1. Computations in various groups...

[2]
(a) In the group \mathbb{Z}_{18} determine the order of 10 . (That is, determine ord(10).)
$10,10+10=2,3 \cdot 10=12,4 \cdot 10=4,5 \cdot 10=14,6 \cdot 10=6,8 \cdot 10=8,9+10=0 \quad \Rightarrow \operatorname{ard}(10)=9$.
alternative 1: The smallest value of k such that $k \cdot 10 \equiv 0(\bmod 18)$ is $9 . \therefore \operatorname{ard}(10)=9$.
alternatue 2: $\operatorname{gcd}(5,18)=1 \Rightarrow 5$ has order $18 \Rightarrow 2.5=10$ has order $9 . \therefore \operatorname{ord}(10)=9$.
[3] (b) List all the elements $a \in \mathbb{Z}_{15}$ for which $\mathbb{Z}_{15}=\langle a\rangle$.
generators of \mathbb{Z}_{15} are the numbers relatively pome to 15 :

$$
\begin{aligned}
& 1,2,4,7,8,11,13,14 \\
& \text { (there should be } \varphi(15)=2.4=8 \text { numbers listed) }
\end{aligned}
$$

[3] (c) Consider the permutation $\alpha=(12)(3456)(78910)$. Which of the following permutations β_{1} and β_{2} is conjugate to α in S_{10} ? For the β_{i} that is conjugate to α give an example of a $\gamma \in S_{10}$ such that $\beta_{i}=\gamma^{-1} \alpha \gamma$.
(3456)(12)(78910)

$$
\beta_{1}=(1234)(56)(78)(910), \quad \beta_{2}=(1234)(56)(78910)
$$

β_{2} has same cycle structure as α, so α and β_{2} are conjugate.

$$
\left.\begin{array}{c}
\gamma=\left(\begin{array}{lll}
1 & 5 & 3
\end{array}\right)\left(\begin{array}{c}
2
\end{array} 64\right) \quad \text { (other ophons involve ways to math op entries in } \\
\left(\begin{array}{ll}
3 & 4
\end{array} 56\right)(12) \\
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)(5)
\end{array}\right)\left(\begin{array}{l}
5
\end{array}\right) .
$$

[2] (d) Suppose H is a cyclic group and 18 divides $|H|$. If b is one element of order 18 , list the other elements of order 18 in terms of b.

$$
\begin{aligned}
& b^{k} \text { s.t. } 1 \leqslant k \leqslant 18 \& \operatorname{gcd}(k, 18)=1 \\
\Rightarrow & b^{1}, b^{5}, b^{7}, b^{11}, b^{13}, b^{17} \quad \text { (should be } \varphi(18)=6 \text { in total) }
\end{aligned}
$$

(e) Consider the pentagon shown. Let r denote a rotation in the clockwise direction through an angle of 72 degrees. The elements of D_{5} are

$$
D_{5}=\left\{1, r, r^{2}, r^{3}, r^{4}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\} .
$$

Determine the element of D_{5} corresponding to $\underbrace{r^{2} f_{3} r f_{4}}$.
where does it take 1: rotahoi, since two reflechais

$$
\therefore \quad r^{2} f_{3} r^{3} f_{4}=r^{2}
$$

alternate : $(\underbrace{12345)(12345)}_{r^{2}}(\underbrace{(13)(54)}_{f_{3}}(\underbrace{12345)}_{r}(\underbrace{14)(23}_{f_{4}})=(13524)=r^{2}$

Math 304, Spring 2021
Midterm 2
2. A Group of Permutations:

Let G be a subgroup of S_{6} with 12 elements. Ten elements of G are listed here:

$$
\begin{array}{rlllll}
G=\{\varepsilon, & (13)(46), & (15)(24), \quad(12)(36)(45), \quad(14)(23)(56), & (14)(25)(36), \\
& (16)(25)(34), \quad(135)(246), \quad(153)(264), \quad(123456), \quad(165432), \quad(26)(35)\}
\end{array}
$$

(Note: the following questions can be done in any order. If you get stuck on one, move on to the next.)
[4]
(a) Find the two elements of G that are missing.

$$
(123456)^{-1}=(165432)
$$

Conjugate: $(123456)^{-1}(\underbrace{(15)(24)}(123456)=(\begin{array}{l}26)(35)\end{array}(\underbrace{(26)}_{9}$
[2] (b) Is G a cyclic group? Justify your answer.
No, there is no element of order 12 (if it had one, there would need to be $\varphi(12)=4$ of them in total)
alternate: If it was cyclic there would be only one element of order 2. But G has of least two: $(13)(46),(15)(24) \quad \therefore$ not cycle.
[3] (c) Find a subgroup of G of order 3.

$$
\{\varepsilon,(135)(246),(153)(264)\}
$$

[2]
(d) Does G contain a subgroup of order 7? If so, find one. It not, explain why not.

No, 7×12. By Lagrange's theorem, 6 cannot have a subgroup of order 7

3. Groups, Cayley Table, Commutators and Conjugates...

(a) Complete the statement for the definition of a group.

A group consists of a nonempty set G together with \qquad that satisfies the following three properties:

1. (associative) $a *(b * c)=(a * b) * c$ for $a l l a, b, c \in G$
2. (identity) then is an $e \in G$ sit $a * e=e * a=a$ for all $a \in G$
3. (inverse) for $a \in G$ there exists $b \in G$ sit. $a+b=b+a=e$.
[3] (b) Suppose $G=\{e, a, b, c, d, f\}$ is a group with the following multiplication (Cayley) table. Fill in the blank entries. You do not need to justify you answers.

	e	a	b	c	d	f
e	e	a	b	c	d	f
a	a	e	\underline{d}	f	$\underline{\mathbf{b}}$	$\frac{\mathbf{c}}{d}$
b	b	f	$\underline{\mathbf{c}}$	e	a	d
c	c	\mathbf{d}	$\underline{\mathbf{e}}$	$\frac{\mathbf{b}}{}$	f	a
d	d	$\underline{\mathbf{c}}$	$\underline{\mathbf{f}}$	$\frac{\mathbf{a}}{\mathbf{e}}$	b	
f	f	$\underline{\mathbf{b}}$	$\underline{\mathbf{a}}$	d	$\underline{\mathbf{c}}$	e

[4] (c) Prove the following formula which shows that a commutator of a product is a product of commutators.

$$
\begin{align*}
& {[\alpha,(\beta \gamma)]=[\alpha, \beta]\left[\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}\right] } \\
& {[\alpha,(\beta \gamma)]=} \alpha \beta \gamma \alpha^{-1}(\beta \gamma)^{-1} \\
&= \alpha \beta \gamma \alpha^{-1} \gamma^{-1} \beta^{-1} \quad \text { (*) } \tag{*}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
{[\alpha, \beta]\left[\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}\right] } & =\alpha \beta \alpha^{-1} \beta^{-1} \beta \alpha \beta^{-\gamma} \beta \gamma \beta^{-\gamma} \beta \alpha^{-1} \beta^{-1} \beta \gamma^{-1} \beta^{-1} \\
& =\alpha \beta \gamma \alpha^{-1} \gamma^{-1} \beta^{-1} \\
& =[\alpha, \beta \gamma] \text { by }(*)
\end{aligned}
$$

4. Oval Track Puzzle and Variation:

(a) Mapping out your solution strategy: Consider the following configuration of the oval track puzzle. To solve the puzzle we only need to use two fundamental moves: $\sigma_{3}=(174)$ and $\sigma_{2}=(13)$, and their conjugates. Provide an outline of the steps involved in solving this configuration: indicate which move (a 2 -cycle or a 3 -cycle) you are using at each step, identify the disks you are permuting (ie. give the permutation), and draw the resulting configuration. Do not use a 2 -cycle unless it is necessary. You do not need to find the sequence β to conjugate σ_{2} or σ_{3}, just provide an outline of the solution steps. (You may not need all the images below, just write "solved" under the image in which you've finished your solution.)

(b) Consider the variation of the Oval Track puzzle on 20 disks where the turntable move T corresponds to the permutation $T=\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)$. You are given the fact that any 3 -cycle is possible to do on this puzzle. Using this fact, show that it is possible to do a 2 -cycle.

alternate: $\quad T=(1432)=(143)(12)$
\Rightarrow It is possible to do

$$
(134) T=(134)(143)(12)=(12)
$$

$$
\therefore \quad \text { a } 2 \text {-cycle is possible. }
$$

