A set is a well defined collection of objects. The objects are called the elements of the set.

Convention: Sets are denoted by capital letters (A, B, S, T, \ldots), elements by lower case letters (a, b, x, y, \ldots)

If x is an element of $a \operatorname{set} A$ we write:
If y is not an element of a set A we write:
Two ways we will define a set:
(1) Writing elements between curly brackets ع.g.
(2) Using set-builder notation:

Common Sets:
Some basic sets of numbers we should be familiar with are:

- $\mathbb{Z}=$ the set of integers $=\{\ldots,-2,-1,0,1,2,3, \ldots\}$,
- $\mathbb{N}=$ the set of nonnegative integers or natural numbers $=\{0,1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x \geq 0\}$,
- $\mathbb{Z}^{+}=$the set of positive integers $=\{1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x>0\}$,
- $\mathbb{Q}=$ the set of rational numbers $=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$,
- $\mathbb{Q}^{+}=$the set of positive rational numbers $=\{x \in \mathbb{Q} \mid x>0\}$,
- \mathbb{R} is the set of real numbers.
- $[n]=\{1,2, \ldots, n\}=$ the set of integers from 1 to n, where $n \in \mathbb{Z}^{+} .{ }^{1}$

Let A and B be sets :

- If every element of A is an element of B we say A is a \qquad of B :
- If and then
- The set with no elements is the , denoted by or

Set Operations:
union : $\quad A \cup B=\{x \mid x \in A$ or $x \in B\}$,
intersection: $A \cap B=\{x \mid x \in A$ and $x \in B\}$,
complement : $\quad A^{c}=\bar{A}=\{x \mid x \notin A\}$,
difference: $\quad A-B=\{x \mid x \in A$ and $x \notin B\}=A \cap B^{c}$
product : $\quad A \times B=\{(x, y) \mid x \in A$ and $y \in B\}$.

Cardinality: $\quad=$ number of elements in A

Laws of Set Theory:

1) $\left(A^{c}\right)^{c}=A$
2) $(A \cup B)^{c}=A^{c} \cap B^{c}$
$(A \cap B)^{c}=A^{c} \cup B^{c}$
3) $A \cup B=B \cup A$
$A \cap B=B \cap A$
4) $A \cup(B \cup C)=(A \cup B) \cup C$ $A \cap(B \cap C)=(A \cap B) \cap C$
5) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
6) $A \cup A=A$
$A \cap A=A$
7) $A \cup \emptyset=A$
$A \cap \mathscr{U}=A$
8) $A \cup A^{c}=\mathscr{U}$
$A \cap A^{c}=\emptyset$
9) $\quad A \cup \mathscr{U}=A$
$A \cap \emptyset=\emptyset$
10) $A \cup(A \cap B)=A$ $A \cap(A \cup B)=A$

Law of Double Negation
DeMorgan's Laws
Commutative Laws
Associative Laws
Distributive Laws
Idempotent Laws
Identity Laws
Inverse Laws
Domination Laws
Absorbtion Laws

Exeerise:

Numbers 1, 2, 3, ..., 9 are written in a 3×3 array. The only permitted operations are to swap any two rows and or any two columns. Prove that it is impossible to attain the pattern on the right starting with the pattern on the left.

1	2	3
4	5	6
7	8	9

1	2	3
6	5	4
7	8	9

Appendix B: Properties of Integers \geqslant In this section all numbers are
a divides b (written $a \mid b$) if $b=a d$ for some integer d.
We say d is the greatest common divisor of a and $b($ written $\operatorname{gcd}(a, b))$ if and only if
(i) $d \mid a$ and $d \mid b$, and
(ii) if $c \mid a$ and $c \mid b$ then $c \leq d$

Example:
a and b are
if $\operatorname{gcd}(a, b)=1$
Example:

Theorem B.1.1 - Division Algorithm. Let $a, b \in \mathbb{Z}$. Suppose that $b \neq 0$. Then there exist unique $q, r \in \mathbb{Z}$, with $0 \leq r<|b|$ such that

$$
a=q b+r
$$

We focus our attention on computing ged's without factoring:
Lemma B.1.2 If $a=b q+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Example:

Theorem B. 1.3 - Euclidean Algorithm. If a and b are positive integers, $b \neq 0$, and

$$
\begin{aligned}
& a=q b+r, \quad 0 \leq r<b, \\
& b=q_{1} r+r_{1}, \quad 0 \leq r_{1}<r, \\
& r=q_{2} r_{1}+r_{2}, \quad 0 \leq r_{2}<r_{1}, \\
& \vdots \\
& \quad \vdots \\
& r_{k}=q_{k+2} r_{k+1}+r_{k+2}, \quad 0 \leq r_{k+2}<r_{k+1},
\end{aligned}
$$

then for k large enough, say $k=\ell$, we have $r_{\ell+1}=0, r_{\ell-1}=q_{\ell+1} r_{\ell}$, and $\operatorname{gcd}(a, b)=r_{\ell}$.

Python B.1: Euclid's Algorithm for gcd in Python

```
def gcd(a,b):
    """Return the GCD of a and b using Euclid's Algorithm."""
    while b > 0:
        a, b = b, a%b
    return a
```


Extended Euclidean algarithm:

Example:

Theorem B.1.4 - Extended Euclidean Algorithm. If $\operatorname{gcd}(a, b)=d$ then there exist integers u and v such that

$$
a u+b v=d
$$

Primes :

A prime is an integer >1 with exact y two positive divisors: 1 and itself. $\varepsilon x:$

Lemma B.2.1 If p is a prime number and a and b are integers such that $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Definition B.3.1 - Euler's ϕ-Function. For any positive integer $n, \phi(n)$ is the number of integers in $\{1,2, \ldots, n\}$ which are relatively prime to n. In other words,

$$
\phi(n)=|\{m \in \mathbb{Z} \mid 1 \leq m \leq n, \operatorname{gcd}(m, n)=1\}| .
$$

Theorem B.3.1 If n has prime factorization given by

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

then

$$
\phi(n)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)
$$

Modular Arithmetie:

Definition B.4. $1-a \bmod n$. Let n be a fixed positive integer. For any integer a,
$a \bmod n \quad(\operatorname{read} a$ modulo $n)$
denotes the remainder upon dividing a by n. (Note: the remainder is an integer $0 \leq r<n$.)

```
Example:
```

Definition B.4.2 - Congruence. If a and b are integers and n is a positive integer, we write

$$
a \equiv b \quad \bmod n
$$

when n divides $a-b$. We say a is congruent to b modulo n.

> Example:

Theorem B.4.1 - Modular Arithmetic.

If $a=c \bmod n$ and $b=d \bmod n$ then

- $(a+b) \equiv(c+d) \bmod n$
- $a \cdot b \equiv c \cdot d \bmod n$

Example

