Definition 10.1.1 - Group. A group is a nonempty set G, together with an operation, which can be thought of as a function $*: G \times G \rightarrow G$, that assigns to each ordered pair (a, b) of elements in G an element $a * b \in G$, that satisfies the following properties:

1. Associativity: The operation is associative: $(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
2. Identity: There is an element e (called the identity) in G, such that $a * e=e * a=a$ for all $a \in G$.
3. Inverses: For each element $a \in G$, there is an element b in G (called the inverse of a) such that $a * b=b * a=e$.

Definition 10.1.2 - Order of a Group. The number of elements of a group (finite or infinite) is called the order of the group. We will use $|G|$ to denote the order of the group, since this is really just the cardinality of the set.

Theorem 10.1.1 - Uniqueness of Inverses. For each element a in a group G, there is a unique element $b \in G$ such that $a b=b a=e$.

Proof:

Multiplication (Cayley) Table:
If σ is finite then the operation can be given in terms of a "multiplication table" :

$$
G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}
$$

Lemma 10.1.4 (a) Each element $g_{k} \in G$ occurs exactly once in each row of the table.
(b) Each element $g_{k} \in G$ occurs exactly once in each column of the table.
(c) If the $(i, j)^{t h}$ entry of the table is equal to the $(j, i)^{t h}$ entry then $g_{i} * g_{j}=g_{j} * g_{i}$.
(d) If the table is symmetric about the diagonal \searrow then $g * h=h * g$ for all $g, h \in G$. (In this case, we call G abelian.)

Suppose a occurs twice in row b. This means

$$
a=b c=b d \quad \Rightarrow
$$

Examples:

1) \mathbb{Z} under,$+ \mathbb{Q}$ under,$+ \mathbb{R}$ under + we write each of these as $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+)$. in each case the identity is, inverse of a is \qquad
2) $\mathbb{Q}^{*}=\mathbb{Q},\{0\}$ under -
identity is \qquad , inverse of a is \qquad -
3) $\mathbb{R}^{3}=\{(a, b, c): a, b, c \in \mathbb{R}\}$ under componentuise addition. identity is \qquad , inverse of (a, b, c) is \qquad
4) $S_{n}=\{\alpha:[n] \rightarrow[n] \mid \alpha$ is a bijection $\}$
is a group under composition.
$A_{n}=\left\{\alpha \in S_{n} \mid \alpha\right.$ is even $\}$
is a group under composition.

$$
A_{3}=\{\varepsilon,(123),(132)\}
$$

$\left.\begin{array}{c|ccc} & \varepsilon & (123) & (132) \\ \hline \begin{array}{l}(123) \\ (132)\end{array} & & & \end{array}\right\}$ Cayley Table

Cyclic Groups:
Consider the set of cube moves:

$$
G=\left\{\varepsilon, R, R^{2}, R^{3}\right\}
$$

This set is closed under composition/inverses, and is therefore a group.
Every element of G is a power of R, we call such a group cyclic.

Definition 10.3.1 - Cyclic Group. A group G is called cyclic if there is one element in G, say g, so that every other element of G is a power of g :

$$
G=\left\{g^{k} \mid k \in \mathbb{Z}\right\}
$$

In this case we write $G=\langle g\rangle$, and say g is a generator for G.
If g has order n then $G=\left\{e, g, g^{2}, g^{3}, \ldots, g^{n-1}\right\}$ and we say G is a cyclic group of order n.
(If the operation is addition then $G=\{k g \mid k \in \mathbb{Z}\}$.)
For $G=\left\{\varepsilon, R, R^{2}, R^{3}\right\}$ the multiplication table is

	ε	R	R^{2}	R^{3}			0	1	2	3
R										
R^{2}										
R^{3}										

Consider $\alpha=R^{2} U^{2}$. This move has order 6 so it generates a group of order 6:

$$
H=\langle\alpha\rangle=\left\{\varepsilon, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right\}
$$

	ε	α	$\alpha^{2} \alpha^{3} \alpha^{4}$	α^{5}			0	1	2	3	4
	ε	α	α^{2}	α^{3}	α^{4}	α^{5}		0			

Group of integers $\bmod n$:

$$
\mathbb{Z}_{12}=\{0,1,2,3,4,5,6,7,8,9,10,11\}
$$

Define the operation t_{12} by

$$
\begin{aligned}
& a+12 b=\underbrace{\text { remainder of } a+b \text { when divided by } 12}_{a+b \bmod 12} \\
& 1+127=, \quad 6+10=, \quad 8+124=
\end{aligned}
$$

$\left(\mathbb{Z}_{12},+_{12}\right)$ is a group.

- identity is \qquad
- inverse of \bar{a} is
- associatuity follows from the associativity of + on \mathbb{Z}.

Definition 10.3.2 Let $n>1$ be and integer. Define an operation on the set $\mathbb{Z}_{n}=\{0,1,2,3, \ldots, n-$ $1\}$, called addition modulo n, as follows. For $a, b \in \mathbb{Z}_{n}$, let $a+{ }_{n} b$ be the remainder of $a+b$ when divided by $n . \mathbb{Z}_{n}$ is a group under addition modulo n, and is called the (additive) group of integers modulo n. Since this group is cyclic it is often called the (additive) cyclic group of order n.
$\left(\mathbb{Z}_{4},+_{4}\right)$
$\mathbb{Z}_{4}=\left\{\begin{array}{l|llll} & & & \\ t_{4} & 0 & 1 & 2 & 3 \\ \hline 0 & & & & \\ 1 & & & & \\ 2 & & & & \end{array}\right]$
$\left(\mathbb{Z}_{4},+_{4}\right)$

$$
\mathbb{Z}_{4}=\{\quad\}
$$

$$
\begin{aligned}
& \left(\mathbb{Z}_{5},+_{5}\right) \\
& \mathbb{Z}_{5}=\{
\end{aligned}
$$

$+_{5}$	0	1	2	3	4
0					
1					
2					
4					
4					

Dihedral Group D_{n} :
Consider a square. How many ways can we pick it up move it in some way, then return it back to its original location?

notation	description	permutation
R_{0}	rotation of 0° (i.e. do nothing)	ε
R_{90}	rotation of 90° (clockwise)	(1234)
R_{180}	rotation of 180° (clockwise)	$(13)(24)$
R_{270}	rotation of 270° (clockwise)	(1432)
H	reflection of 180° about horizontal axis	$(14)(23)$
V	reflection of 180° about vertical axis	$(12)(34)$
D	reflection of 180° about diagonal axis (see Figure 10.1b)	(24)
D^{\prime}	reflection of 180° about other diagonal axis (see Figure 10.1b)	(13)

These 8 moves are known as the symmetries of the square. we can compose moves:

VR270 means first reflect across the vertical ling then rotate 270°. The result is equivalent to just doing D.

$$
V R_{270}=
$$

The set

$$
D_{4}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\}
$$

under the operation of composition is a group.

D_{4}	R_{0}	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
R_{0}	R_{0}	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
R_{90}	R_{90}	R_{180}	R_{270}	R_{0}	D^{\prime}	D	H	V
R_{180}	R_{180}	R_{270}	R_{0}	R_{90}	V	H	D^{\prime}	D
R_{270}	R_{270}	R_{0}	R_{90}	R_{180}	D	D^{\prime}	V	H
H	H	D	V	D^{\prime}	R_{0}	R_{180}	R_{90}	R_{270}
V	V	D^{\prime}	H	D	R_{180}	R_{0}	R_{270}	R_{90}
D	D	V	D^{\prime}	H	R_{270}	R_{90}	R_{0}	R_{180}
D^{\prime}	D^{\prime}	H	D	V	R_{90}	R_{270}	R_{180}	R_{0}

In general, for a regular n-gan the resulting group D_{n} is called the dihedral group of order $2 n$.

An n-gan has n rotational symmetries: for $0 \leq k \leq n-1$
r^{k} is a rotation through $k\left(\frac{360}{n}\right)$ degrees and n reflective symmetries (reflection through n different lines):

$$
\begin{gathered}
f_{1}, f_{2}, \ldots, f_{n} \\
D_{n}=\left\{e, r, r^{2}, r^{3}, \ldots, r^{n}, f_{1}, f_{2}, \ldots, f_{n}\right\}
\end{gathered}
$$

Example: In D_{5} determine
(a) $\left(r^{3}\right)^{-1}$
(b) $r^{2} f_{4}$

Group of units modulo n :
Consider \mathbb{Z}_{n} under multiplication modulo n :

$$
\begin{aligned}
a \cdot{ }_{n} b & =[\text { remainder of } a b \text { divided by } n] \\
& =a b(\bmod n)
\end{aligned}
$$

First off, toss out 0 since it won't have an inverse.
Example: $\quad \mathbb{Z}_{6}^{*}=\{\quad\}$

$\cdot 6$	1	2	3	4	5
1					
2					
3					
4					
5					

$$
\begin{aligned}
u(6) & = \\
& =
\end{aligned}
$$

Definition 10.3 .3 - Group of Units Modulo \mathbf{n}. Let $n>1$ be and integer, and let

$$
U(n)=\{m \mid 1 \leq m \leq n-1 \text { and } \operatorname{gcd}(m, n)=1\}
$$

$U(n)$ is a group under multiplication modulo n, and is called the group of units modulo n. In the case when p is prime, $U(p)=\mathbb{Z}_{p}^{*}=\{1,2,3, \ldots, p-1\}$.

Examples: $u(4)=\{ \} \quad u(5)=\{ \}$

Algorithm for finding inverses in $U(n)$:
$F_{A C T}:$ If $a, b \in \mathbb{Z}$ and $d=\operatorname{gcd}(a, b)$ then there exist $u, v \in \mathbb{Z}$ such that

$$
u a+b v=d
$$

The usual algorithm for finding d, u, v is called the extended euclidean algorithm.

Example: $1=\operatorname{gcd}(5,8)$ and

$$
5(5)-3(8)=1
$$

Notice, this means
To find a^{-1} in $u(n)$, first find $u, v \in \mathbb{Z}$ such that

$$
u a+v n=1
$$

then

$$
a^{-1} \equiv u(\bmod n)
$$

Can use sagemath to do this: $\operatorname{xgcd}(\ldots)$

