Cycle Notation:
Consider the 5 -cycle $\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 \\ 2 & 3 & 4 & 5 \\ 1\end{array}\right)$.

cycle arrow form

cycle form: Leaving out the arrows in cycle arrow form, we can write the 5-cycle as

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

This represents the fact that each number maps to the one on the right, and the last one maps back to the start.
non-unique: cycle form isn't unique, you can begin a cycle from any number, all that matters is that the number to the right is the image of the number on the lett. So all these are equivalent expressions of $\alpha$.

Example: Write $\beta=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 6 & 8 & 5 & 1 & 4 & 2\end{array}\right)$ in cycle form.

Cycle form is a compact way to represent a permutation. It still contains all the information, and it reveals more structure about the permutation than array form.
Convention: Leave off 1 -cycles in cycle form, so any number not present in cycle form is assumed to map to itself.

Example: (a) Express the permutation in cycle form:

$$
\gamma=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 9 & 5 & 2 & 3 & 7 & 10 & 8 & 1 & 6
\end{array}\right)
$$

$\gamma=$
(b) For the permutation $\alpha=\left(\begin{array}{llll}1 & 5 & 3 & 7\end{array}\right)\left(\begin{array}{lll}4 & 6 & 9\end{array}\right)$ determine:
(i) $\alpha(3)=$
(ii) $\alpha(9)=$
(iii) $\alpha^{2}(1)=$
(iv) $\alpha(8)=$

Products of Permutations revisited:

Example: Find the product $\alpha \beta$ of $\alpha=(1357), \beta=(14)(253)$

Properties of cycle form:
(1) Every permutation can be expressed as a product of disjoint cycles.
(2) Disjoint cycles commute (shirts and socks analogy)
$\varepsilon_{x}: \quad \alpha=(134), \beta=(25)$
$\varepsilon_{x}$ : For $\alpha, \beta$ above, determine $\beta \alpha \beta$.

If $\alpha, \beta$ commute, then

$$
(\alpha \beta)^{m}=\alpha^{m} \beta^{m} \quad \text { for any } m
$$

Inverse of a permutation revisited:
$\varepsilon_{x}$ : Find the inverse of $\alpha=(14732)$.
(1) To find the inverse of a cycle, write the cycle backwards!
(2) If $\alpha$ is expressed as a product of disjoint cycles

$$
\alpha=\sigma_{1} \sigma_{2} \cdots \sigma_{k}
$$

then

$$
\alpha^{-1}=
$$

Taking (1) \& (2) together:
To get from the cycle form of $\alpha$ to the cycle form of $\alpha^{-1}$ just write the representation for $\alpha$ down in the reverse order (both order of the cycles, and the numbers is the cycles).
$\varepsilon_{x}$ : Find the inverse of $\alpha=(2549)(37)\left(\begin{array}{ll}6 & 10 \\ 8\end{array}\right)$

Order of a permutation revisited:
Order of a permutation $\alpha \in S_{n}$ is the smallest number $m$ for which $\alpha^{m}=\varepsilon$. We denote this number by $\operatorname{ard}(\alpha)$. well see how cycle form can be used to "eyeball" the order.
$\varepsilon x$ : Determine the order of $\beta=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$

In general, the order of an m-cycle $\left(a_{1} a_{2} \cdots a_{m}\right)$ is $m$.
Ex: Determine the order of $\alpha=(13)(245)$

Ex: What is the order of $\beta=(245)(317)(691011)$ ?

What is the cycle structure of

$$
\begin{aligned}
& \beta^{3} ? \\
& \beta^{4} ?
\end{aligned}
$$

Ex: If $\alpha$ has order 7, what is $\alpha^{35}$ ? What about $\alpha^{106}$ ?

Theorem 4.4.1 - Order of a Permutation. The order of a permutation written in disjoint cycle form is the least common multiple of the lengths of the cycles.

Ex: The move sequence RU of Rubik's cube corresponds to the permutation consisting of a 15-cycle, a 3-cycle,
and two 7 -cycles

$$
R U=\frac{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}}{\uparrow_{15 \text { cycle }} \overbrace{\text { cycle }} 7 \text { cycles }}
$$

What is the order?

Ex: Jet $\alpha=\left(\begin{array}{lll}2 & 4 & 3\end{array}\right)\left(\begin{array}{ll}1 & 5\end{array}\right)$. If $\alpha^{k}$ is a 3 -cycle
what can you say about $k$ ?

Theorem 3.8.2 Let $\alpha$ be a permutation. If $\alpha^{m}=\varepsilon$ then $\operatorname{ord}(\alpha)$ divides $m$.

Proof:

