1. In the end-game phase of the Oval Track puzzle show that any 4 -cycle can always be reduced to a 2 -cycle by using a 3 -cycle. (Note: this is stated in the solution flow chart from the notes, here you are asked to prove this always works.)
Solution: A 4-cycle has the form ($a b c d$) which factors as

$$
\begin{aligned}
(a b c d) & =(a b)(a c)(a d) \\
& =(a b)(a c d)
\end{aligned}
$$

Therefore, if the configuration of the puzzle is $\left(\begin{array}{lll}a & c & d\end{array}\right)$ then applying the 3 -cycle $\left(\begin{array}{ll}a & d\end{array}\right)=\left(\begin{array}{lll}a c d\end{array}\right)^{-1}$ produces

$$
\begin{aligned}
(a b c d)(a d c) & =(a b)(a c d)(a d c) \\
& =(a b)
\end{aligned}
$$

which is a 2 -cycle.
2. (a) For the oval track puzzle with 20-disks is the following configuration of disks solvable? Explain.

(b) For the oval track puzzle with 19-disks is the following configuration of disks solvable? Explain.

Solution: (a) Yes, since $O T_{20}=S_{20}$, which means every permutation is solvable.
(b) This configuration corresponds to the permutation

$$
\alpha=(119)(218)(317)(416)(515)(614)(713)(812)(911)
$$

which is odd (nine 2-cycles). However, $O T_{19} \leq A_{19}$ since both basic moves R and T are even (the former is a 19 -cycle). Therefore, this configuration is not solvable.
3. Consider the configuration of the oval track puzzle shown below. To solve the puzzle we just need to use two fundamental moves: $\sigma_{2}=(13)$ and $\sigma_{3}=(174)$, and their conjugates. Provide an outline of the steps involved in solving this configuration, indicate which move (a 2 -cycle or a 3 -cycle) you are using at each step, and draw the resulting configuration. You do not need to find the sequence β to conjugate σ_{2} or σ_{3}, just provide an outline of the solution steps.

Solution:

Solved.

4. Permutations: decompositions into 2-cycles of the form (1 m):

We know that every permutation in S_{n} can be expressed as a product of 2-cycles. Show the stronger result that every permutation in S_{n} can be expressed as a product of 2 -cycles of the form ($1 m$), where $2 \leq m \leq n$.
(This is equivalent to showing that every permutation is obtainable on the Swap puzzle where the only legal move is to swap the contents of any box with box 1 . You may use the Swap puzzle to investigate this statement, but the argument you present should be described in terms of permutations.)
Solution: For any $1 \leq i<j \leq n$, let $j=i+m$, then we have
$(i j)=(i i+m)=(i i+1)(i+1 i+2) \cdots(i+m-2 i+m-1)(i+m-1 i+m)(i+m-1 i+m-2) \cdots(i+1 i+2)(i i+1)$
This has the form $\gamma(i+m-1 i+m) \gamma^{-1}$, where γ moves tile i to the right by swapping with its neighbour each step.
In other words, to swap i and j first move i to the right by swapping with its neighbour each time, then once it is next to j swap i and j. Then move j to the left by swapping with its neighbour each time, until it is in box i.

5. Permutations: decompositions into 4-cycles:

Can every permutation in S_{n}, for $n \geq 4$, be written as a product of 4 -cycles? Justify your answer.

Solution: Yes. This is since every 2-cycle can be written as a product of 4-cycles:

$$
(a b)=(a b c d)(a b c d)(a c b d)
$$

(You can find such a decomposition by using your Swap board with only four boxes: set-up the board so tiles 1 and 2 are switched, then solve using 4-cycles. For example, (12)=(1234)(1234)(1324).)
6. (a) Consider the following move sequence for flipping adjacent edges. What is the purpose of the initial part of the sequence consisting of $M^{-1} D M D^{-1} M^{-1} D^{2} M$?

(b) Using the above sequence, or a slight modification of it, come up with three different ways to flip two opposite edges (the of and the ob edges).

Solution: (a) It flips the edge cubie in the $u f$ position, it doesn't do anything else to cubies in the up-layer. It does mess cubies up in the bottom layer. This means it is a good candidate to use as a commutator with U.
(b) Let $E_{2}=[\alpha, U]$ be the commutator in part (a).
(1) $E_{2}\left(U E_{2} U^{-1}\right)$

flips these 2

flips there 2
(2)

$$
\text { Modify } E_{2} \text { as }\left[\alpha, u^{2}\right]
$$

$$
\text { (3) conjugate } F_{2}: \quad B^{-1} R^{-1} E_{2} R B
$$

7. Suppose $G=\{e, a, b, c, d, f\}$ is a group with Cayley table

	e	a	b	c	d	f
e	e					
a		e				
b		f				
c				e	a	
d		c	a			
f		b	c	a	e	

Fill in the blank entries.
Solution:

In a group, if $x^{2}=x$ then
moltipy botin sides by x^{-1} we get
$x=1$
Therefore, only the identity is a
soluhim to $x^{2}=x$
From the table we see e is the dusty. Therefore we can hill out row and column 1.

To fill out the rest of the table we keep Lama 10.1 (a) in mind:
Every element of 6 must appear in every row and every column
I will write down the order in which entices can be filled in (con you determine the reasons?)
(1) $c a=d$ (column a missing d)
(2) $f f=d$ (row f missing d)
(3) $c f=b$ (row c must contain b, but columns a and b already have b 's in them)
(4) $c b=f \quad$ (row c is only missing an f)
(5) $d f=e \quad$ (row d must contain e, but columns $c \& d$ already have e 's in them)
(6) $b f=a$ (column f must contain a, but rows a \& d already have a^{\prime} 's in the m)
(7) $a f=c \quad$ (column f missing c)
(8) $a b=d$ (this can be neither b nor f since these are in column b already)
(9) $b b=e$ (column b missing e)
$\left.\begin{array}{l}\text { (10) } b c=d \\ \text { (iI) } b d=c\end{array}\right\}$ row b missing $d \& c, \begin{aligned} & \text { couldn't have } b c=c \quad \& \quad b d=d \\ & \sin c e \\ & b \neq c\end{aligned}$
dd is either b or. If $d d=b$, then $d^{3}=d b=a, d^{4}=d a=c$, $d^{5}=d c=f \quad \& \quad d^{6}=d f=e \quad \Rightarrow \operatorname{ord}(d)=6 \quad \Rightarrow$ Group is cyclic
\Rightarrow Group is abelian. This is a contradiction since clearly it isn'f.
Therctere, $d d=f$. The rest of the table follows.

If you wont to see for sure that this Cayley tate really represents a groups notice
it is just the group S_{3} when $e=\varepsilon, a=(1,2), b=(1,3), c=(2,3), d=(1,2,3), f=(1,3,2)$

8. All about commutators.

(a) Let $\alpha, \beta \in S_{n}$. Show that the commutator $[\alpha, \beta]$ is an even permutation.
(b) For g, h in a group G, show that $[g, h]^{-1}=[h, g]$.
(c) For g, h, k in a group G, show that $[g, h]^{k}=\left[g^{k}, h^{k}\right]$.

Solution: (a) Write α and β as a product of 2-cycles:

$$
\alpha=\sigma_{1} \sigma_{2} \cdots \sigma_{k}, \quad \beta=\tau_{1} \tau_{2} \cdots \tau_{\ell}
$$

where σ_{i}, τ_{j} are 2 -cycles. Then

$$
\begin{aligned}
{[\alpha, \beta] } & =\alpha \beta \alpha^{-1} \beta^{-1} \\
& =\sigma_{1} \sigma_{2} \cdots \sigma_{k} \tau_{1} \tau_{2} \cdots \tau_{\ell} \sigma_{k}^{-1} \cdots \sigma_{2}^{-1} \sigma_{1}^{-1} \tau_{\ell}^{-1} \cdots \tau_{2}^{-1} \tau_{1}^{-1}
\end{aligned}
$$

is a product of $2 k+2 \ell=2(k+\ell) 2$-cycles. Hence, $[\alpha, \beta]$ is even.
(b)

$$
\begin{aligned}
{[g, h]^{-1} } & =\left(g h g^{-1} h^{-1}\right)^{-1}, \quad \text { by definition of commutator } \\
& =h g h^{-1} g^{-1}, \quad \text { by property of inverses of products } \\
& =[h, g], \quad \text { by definition of commutator. }
\end{aligned}
$$

(c)

$$
\begin{aligned}
{\left[g^{k}, h^{k}\right] } & =\left[k^{-1} g k, k^{-1} h k\right], \quad \text { by definition of } g^{k} \text { and } h^{k} \\
& =\left(k^{-1} g k\right)\left(k^{-1} h k\right)\left(k^{-1} g^{-1} k\right)\left(k^{-1} h^{-1} k\right), \quad \text { by definition of commutator } \\
& =k^{-1} g\left(k k^{-1}\right) h\left(k k^{-1}\right) g^{-1}\left(k k^{-1}\right) h^{-1} k, \quad \text { by associativity } \\
& =k^{-1} g(e) h(e) g^{-1}(e) h^{-1} k, \quad \text { by property of inverses } \\
& =k^{-1} g h g^{-1} h^{-1} k, \quad \text { by property of identity } \\
& =k^{-1}[g, h] k \\
& =[g, h]^{k}
\end{aligned}
$$

9. Let G be a group of order 34. What are the possible orders of the elements of G ?

Solution: The order of an element must divide the order of the group. Since the divisors of 34 are $1,2,17,34$ then the order of an element of G is possibly

$$
1,2,17, \text { or } 34
$$

10. Let $G=\{e, a, b, c\}$ be a group, where e is the identity.
(a) Assume G has an element of order 4, say a. Then there must be a second element of order 4, say c. Write out the Cayley table for G.
(b) Assume G does not have an element of order 4, then every (non-identity) element has order 2. If $a b=c$ write out the Cayley table for G.
Solution: (a) Let a have order 4. Then a^{2} has order 2 and a^{3} has order 4. Thus $a^{3}=c$, and $a^{2}=b$. Sample calculations:

$$
\begin{aligned}
& a c=a a^{3}=a^{4}=e \\
& b b=a^{2} a^{2}=a^{4}=e .
\end{aligned}
$$

Cayley table:

G	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

(b) Every element (except e) has order 2. Assume $a b=c$.

Sample calculations:

$$
\begin{aligned}
a b=c & \Rightarrow a(a b)=a c \\
& \Rightarrow a^{2} b=a c \\
& \Rightarrow b=a c
\end{aligned}
$$

Cayley table:

G	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

11. List all subgroups of \mathbb{Z}_{28} and the generators for each subgroup.

Solution:

Altenatively, we can list the subgroups in a table.

subgroup	order	list of all possible generators
$\langle 1\rangle=\mathbb{Z}_{28}$	28	$1,3,5,9,11,13,15,17,19,23,25,27$
$\langle 2\rangle=\{0,2,4,6,8,10,12,14,16,18,20,22,24,26\}$	14	$2,6,10,18,22,26$
$\langle 4\rangle=\{0,4,8,12,16,20,24\}$	7	$4,8,12,16,20,24$
$\langle 7\rangle=\{0,7,14,21\}$	4	7,21
$\langle 14\rangle=\{0,14\}$	2	14
$\langle 0\rangle=\{0\}$	1	0

12. List all the elements of $U(8)$ and write out its Cayley table.

Solution: Cayley table:

$\mathrm{U}(8)$	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

13. List all the elements of $U(21)$. What is the order of 4 ? What is the order of 5 ?

Solution:

```
u ( 2 1 ) = \{ 1 , 2 , 4 , 5 , 8 , 1 0 , 1 1 , 1 3 , 1 6 , 1 7 , 1 9 , 2 0 \}
orde of 4: }\quad\mp@subsup{4}{}{2}=1
    43}=64\equiv1(\operatorname{mod}21
    Therture,}\operatorname{ard}(4)=3\mathrm{ .
order of 5: }\operatorname{ord(5)| |u(21) | }=>\operatorname{ard(5) | 12.
    5
    5 ^ { 3 } = 5 \cdot 5 ^ { 2 } \equiv 5 . 4 \equiv 2 0 ( \operatorname { m o d } 2 1 )
    \mp@subsup{5}{}{4}=5\cdot\mp@subsup{5}{}{3}\equiv5\cdot20\equiv5(-1)\equiv-5\equiv16(mad 21)
    5 ^ { 6 } = 5 ^ { 3 } \cdot 5 ^ { 3 } \equiv 2 0 \cdot 2 0 \equiv 4 0 \cdot 1 0 \equiv 1 9 \cdot 1 0 \equiv - 2 \cdot 1 0 \equiv 1 ( \operatorname { m o d } 2 1 )
    Therfune,
    ard(5)=6.
```

14. List all the elements of $U(16)$. What is the order of 9 ? What is the order of 15 ?

Solution:

$$
\begin{aligned}
& u(16)=\{1,3,5,7,9,11,13,15\} \quad,|u(16)|=8 \\
& \text { Possible orders of ecements are: } 1,2,4,8 \\
& 9^{2}=81 \equiv 5(16)+1=1(\bmod 16) \quad \Rightarrow \operatorname{ard}(9)=2 \\
& 15^{2} \equiv(-1)(-1) \equiv 1(\bmod 16) \quad \Rightarrow \operatorname{ard}(15)=2 .
\end{aligned}
$$

15. Show that for $n \geq 3$ the group $U\left(2^{n}\right)$ is not cyclic?

Hint: Can you find two elements of order 2? Further hint: have another look at the previous question.
Solution:

For $n \geq 3$, the group $U\left(2^{n}\right)$ contains elements

$$
a=2^{n-1}+1 \quad \text { and } \quad b=2^{n}-1
$$

and each of there has order 2:

$$
a^{2}=\left(2^{n-1}+1\right)^{2}=2^{2 n-2}+2^{n}+1
$$

$$
=2^{n}\left(2^{n-2}\right)+2^{n}+1
$$

$$
\equiv 1\left(\bmod 2^{n}\right)
$$

$$
b^{2}=\left(2^{n}-1\right)^{2}=2^{2 n}-2^{n} \cdot 2+1 \equiv 1\left(\bmod 2^{n}\right)
$$

A cyclic group has at most one element of order 2 ,
therefore

$$
U\left(2^{n}\right) \text { is not cyclic for } n \geqslant 3 \text {. }
$$

16. $U(49)$ is a cyclic group with 42 elements. If b is a generator, what are the other generators? Solution:
```
U(49) is cyclic with 42 elements.
Ther are }\varphi(42)=\varphi(2.3.7)=1.2.6=12 generaturs.
Let }b\mathrm{ be one generator, then any generator has the 
        .b}\quad\mathrm{ where }\operatorname{gcd}(k,42)=1.\quad(k=1,5,11,13,17,19,23,25,29,31,37,41
```

Thus the list of generators is:
$b, b^{5}, b^{11}, b^{13}, b^{17}, b^{19}, b^{23}, b^{25}, b^{29}, b^{31}, b^{37}, b^{41}$
17. Consider the regular 7-gon shown in the picture. Let r denote a clockwise rotation through $\frac{360}{7}$ degrees. The elements of D_{7} are

$$
D_{7}=\left\{1, r, r^{2}, r^{3}, r^{4}, r^{5}, r^{6}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}\right\}
$$

where f_{i} denotes a reflection across a line as shown the figure. Determine the element of D_{7} corresponding to $f_{1} r f_{6}$.

Solution: Consider vertex 1, under the symmetries it moves as follows: $1 \xrightarrow{f_{1}} 1 \xrightarrow{r} 2 \xrightarrow{f_{2}} 5$ Therefore, $f_{1} r f_{2}$ is a rotation taking 1 to 5 , so it is r^{4} :

$$
f_{1} r f_{2}=r^{4}
$$

