The Alternating Group: (a.k.a the group of even permutations)

Permutations come in one of two types : even or odd

$$A_n = \{ \alpha \in S_n : \alpha \text{ is even } \}$$

 $O_n = \{ \alpha \in S_n : \alpha \text{ is odd } \}$
 $S_n = A_n \cup O_n$, and $A_n \cap O_n = \emptyset$.

Properties of An

Notice $\varepsilon \notin On$ and On is not closed under composition. In fact, if $\alpha, \beta \in On$ then $\alpha \beta \in An$.

An is called the <u>Alternating Group</u> of degree n.

Theorem 8.2.1 — Cardinality of A_n . $|A_n| = |O_n| = \frac{n!}{2}$, for $n \ge 2$.

Proof:

Example: List the elements of A2, A3, Ay.

Example: How many elements of order 5 are there in Ag?

,

Theorem 8.3.1 Every permutation in A_n , for $n \ge 3$, can be expressed as a product of 3 cycles.

Example: For
$$\alpha \in A_q$$
 write it as a product of 3-cycles:
 $\alpha = (137)(2854)(69)$

Swap Variation :

Corollary 8.4.1 — Solvability of Swap Variation. The Swap puzzle, where the legal moves consist of 3-cycles on any three boxes, is solvable if and only if the starting position is an even permutation.

(d)
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 7 \end{bmatrix}$$