Permutations: Preliminary Definition
A permutation of a list of objects is a rearrangement of these objects.
ε_{x} :
$\varepsilon x:$

1	2	3	4	5	6	7	8

In general, the number of permutations of n distinct objects is $n(n-1)(n-2) \ldots 2 \cdot 1=n$!

Ex: How many ways can the tiles on the 15 puzzle be arranged?

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Permutations: Mathematical Definition

Definition 3.2.3 A permutation of a set A is a function $\alpha: A \rightarrow A$ that is bijective (ie. both one-to-one and onto).

Function refresher:

Definition 3.2.1 A function, or mapping, f from a (nonempty) set A to a (nonempty) set B is a rule that associates each element $a \in A$ to exactly one element $b \in B$.

Definition 3.2.2 A function $f: A \rightarrow B$ is called one-to-one, or injective, if no two elements of A have the same image in B.

A function $f: A \rightarrow B$ is called onto, or surjective, if $f(A)=B$. That is, if each element of B is the image of at least one element of A.

A function that is both injective and surjective is called bijective .

We will focus on permutations of the set

$$
[n]=\{1,2, \ldots, n\}
$$

for various n.

To represent a permutation $\alpha:[n] \rightarrow[n]$ we just need to list where each number gets mapped to.
$\varepsilon x:$

Array form:

$$
\begin{aligned}
\alpha & =(\quad) & &) \\
& =(\quad) \quad & =\left(\begin{array}{l}
\text { input } \\
\leftarrow \text { output }
\end{array}\right. &
\end{aligned}
$$

Arrow form: $0^{1} ?^{2} \quad e^{3} \longleftarrow$ input α

Cycle-arrow form \& cycle form: We'll see this in chapter 4.
Ex: (a) the identity or "do nothing" permutation is denoted by $_{\text {itself }} \varepsilon:[n] \rightarrow[n]$ and it maps every element to

$$
\varepsilon=(\quad)
$$

(b) An n-cycle cyclically permutes the values. For example,

$$
()
$$

or we could use the arrow diagram

Composition :
Since permutations are functions we can combine two or more together using function composition.
$\varepsilon_{x}:$ Consider $\alpha, \beta:[5] \rightarrow[5]$ given by

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 1 & 4 & 2
\end{array}\right) \quad \beta=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 1 & 4
\end{array}\right)
$$

Stack the arrow diagram for α on top of β :

This gives a new permutation $\alpha \beta$ which is the function obtained by first applying α then applying β.
We can compute this directly from array form:

$$
\alpha \beta=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 1 & 4 & 2
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 2 & 1 & 4
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
& & & &
\end{array}\right)
$$

Notice we are moving from left to right.

Definition 3.3.1 Let $\alpha, \beta:[n] \rightarrow[n]$ be two permutations. The permutation composition, or product, of α and β is denoted by $\alpha \beta:[n] \rightarrow[n]$ is the permutation defined by:

$$
\begin{array}{rllcc}
\alpha \beta: & {[n]} & \rightarrow & {[n]} & \rightarrow \\
{[n]} \\
k & \longmapsto \alpha(k) & \longmapsto & \longmapsto(\alpha(k))
\end{array}
$$

This means $(\alpha \beta)(k)=$

Important : Composition is done left-to-right which is opposite the usual convention.
$\varepsilon_{x}:$ Let $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2\end{array}\right), \beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 1 & 2\end{array}\right), \gamma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4\end{array}\right)$
(a) Compute $\alpha(\beta \gamma)$

$$
\alpha(\beta \gamma)=
$$

$$
=
$$

(b) Compute $(\alpha \beta) \gamma$

$$
(\alpha \beta) \gamma=
$$

In general $\alpha(\beta \gamma)=(\alpha \beta) \gamma$ for permutations. This is called the associative property of permutation composition. It means we can unambiguously write

$$
\alpha \beta \gamma
$$

For example, cube move sequence
RULe'- URD
doesn't need grouping brackets.
(c) Compute $\alpha \gamma$

$$
\alpha \gamma=
$$

(d) The product of α with itself n times is

$$
\begin{aligned}
& \alpha^{n}=\underbrace{\alpha \cdot \alpha \cdot \cdots \cdot \alpha}_{n \text { times }} \\
& \alpha^{2}= \\
& \alpha^{3}= \\
& \alpha^{4}= \\
& \alpha^{5}= \\
& \alpha^{6}=
\end{aligned}
$$

(e) Find $\alpha \beta$ and $\beta \alpha$. What do you notice?

$$
\begin{aligned}
& \alpha \beta=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 4 & 1 & 2
\end{array}\right)= \\
& \beta \alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 4 & 1 & 2
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{array}\right)=
\end{aligned}
$$

If $\sigma \gamma=\gamma \sigma$ for permutations, we say σ and γ commute. In general permutation composition is not necessary commutative.

Inverses:
Given a permutation α can we find a permutation β such that

$$
\alpha \beta=\beta \alpha=\varepsilon ?
$$

Answer:
$\varepsilon_{x}:$ Consider $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2\end{array}\right)$
α
β
ε

$$
\left(\begin{array}{cccc}
\alpha & & & \beta \\
4 & 2 & 3 & 4 \\
\hline
\end{array} 5\right.
$$

Visually:

Theorem 3.5.1 For any permutation $\alpha:[n] \rightarrow[n]$, there exists a unique permutation $\beta:[n] \rightarrow[n]$ such that $\alpha \beta=\beta \alpha=\varepsilon$.

We call β the inverse of α and write $\beta=\alpha^{-1}$
To find an inverse we can either
(1) in arrow form, reverse the arrows (flip the diagram)
α

$$
\begin{array}{cccccc}
& 1 & 2 & 3 & 4 & 5 \\
\alpha^{-1} & \bullet & 0 & 0 & 0 & 0 \\
& & & & & \\
& 0 & 0 & 0 & 0 \\
& 2 & 3 & 4 & 5
\end{array}
$$

(2) in array form, flip the array upside down

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 1 & 3 & 2
\end{array}\right) \quad \alpha^{-1}=(
$$

ε_{x} : Find the inverse of $\beta=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 8 & 1 & 4 & 6 & 5\end{array}\right)$

$$
\beta^{-1}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right)
$$

check: $\beta \beta^{-1}=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 8 & 1 & 4 & 6 & 5\end{array}\right)\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right)$

Inverse of products:

$$
(\alpha \beta)^{-1}=\beta^{-1} \alpha^{-1} \quad \text { (notice order is reversed) }
$$

Check:

In general, $\quad\left(\alpha_{1} \alpha_{2} \ldots \alpha_{k}\right)^{-1}=\alpha_{k}^{-1} \alpha_{k-1}^{-1} \cdots \alpha_{2}^{-1} \alpha_{1}^{-1}$

Cancellation property:

$$
\begin{aligned}
& \text { (left cancellation) } \alpha \beta=\alpha \gamma \Rightarrow \beta=\gamma \\
& \text { (right cancellation) } \beta \alpha=\gamma \alpha \Rightarrow \beta=\gamma
\end{aligned}
$$

Proof (of left):

Ex: Are the two move sequences of Rubik's cube equivalent (i.e. they put the cube in the same position)?

$$
R U F^{-1}, \quad R^{3} F^{3}
$$

Symmetric Group :
$S_{n}=\{\alpha \mid \alpha$ is a permutation of $[n]\}$ is called the Symmetric Group

Let's summarize what we know so far about S_{n}.

- S_{n}, the symmetric group of degree n, is the set of all permutation of $[n]=\{1,2, \ldots, n\}$.
- $\left|S_{n}\right|=n$!
- Two elements $\alpha, \beta \in S_{n}$ can be composed (multiplied) to give another element $\alpha \beta \in S_{n} .^{2}$
- The identity permutation is $\varepsilon=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ 1 & 2 & \ldots & n\end{array}\right)$. It has the property that $\varepsilon \alpha=\varepsilon \alpha=\alpha$ for all $\alpha \in S_{n}$.
- Every $\alpha \in S_{n}$ has an inverse denoted by α^{-1}. The defining property of an inverse is $\alpha \alpha^{-1}=$ $\alpha^{-1} \alpha=\varepsilon$.
- $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right)^{-1}=\alpha_{k}^{-1} \cdots \alpha_{2}^{-1} \alpha_{1}^{-1}$.
- Permutation composition (multiplication) is associative: $\alpha(\beta \gamma)=(\alpha \beta) \gamma$.
- Permutation composition (multiplication) is not necessarily commutative.
- Cancellation Property: $\alpha \beta=\alpha \gamma$ implies $\beta=\gamma$, and $\beta \alpha=\gamma \alpha$ implies $\beta=\gamma$.

Example: Show that $\alpha \beta \alpha^{-1}=\beta$ if and only if α and β commute.

Proof:

Order of a permutation :
The smallest number m for which $\alpha^{m}=\varepsilon$ is called the order of α, which we denote by ord (α).
ε_{x} : Find the order of $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1\end{array}\right)$

Must such a number exist?
$\varepsilon_{x}:$ If α has order 7, what is α^{35} ?

Ex: For $\beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$, does $\beta^{62}=\varepsilon$?

Theorem 3.8.2 Let α be a permutation. If $\alpha^{m}=\varepsilon$ then $\operatorname{ord}(\alpha)$ divides m.

