\mathbf{f}_1

5

 f_2

2 ____f3

- f4

 f_5

1. Computations in various groups...

- [2] (a) In the group \mathbb{Z}_{18} determine the order of 10. (That is, determine $\operatorname{ord}(10)$.) 10, 10+10=2, 3·10=12, 4·10=4, 5·10=14, 6·10=6, 8·10=8, 9+10=0 \Longrightarrow ord(10)=9. alternative 1: The smallest value of k such that $k\cdot 10 \equiv 0 \pmod{18}$ is 9, :. $\operatorname{ord}(10) = 9$. alternative 2: $\operatorname{gcd}(5,18)=1 \Rightarrow 5$ has order 18 $\Rightarrow 2\cdot5=10$ has $\operatorname{order} 9$. :. $\operatorname{ord}(10)=9$.
- [3] (b) List all the elements $a \in \mathbb{Z}_{15}$ for which $\mathbb{Z}_{15} = \langle a \rangle$. generabors of \mathbb{Z}_{15} are the numbers relatively prime to 15: 1, 2, 4, 7, 8, 11, 13, 14(there should be $\mathcal{P}(i5) = 2 \cdot 4 = 8$ numbers listed) [3] (c) Consider the permutation $\alpha = (1 \ 2)(3 \ 4 \ 5 \ 6)(7 \ 8 \ 9 \ 10)$. Which of the following permutations β_1 and β_2 is conjugate to α in S_{10} ? For the β_i that is conjugate to α give an example of a $\gamma \in S_{10}$ such that $\beta_i = \gamma^{-1} \alpha \gamma$. $\beta_1 = (1 \ 2 \ 3 \ 4)(5 \ 6)(7 \ 8)(9 \ 10)$, $\beta_2 = (1 \ 2 \ 3 \ 4)(5 \ 6)(7 \ 8 \ 9 \ 10)$ g_2 has some cycle shuchne as α , so α and β_2 are conjugate. $\gamma = (1 \ 5 \ 3)(2 \ 6 \ 4)$ (other ophois involve ways to match up entres in (3 $4 \ 5 \ 6)(12)$)
- [2] (d) Suppose H is a cyclic group and 18 divides |H|. If b is one element of order 18, list the other elements of order 18 in terms of b.

$$b^{k} s.t. \ 1 \le k \le 18 \ \& \ gcd(k, 10) = 1$$

=> b', b', b'', b'', b'', b^{1''}, b^{1'''} (should be $\mathcal{P}(13) = 6$ in total)

[2] (e) Consider the pentagon shown. Let r denote a rotation in the clockwise direction through an angle of 72 degrees. The elements of D_5 are

$$D_5 = \{1, r, r^2, r^3, r^4, f_1, f_2, f_3, f_4, f_5\}.$$

Determine the element of D_5 corresponding to $r^2 f_3 r \cdot f_4$. rotation, since two reflections

where

does it take 1:

$$1 \xrightarrow{r^2} 3 \xrightarrow{f_3} 1 \xrightarrow{r} 2 \xrightarrow{f_4} 3$$

 $\therefore r^2 f_3 r^3 f_4 = [r^2]$

alternate: $(12345)(12345)(13)(54)(12345)(14)(23) = (13524) = [r^2]$

Math 304, Spring 2021 Midterm 2

2. A Group of Permutations:

Let G be a subgroup of S_6 with 12 elements. Ten elements of G are listed here:

 $G = \{\varepsilon, (1 3)(4 6), (1 5)(2 4), (1 2)(3 6)(4 5), (1 4)(2 3)(5 6), (1 4)(2 5)(3 6), (1 6)(2 5)(3 4), (1 3 5)(2 4 6), (1 5 3)(2 6 4), (1 2 3 4 5 6), (1 6 5 4 3 2), (2 6)(3 5)\}$

(Note: the following questions can be done in any order. If you get stuck on one, move on to the next.)

[4] (a) Find the two elements of *G* that are missing.

 $(123456)^{-1} = (165432)$

 $Conjvgale: (123456)^{-1} (15)(24)(123456) = (26)(35)$

[2] (b) Is *G* a cyclic group? Justify your answer.

No, there is no element of order 12 (if it had one, there would need to be p(12) = 4 of them in tokal)

alternate: If it was cyclic there would be only one element of order 2. But G has at least two: (13)(46), (15)(24) in not cyclic.

[3] (c) Find a subgroup of *G* of order 3.

[2] (d) Does *G* contain a subgroup of order 7? If so, find one. It not, explain why not.

3. Groups, Cayley Table, Commutators and Conjugates...

[3] (a) Complete the statement for the definition of a **group**.

A group consists of a nonempty set G together with <u>a huncher</u> $*: G \times G \rightarrow G$

that satisfies the following three properties:

1. (associative)
$$a = (a = (a = b) = c$$
 for all $a, b, c \in G$
2. (identity) there is an $e \in G$ site $a = e = a$ for all $a \in G$
3. (inverse) for $a \in G$ there exists $b \in G$ site, $a = b = b = a = e$.

[3] (b) Suppose $G = \{e, a, b, c, d, f\}$ is a group with the following multiplication (Cayley) table. Fill in the blank entries. You do not need to justify you answers.

	e	a	b	c	d	f
e	e	a	b	c	d	f
a	a	e	<u>d</u>	f	6	C
b	b	f	C	e	a	d
c	c	d	e	Ь	f	a
d	d	C	f	۵	C	b
f	f	0	<u>a</u>	d	<u>C</u>	e

[4] (c) Prove the following formula which shows that a commutator of a product is a product of commutators.

$$[\alpha, (\beta\gamma)] = [\alpha, \beta] [\beta\alpha\beta^{-1}, \beta\gamma\beta^{-1}]$$

$$[\alpha, (\beta\delta)] = \alpha \beta\delta \alpha^{-1} (\beta\delta)^{-1}$$

= $\alpha \beta\delta \alpha^{-1} \delta^{-1} \beta^{-1} (*)$

On the other hand,

$$[\alpha, \beta][\beta \propto \beta^{-1}, \beta \nabla \beta^{-1}] = \alpha \beta \alpha^{-1} \beta^{-1} \beta \alpha \beta^{-1} \beta \nabla \beta^{-1} \beta \alpha^{-1} \beta^{-1} \beta^{-1}$$
$$= \alpha \beta \nabla \alpha^{-1} \delta^{-1} \beta^{-1}$$
$$= [\alpha, \beta \nabla] \qquad by (4^{*})$$

Math 304, Spring 2021 Midterm 2

4. Oval Track Puzzle and Variation:

[4] (a) **Mapping out your solution strategy:** Consider the following configuration of the oval track puzzle. To solve the puzzle we only need to use two fundamental moves: $\sigma_3 = (1 \ 7 \ 4)$ and $\sigma_2 = (1 \ 3)$, and their conjugates. Provide an outline of the steps involved in solving this configuration: indicate which move (a 2-cycle or a 3-cycle) you are using at each step, identify the disks you are permuting (i.e. give the permutation), and draw the resulting configuration. **Do not use a** 2-cycle **unless it is necessary**. You **do not** need to find the sequence β to conjugate σ_2 or σ_3 , just provide an outline of the solution steps. (You may not need all the images below, just write "solved" under the image in which you've finished your solution.)

[3] (b) Consider the variation of the Oval Track puzzle on 20 disks where the turntable move T corresponds to the permutation $T = (1 \ 4 \ 3 \ 2)$. You are given the fact that any 3-cycle is possible to do on this puzzle. Using this fact, show that it is possible to do a 2-cycle.

alternate:
$$T = (1432) = (143)(12)$$

 \Rightarrow It is possible to do
 $(134) T = (134)(143)(12) = (12)$