Representing Positions/Moves by Permutations:
Assume the puzzle pieces and their home positions have been labeled by numbers in $[n]$, where n is the number of moving pieces.

Definition 5.1.1 — Puzzle Position \rightarrow Permutation. For a given position (scrambling) of the puzzle, the permutation corresponding to this position is $\alpha: S_{n} \rightarrow S_{n}$ where

$$
\alpha(i)=j \quad \text { if the piece labelled } i \text { is in the position labelled } j .
$$

Ex: Write down the permutation corresponding to each position.

(a) \quad| 1 | 5 | 4 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |$\quad 2{ }^{5} 3 \quad$ piece moved to box

(b)

17	4	6	${ }^{4}$	5	3	

(c)

Ex: Draw the puzzle position corresponding to the permutation

$$
\alpha=\left(\begin{array}{llll}
1 & 5 & 3 & 2
\end{array}\right)\left(\begin{array}{ll}
4 & 8
\end{array}\right)
$$

Definition 5.1.2 — Puzzle Move \rightarrow Permutation. For a given move sequence applied to the puzzle, the permutation corresponding to this move sequence is $\beta: S_{n} \rightarrow S_{n}$ where

$$
\beta(i)=j \quad \text { if the piece in position labelled } i \text { moved to position labelled } j
$$

Ex: Write down the permutation corresponding to the move sequence.
(a)
 piece in box moved to box $\} \Rightarrow \alpha=$
(b)

(c) The move sequence corresponding to α is applied to the puzzle shown left. Determine the resulting position of the pieces.

Activity:
Try the following (fill out the table below):
(1) For each arrangement of the tiles of the Swap puzzle write down the corresponding "position" permutation α

$$
\alpha
$$

(2) Solve the puzzle using legal moves (swaps) write down the permutations corresponding to the moves

$$
\beta_{1}, \beta_{2}, \cdots \beta_{k}
$$

Observations: Is there a relationship between α and $\beta_{1} \beta_{2} \cdots \beta_{k}$?

α	$\beta_{1}, \beta_{2}, \ldots, \beta_{k}$	$\alpha \beta_{1} \beta_{2} \ldots \beta_{k}$

Conclusion/observation :

Activity 2: Now try the following:
(1) Randomly place the tiles on the swap board, write down the permutation corresponding to the position, α.
(2) Using legal moves rearrange the tiles into another configuration γ write dour the permutations corresponding to moves.

$$
\beta_{1}, \beta_{2}, \ldots, \beta_{k}
$$

Observation: What is the relationship between $\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{k}$ and γ ?

α	$\beta_{1}, \beta_{2}, \ldots, \beta_{k}$	$\alpha \beta_{1} \beta_{2} \cdots \beta_{k}$	γ

Conclusion/Observation:

Definition 5.1.1 - Puzzle Position \rightarrow Permutation. For a given position (scrambling) of the puzzle, the permutation corresponding to this position is $\alpha: S_{n} \rightarrow S_{n}$ where

$$
\alpha(i)=j \quad \text { if the piece labelled } i \text { is in the position labelled } j .
$$

Definition 5.1.2 - Puzzle Move \rightarrow Permutation. For a given move sequence applied to the puzzle, the permutation corresponding to this move sequence is $\beta: S_{n} \rightarrow S_{n}$ where

$$
\beta(i)=j \quad \text { if the piece in position labelled } i \text { moved to position labelled } j .
$$

Theorem 5.1.1 - Multiplying Moves. Let α be the permutation corresponding to the current position of the puzzle, and $\beta_{1}, \beta_{2}, \ldots \beta_{k}$ be a move sequence applied to the puzzle which results in a final position γ. Then

$$
\alpha \beta_{1} \beta_{2} \cdots \beta_{k}=\gamma
$$

Consequences of Theorem:
(1) if $\alpha=\varepsilon$, then the product of moves results. in the permutation corresponding to puzzle position.
(2) if $\gamma=\varepsilon$, then $\alpha=\beta_{k}^{-1} \beta_{k-1}^{-1} \cdots \beta_{1}^{-1}$.

Therefore, solving α is equivalent to factoring α into puzzle moves.

Proof:

Permutations as a product of 2-cycles:
Ex: Write the permutation $\alpha=(1745)(263)$ as a product of 2 -cycles.

Consider the corresponding arrangement of the swap puzzle, then solve it.

Ex: Write the 3 -cycle (123) as a product of 2 -cycles.

Permutation as a product of 3-cycles:
Ex: Express the permutation $\alpha=(14325)$ as a product of 3 -cycles.

Consider the corresponding configuration of swap, and solve the puzzle using 3-cycles.

15 Puzzle:
Consider the following sequence of moves:

$1{ }^{2}$	2	3	3	4
5	6	15	9	8
9	15	9		
14	6	10	5	12
${ }^{13} 11$	14	7	15	10

Puzzle:

moves :

τ_{2}| 1 | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- | $4^{4} 4$.

position:

At home: Explore the representations with your own 15-puzzle by doing the following
(1) randomly arrange pieces on the board, write out the permutation α.
(2) perform a sequence of moves, write down the permutations

$$
\tau_{1}, \tau_{2}, \ldots, \tau_{k}
$$

(3) write down permutation for final arrangement:
verify $\alpha \tau_{1} \tau_{2} \ldots \tau_{k}=\beta$ and write the move sequences as a single permutation.

$$
\sigma=\tau_{1} \tau_{2} \ldots \tau_{k}
$$

Ex: Express, in cycle form, the permutation describing the move sequence.
$\left.\begin{array}{|l|l|l|}\hline 6 & 1 & 3 \\ \hline 4 & 8 & 7 \\ \hline 2 & 5 & 9 \\ \hline\end{array} \xrightarrow{4} \quad \begin{array}{|l|l|l|}\hline 1 & 2 & 2 \\ \hline\end{array}\right]$
ε_{x} : The move sequence corresponding to α is applied to the puzzle shown on the left. Determine the resulting position of the pieces.

$$
\alpha=\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array} 65\right)
$$

4	2	3	2				
4	5	1	5				
	8	9					
	8	7		$\xrightarrow{\alpha} \quad$	1	2	3
:---	:---	:---					
4	5	6					
		8					

Oval Track Puzzle:
ε_{x} : Express the puzzle position as a permutation in cycle form.

Permutations for the basic moves:

$R=\left(\begin{array}{ll}1234567891011121314151617181920\end{array}\right)$

$$
T=(14)(23)
$$

Rubik's Cube:
$2 \times 2 \times 2$ Cube: Labelling all facets

Permutations for cube moves:

$$
\begin{aligned}
& \mathrm{R}=(13141615)(1021922)(1241724) \\
& \mathrm{L}=(5687)(3112318)(192120) \\
& \mathrm{U}=(1243)(9517 \text { 13)(1061814) } \\
& \mathrm{D}=(21222423)(1115197)(1216208) \\
& \mathrm{F}=(9101211)(313228)(415216) \\
& \mathrm{B}=(171820 \text { 19) }(172414)(252316)
\end{aligned}
$$

$3 \times 3 \times 3$ Cube: Labelling of facets

