beta(1) \beta(3))=(17)
$$

2. We want to create the move (235), so we note "2 chases 3". First we find a move sequence β^{-1} which does the following:
disk $2 \rightarrow$ position 1
disc $3 \longrightarrow$ position 4
disc $5 \rightarrow$ position 7
One possible move sequence is

This isn't the only way to do il. You can take disks $\{2,3,5\}$ and put them in positions $\{1,4,7\}$ in any way what so ever.

This just inserts 2 disks between each pair of disks, then rotates disk 2 to position 1. (other move sequences can also work to do this)

Now disk 2 is in position 1 , disk 3 is in position 4, and we want " 2 to chare 3 ", so we need to apply $\sigma_{3}^{-1}=\left(\begin{array}{ll}1 & 4\end{array} 7\right)$.
So

$$
\begin{aligned}
\beta^{-1} \sigma_{3}^{-1} \beta & =(\beta(1) \beta(4) \beta(7)) \\
& =(235)
\end{aligned}
$$

3. (a) Configuration: $\alpha=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)$

To solve the puzzle we must perform the permutation

$$
\alpha^{-1}=\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)
$$ which is a 3 -cycle.

Strategy for solution:
(1) Move disks in positions $1,3,4$ to positions $1,4,7$. That is, move

- disk 4 to position 1 (already done)
- disk 1 to position 4
- disk 3 to position 7

Call the sequence of moves to do this β^{-1}. An example of a move sequence is:

$$
\beta^{-1}=R^{-3} T R^{2} T R
$$

Remember "disk 1 chases disk 4 ".

(2) Apply fundamental 3-cycle $\sigma_{3}=\left(\begin{array}{ll}1 & 4\end{array}\right)$:

(3) Apply β to solve:

3 b) Configuration: $\alpha=\left(\begin{array}{llll}1 & 3 & 2 & 4\end{array}\right)$

Now we need to perform a 2-cycle (12). To do this we conjugate the fundamental 2 -cycle $\sigma_{2}=C 13$). Weave already done this in Example 15.2 , the move sequence:

$$
\beta^{-1}=R^{-1} T R^{-1} T R T R
$$

will move the disk from position 2 to position 3, while keeping disk in position 1 is place. Thertare, $\beta^{-1} \sigma_{2} \beta$ with solve the puzzle.

Therefore, to solve the puzzle starting from position α we apply

$$
T \beta^{-1} \sigma_{2} \beta
$$

4 (a)

```
In [3]: # Oval Track - variation T=(\begin{array}{lll}{1}&{3}&{2}\end{array})
S20=SymmetricGroup(20)
R=S20(" (1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
T=S20(" (1,3,2)")
OT=S20.subgroup([R,T])
OT.order() == factorial(20)
```

Out [3]: True
\therefore all permutations are possie

In [4]: \#Oval Track - variation $T=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)$
S20=SymmetricGroup (20)
R=S20(" (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20) ")
T=S20 (" $(1,3)(2,4)$ ")
OT=S20.subgroup([R,T])
OT. order() == factorial (20)
Out [4]: False
\therefore not all permutations are possible.

