Cycle Notation:

Consider the 5-cycle
$$\alpha = \begin{pmatrix} 12345 \\ 23451 \end{pmatrix}$$
.

diagram

cycle form: Leaving out the arrows in cycle arrow form, we can write the 5-cycle as

$$\alpha = (12345)$$

This represents the fact that each number maps to the one on the right, and the last one maps back to the start.

non-unique: cycle form isn't unique, you can begin a cycle from any number, all that matters is that the number to the right is the image of the number on the left. So all these are equivalent expressions of α .

Write $\beta = (12345678)$ in cycle form.

Cycle form is a compact way to represent a permutation. It still contains all the information, and it reveals more structure about the permutation than array form.

Convention: Leave off 1-cycles in cycle form, so any number not present in cycle form is assumed to map to itself.

Escample: (a) Escpress the permutation in eycle form:

(b) For the permutation $\alpha = (15372)(469)$ determine:

(i)
$$\alpha(3) =$$

(ii)
$$\alpha(9) =$$

(iii)
$$\alpha^2(1) =$$

$$(iv) \quad \alpha(8) =$$

Products of Permutahons revisited:

Example: Find the product $\alpha\beta$ of $\alpha = (1357)$, $\beta = (14)(253)$

Properties of cycle form:

- 1) Every permutation can be expressed as a product of disjoint cycles.
- (2) Disjoint cycles commute (shirts and socks analogy)

$$\mathcal{E}_{\infty}$$
: $\alpha = (134)$, $\beta = (25)$

Ex: For α , β above, determine $\beta\alpha\beta$.

If α , β commute, then $(\alpha \beta)^m = \alpha^m \beta^m \quad \text{for any } m$

Inverse of a permutation revisited:

Ex: Find the inverse of $\alpha = (14732)$.

- 1) To find the inverse of a cycle, write the cycle backwards!
- ② If \(\pi \) is expressed as a product of disjoint cycles

then
$$\alpha = \sigma_1 \sigma_2 \cdots \sigma_k$$

Taking 10 & 20 together:

To get from the cycle form of X to the cycle form of ox just write the representation for ox down in the reverse order (both order of the cycles, and the numbers in the cycles).

Ex: Find the inverse of x = (2549)(37)(6108)

Order of a permutation revisited:

Order of a permutation $\propto \epsilon S_n$ is the smallest number m for which $\propto^m = \epsilon$. We denote this number by $\operatorname{ord}(\alpha)$.

We'll see how cycle form can be used to "eyeball" the order.

Ex: Determine the order of $\beta = (1325)$

In general, the order of an m-cycle $(a_1 a_2 \cdots a_m)$ is m. Ex: Determine the order of x = (13)(245)

Ex: What is the order of B = (245)(317)(691011)?

what is the cycle structure of β^3 ?

Ex: If α has order 7, what is α^{35} ? What about α^{106} ?

Theorem 4.4.1 — Order of a Permutation. The order of a permutation written in disjoint cycle form is the least common multiple of the lengths of the cycles.

Ex: The move sequence RU of Rubik's cube corresponds to the permutation consisting of a 15-cycle, a 3-cycle, and two 7-cycles

what is the order?

Ex: Let
$$\alpha = (243)(15)$$
. If α^k is a 3-cycle what can you say about k ?

Theorem 3.8.2 Let α be a permutation. If $\alpha^m = \varepsilon$ then ord (α) divides m.

Proof: