Chapter II - Subgroups

Definition: Let G be a group. A subset $H \subset G$ which is a group under the same operation is called a <u>subgroup</u> of G. we denote this as $H \subset G$ read "subgroup" Example: O $H = \{ E, (123), (132) \}$ is a subgroup of Sy.

(2)
$$K = \{ \mathcal{E}, (12), (123) \}$$
 is not a subgroup of Sy,

Theorem 11.1.1 — Two-Step Subgroup Test. Let G be a group and H a nonempty subset of G. If

(a) for every $a, b \in H$, $ab \in H$ (closed under multiplication), and

(b) for every $a \in H$, $a^{-1} \in H$ (closed under inverses),

then H is a subgroup of G.

Creating Subgroups:
Let G be a group, and
$$g_{1},g_{2},...,g_{k} \in G$$
.
We can create a subgroup by forming the set of all
possible products, and invesses of products, of $g_{1}'s$.
This is called the subgroup generated by $\{g_{1},...,g_{k}\}$:
 $\langle g_{1},g_{2},...,g_{k}\rangle = \{x \in G : x = g_{1}^{m_{1}}g_{12}^{m_{2}}...g_{1k}^{m_{k}} \text{ for some } j_{1}'s \text{ and } m_{1}'s \}$
Examples: $S_{3} = \{ E, (12), (13), (23), (123), (132) \}$
 $\langle (12) \rangle =$
 $\langle (12), (13) \rangle =$
 $\langle (12), (123) \rangle =$

Examples: () $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, operation to (order 6 group) <0>= く2> = < 3> = <17 =(2) S_{10} , $\alpha = (12)$, $\beta = (153)(24)$ <a, B> < Sio of size S10=SymmetricGroup(10) In [2]: a=S10("(1,2)") b=S10("(1,5,3)(2,4)") H=PermutationGroup([a,b]) # could use H=S10.subgroup([a,b]) H.order() Out[2]: 120 a*b*a*b^2 In [3]: Out[3]: (1, 4, 3, 2)In [4]: S10("(1,4,3,2)") in H Out[4]: true S10("(8,9,10)") in H In [5]: Out [5] : false 3 $D_{4} = \{ R_{0}, R_{10}, R_{180}, R_{270}, H, V, D, D' \}$ <R90> = <Riso) = < H,V > =D4=DihedralGroup(4) In [6]: D4sublist=["()","(1,3)(2,4)", "(1,4)(2,3)", "(1,2)(3,4)"] D4subnames = ["R0", "R180", "H", "V"] D4.cayley_table(names=D4subnames,elements=D4sublist) Out[6]: R0 R180 н V RO R0 R180 н V R180 | R180 V RO Н H V ΗI R0 R180 VI V H R180 RO (I) In Sc what is the subgroup generated by $\alpha = (12), \beta = (34), \delta = (56)$? **Theorem 11.4.1 — Lagrange's Theorem.** If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Corollary 11.4.2 — ord(a) **divides** |G|. In a finite group, the order of each element divides the order of the group.

Theorem 11.4.3 — Cauchy's Theorem. Let p be a prime dividing |G|. Then there is a $g \in G$ of order p.

1) Rubik's Cube group Example: $RC_3 = \langle R, L, U, D, F, B \rangle \langle S_{48}$ Dihedral group Dy (2)f'fz r = cw rotation through 360/n degrees fi = flip over axis fi f_5 7 Elements order

Cyclic Groups Revisited :

Theorem 11.5.1 — Fundamental Theorem of Cyclic Groups. Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle g \rangle| = n$ then for each divisor *k* of *n* there is exactly one subgroup of $\langle g \rangle$ of order *k*.

Example: <(123)(45)>

Theorem 11.5.2 — Generators of Cyclic Groups. Let $G = \langle g \rangle$ be a cyclic group of order *n*. Then $G = \langle g^k \rangle$ if and only if gcd(k, n) = 1.

So there are
$$\varphi(n)$$
 different possible generators.
Euler φ function : $\varphi(n) = [$ * of integers between I and n that
are relatively prime to n]

Theorem 11.5.4 — Generators, Subgroups, and Orders in \mathbb{Z}_n . Consider the group of integers modulo n, \mathbb{Z}_n .

- (a) An integer k is a generator of \mathbb{Z}_n if and only if gcd(k,n) = 1.
- (b) For each divisor k of n, the set ⟨n/k⟩ is the unique subgroup of Z_n of order k, moreover, these are the only subgroups of Z_n.
- (c) For each $k \mid n$ the elements of order k are of the form $\ell \cdot (n/k)$ where $gcd(\ell, k) = 1$. The number of such element is $\phi(k)$, and each of these is a generator of the unique subgroup of order k.

Example: Determine all subgroups of Zzy

