Definition 10.1.1 — Group. A group is a nonempty set *G*, together with an operation, which can be thought of as a function $*: G \times G \rightarrow G$, that assigns to each ordered pair (a,b) of elements in *G* an element $a * b \in G$, that satisfies the following properties:

- 1. Associativity: The operation is associative: (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- 2. *Identity*: There is an element *e* (called the identity) in *G*, such that a * e = e * a = a for all $a \in G$.
- 3. *Inverses*: For each element $a \in G$, there is an element b in G (called the inverse of a) such that a * b = b * a = e.

Definition 10.1.2 — Order of a Group. The number of elements of a group (finite or infinite) is called the order of the group. We will use |G| to denote the order of the group, since this is really just the cardinality of the set.

Theorem 10.1.1 — Uniqueness of Inverses. For each element *a* in a group *G*, there is a unique element $b \in G$ such that ab = ba = e.

Proof:

Multiplication (Cayley) Table: If G is finite then the operation can be given in terms of a "multiplication table": G = Eg1, g2, ..., gn Z <u>* g1... g3 ... gn</u> <u>gi</u>

9n

Lemma 10.1.4 (a) Each element $g_k \in G$ occurs exactly once in each row of the table.

- (b) Each element $g_k \in G$ occurs exactly once in each column of the table.
- (c) If the $(i, j)^{th}$ entry of the table is equal to the $(j, i)^{th}$ entry then $g_i * g_j = g_j * g_i$.

(d) If the table is symmetric about the diagonal \searrow then g * h = h * g for all $g, h \in G$. (In this case, we call G abelian.)

Suppose a occurs twice in row b. This means $a=bc=bd \Rightarrow$

Examples:

in each case the identity is ____, inverse of a is _____ 2) $\mathbb{R}^{*} = \mathbb{R} - [0]$ under .

Identify is ____, inverse of a is _____
3)
$$\mathbb{R}^3 = \{(a,b,c): a,b,c \in \mathbb{R}\}$$
 under componentiusie addition.
Identify is _____, inverse of (a,b,c) is ______

$$A_3 = \{ \epsilon, (123), (132) \}$$

Cyclic Groups :
Consider the set of cube moves :

$$G = \{ E, R, R^2, R^3 \}$$

This set is closed under composition/inverses, and is
therefore a group.
Every element of G is a power of R, we call such
a group cyclic.

Definition 10.3.1 — Cyclic Group. A group G is called **cyclic** if there is one element in G, say g, so that every other element of G is a power of g:

$$G = \{g^k \mid k \in \mathbb{Z}\}.$$

In this case we write $G = \langle g \rangle$, and say g is a **generator** for G. If g has order n then $G = \{e, g, g^2, g^3, \dots, g^{n-1}\}$ and we say G is a **cyclic group of order** n.

(If the operation is addition then
$$G = \{ \{k, k, k\} \}$$
.)
For $G = \{ \{ \{ k, R\} \}, R^2, R^3 \}$ the multiplication table is

Consider $\alpha = R^2 U^2$. This move has order 6 so it generates a group of order 6:

$$H = \langle \alpha \rangle = \{ \epsilon, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5 \}$$

Group of integers mod
$$n$$
:
 $Z_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$
Define the operation t_{12} by
 $a + t_{12}b = remainder of a + b when divided by 12$
 $a + b \mod 12$
 $1 + t_{12}7 = _$, $6 + t_{12}10 = _$, $8 + t_{12}4 = _$
 (Z_{12}, t_{12}) is a group.
· identity is
· inverse of a is
· associativity follows from the associativity of t on Z .

Definition 10.3.2 Let n > 1 be and integer. Define an operation on the set $\mathbb{Z}_n = \{0, 1, 2, 3, ..., n-1\}$, called *addition modulo n*, as follows. For $a, b \in \mathbb{Z}_n$, let $a +_n b$ be the remainder of a + b when divided by n. \mathbb{Z}_n is a group under addition modulo n, and is called the (additive) **group** of integers modulo n. Since this group is cyclic it is often called the (additive) cyclic group of order n.

Dihedral Group Dn :

Consider a square. How many ways can we pick it up move it in some way, then return it back to its original location?

These 8 moves are known as the symmetries of the square. We can compose moves ;

the set $D_{y} = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$ under the operation of composition is a group.

D_4	R_0	R_{90}	R_{180}	R_{270}	H	V	D	D'
R_0	R_0	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	R 90	R_{180}	R_{270}	R_0	D'	D	H	V
R_{180}	R_{180}	R_{270}	R_0	R_{90}	V	H	D'	D
<i>R</i> ₂₇₀	R_{270}	R_0	R_{90}	R_{180}	D	D'	V	H
H	H	D	V	D'	R_0	R_{180}	R_{90}	R_{270}
V	V	D'	H	D	R_{180}	R_0	R_{270}	R_{90}
D	D	V	D'	H	R_{270}	R_{90}	R_0	R_{180}
D'	D'	H	D	V	R_{90}	R_{270}	R_{180}	R_0

In general, for a regular n-gon the resulting group Dn is called the dihedral group of order 2n.

An n-gon has n rotational symmetries : for OSKSN-1 and n reflective symmetries (reflection through $k(\frac{360}{n})$ degrees f_1, f_2, \dots, f_n $D_n = \{e, r, r^2, r^3, ..., r^n, f_1, f_2, ..., f_n\}$ Example: In D5 determine (a) $(\Gamma^{3})^{-1}$ (b) $\Gamma^2 f_u$

f,

Group of units modulo n:

Consider
$$\mathbb{Z}_n$$
 under multiplication modulo $n :$
 $a \cdot b = [remainder of ab divided by n]$
 $= ab (mod n)$
First off, toss out 0 sinia it won't have an inverse.
Example: $\mathbb{Z}_c^* = \{2, 3\}$
 $\frac{\cdot c | 1 | 2 | 3 | 4 | 5}{2}$
 $\mathbb{U}(6) =$
 $=$

Definition 10.3.3 — Group of Units Modulo n. Let n > 1 be and integer, and let

$$U(n) = \{m \mid 1 \le m \le n - 1 \text{ and } gcd(m, n) = 1\}.$$

U(n) is a group under multiplication modulo *n*, and is called the **group of units modulo** *n*. In the case when *p* is prime, $U(p) = \mathbb{Z}_p^* = \{1, 2, 3, ..., p-1\}.$

Example: 1 = gcd(5, 8) and 5(5) - 3(8) = 1Nohce, this means

To find
$$a^{-1}$$
 in $U(n)$, first find $u, v \in \mathbb{Z}$ such that
 $ua + vn = 1$
then
 $a^{-1} \equiv U \pmod{n}$