

Redo all homework assignments again to prepare for the midterm. Below are questions for additional practice. Week Date Sections Part/ References Topic/Sections Notes/Speaker

- 1. Consider the other is not. Determine
- 1 which puzzle is not solvable (justifyour hyperson of the solvable puzzle Write
- down a sequence of the words $(u) = (d) e^{i t A_1} A^2 t a indicate the direction the point at a barrent tile is to be moved)$
- (u)p, (d)own, (l)eftime ht, to indicate the direction the next tile is to be moved.)

- 2. Does A_8 contain and element of order 10? If so, give an example. If not, show why.
- ¹3. Find permutations and the transformed (A) $a_{\text{T}} = 0$, and $\operatorname{ord}(\alpha\beta) = 0$.
- 4. Suppose α is a 15-cycle. For which integers k between 2 and 15 is α^k also a 15-cycle?
- 5. Write down a solution to the 3-cycle swap puzzle when the initial configuration is $\beta = (1 \ 3 \ 5)(2 \ 4 \ 7 \ 6 \ 8)$.
- ¹⁷. Determine the maximum order of an element $\inf_{Asst} S_{\#9Due}$ Determine the maximum order of an element in A_{10} .
- 8. Give an example of an element in A_{20} which contains at least one 3-cycle, and at least one 4-cycle in its disjoint cycle form, and has order 60.
- 9. How many elements of A_7 have order 3?
- 10. Starting with the configuration on the left a sequence of moves is applied given by

$$\alpha = (1 \ 6 \ 2)(3 \ 5).$$

Fill in the board on the right with the configuration that results.

¹ 6	² 3	³ 5	⁴ 4	⁵ 1	⁶ 2	$\xrightarrow{\alpha}$	1	2	3	4	5	6
----------------	----------------	----------------	----------------	----------------	----------------	------------------------	---	---	---	---	---	---

11. Oval Track Puzzle move sequence in cycle notation.

For the Oval Track puzzle in the diagram below do the following.

- (a) Express the position β of the puzzle configuration on the left as a permutation in cycle form.
- (b) Express the move sequence α as a permutation in cycle form.
- (c) Express the position γ on the right as a permutation in cycle form, and show that $\beta \alpha = \gamma$.

$^{ m Week} 12.$	Date Perm	Sections 1 U1ta1fi0115:	Part/ References decomposit	Topic/Sections ions into 2-cycle	Notes/Speaker s of the form $(m, m+1)$:
1	Show	that every	parautation	in Smbetam be texpre	essed as a product using only the 2-cycles:
2	14	1.4, 1.5, 1.6	Structures FS: Part A.1, A.2	Unlabelled structures	
3	21	II.1, II.2, II.3	Comtet74 Handout #1	(1,2)əbə(120,3)yıc(13:es4),.	$\ldots, (m, m+1), \ldots, (n-1, n)$
1 4 13.		11.4, 11.5, 11.6 nutations:	(self study) decomposit	Labelled structures II ions into 2-cycle	s of the form $(1 m)$:
5	W纪5	now that as	Combinatorial	Combinatorial	Assi #100 as a product of 2-cycles Show the stronger result
_	that	wory norm	FSAM Interior in S	can be expressed	as a product using only 2-cycles of the form $(1 m)$ where
6	2 < n	-γγ <u>6</u> 4,γγ.γρειπ √ ≤ n	(Seff-Study) III Dn	camulla fankigesseu	as a product using only 2-cycles of the form $(1 m)$, where
7	² 19 //	IV.3, IV.4	Analytic Methods	Complex Analysis	
8	(This	is equivale	enst fan showing	g that every perm Singularity Analysis	utation is obtainable on the Swap puzzle where the only
0	legal	moove is to	swap the cont	ents of any box wi	th box 1. You may use the Swap puzzle to investigate this
,	stätei	ment, but t	henergrument	youspresenetshoul	d be described in terms of permutations.)
-1101	9 In the	VI.1	won one to w	wify a calvability	Sophie
14.	$\frac{11}{12}$		you are to ve	Introduction to Prob.	Mariolys
	18 Where	$n \geq 0.$		Limit Laws and Comb	Marni
11	_20 .	18.2	Random Structures	Discroto Limit Laws	Sophia
	Varia	a tîón: Leg	almayessare	products of disjoin	nt ²² -cycles: $(a,b)(c,d)$, where $1 \leq a,b,c,d \leq n$. In other
	words	s, xa3move co	The sists of pick	ing any atwo pairs	of boxes, say pair $\{a, b\}$ and pair $\{c, d\}$, and swapping the
12	conte	nts of boxe	sreeand, as	well as swapping	the contents of c and d . See diagram for an example of
	stich	a move.		Continuous Limit Laws	Marni
13	30	IX.5		Quasi-Powers and Gaussian limit laws	Sophie
14	Dec 10				
			a	c	b
			Σ.	с — у	··· Z ··· W

Prove the following solvability criteria for this puzzle.

Solvability Criteria: For the Swap puzzle with $n \ge 5$, with legal moves as described above, an arrangement of the tiles is solvable if and only if the corresponding permutation is *even*.