Chapter II - Sulogroups

Definition: Let G be a group. A subset $H \subset G$ which is a group under the same operation is called a subgroup of G. We denote this as

$$
H<G_{\text {read "subgroup" }}
$$

Example: (1) $H=\left\{\varepsilon,(123),\left(\begin{array}{ll}1 & 3\end{array} 2\right)\right\}$ is a subgroup of S_{4}.
(2) $K=\{\varepsilon,(12),(123)\}$ is not a subgroup of S_{4},

Theorem 11.1.1 - Two-Step Subgroup Test. Let G be a group and H a nonempty subset of G. If
(a) for every $a, b \in H, a b \in H$ (closed under multiplication), and
(b) for every $a \in H, a^{-1} \in H$ (closed under inverses),
then H is a subgroup of G.

Creating Subgroups:
Let G be a group, and $g_{1}, g_{2}, \ldots, g_{k} \in G$.
we can create a sulogroup by forming the set of all possible products, and inverses of products, of g_{i} 's.
This is called the subgroup generated by $\left\{g_{1}, \ldots, g_{k}\right\}$:

$$
\left\langle g_{1}, g_{2}, \cdots, g_{k}\right\rangle=\left\{x \in G: x=g_{i}^{m_{1}} g_{i 2}^{m_{2}} \cdots g_{j 2}^{m_{e}} \text { for some } j_{i}^{\prime s} \text { and } m_{i}^{\prime}\right\}
$$

Examples: $S_{3}=\{\varepsilon,(12),(13),(23),(123),(132)\}$

$$
\begin{aligned}
& \langle(12)\rangle= \\
& \langle(13)\rangle= \\
& \langle(231\rangle= \\
& \langle(123)\rangle=
\end{aligned}
$$

$$
\langle(12),(13)\rangle=, \quad\langle(12),(123)\rangle=
$$

$$
\text { Examples: © } \begin{aligned}
& \mathbb{Z}_{6}= \\
&\langle 0\rangle= \\
&\langle 2\rangle= \\
&\langle 3\rangle= \\
&\langle 1\rangle=
\end{aligned}
$$

(2) $S_{10}, \alpha=(12), \beta=(153)(24)$

$$
\langle\alpha, \beta\rangle\left\langle S_{10}\right. \text { of sive }
$$

In [2]: \quad S $10=$ SymmetricGroup (10) $\mathrm{a}=\mathrm{S} 10$ (" $(1,2)$ ") $\mathrm{b}=\mathrm{S} 10\left("(1,5,3)(2,4){ }^{\prime \prime}\right)$
$\mathrm{H}=$ PermutationGroup ([a,b]) \# could use $H=S 10$. subgroup ([a, b]) H. order ()

Out [2]: 120
In [3]: $\quad \mathrm{a} * \mathrm{~b} * \mathrm{a} * \mathrm{~b}{ }^{-2}$
Out [3]: $(1,4,3,2)$
In [4]: $S 10("(1,4,3,2) ")$ in H
Out [4]: true
In [5]: $\quad \mathrm{S} 10\left({ }^{\prime \prime}(8,9,10) "\right)$ in H
Out [5]: false
(3)

$$
\begin{aligned}
& D_{4}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\} \\
& \left\langle R_{90}\right\rangle= \\
& \left\langle R_{180}\right\rangle= \\
& \langle H, V\rangle=
\end{aligned}
$$

In [6]: D4=Dihedral Group (4)
D4sublist $=["() ", "(1,3)(2,4) ", \quad "(1,4)(2,3) ", \quad "(1,2)(3,4) "]$
D4subnames = ["R0", "R180", "H", "V"]
D4. cayley_table(names=D4subnames, elements=D4sublist)
Out [6] :

$*$		R0	R180	H	V
R0I	R0	R180	H	V	
R180 I	R180	R0	V	H	
H I	H	V	R0	R180	
VI	V	H	R180	R0	

(4) In S_{6} what is the subgroup generated by $\alpha=(12), \beta=(34), \gamma=(56)$?

Theorem 11.4.1 - Lagrange's Theorem. If G is a finite group and H is a subgroup of G, then $|H|$ divides $|G|$.

Corollary 11.4 .2 - $\operatorname{ord}(a)$ divides $|G|$. In a finite group, the order of each element divides the order of the group.

Theorem 11.4.3 - Cauchy's Theorem. Let p be a prime dividing $|G|$. Then there is a $g \in G$ of order p.

Example: (1) Rubik's Cube group

$$
R C_{3}=\langle R, L, U, D, F, B\rangle\left\langle S_{48}\right.
$$

(2) Dihedral group D_{7}

Elements order

Cyclic Groups Revisited:

Theorem 11.5.1 - Fundamental Theorem of Cyclic Groups. Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle g\rangle|=n$ then for each divisor k of n there is exactly one subgroup of $\langle g\rangle$ of order k.

Example: $\left\langle\left(\begin{array}{ll}123\end{array}\right)(45)\right\rangle$

Finding other generators of a cyclic group:
Theorem 11.5.2 - Generators of Cyclic Groups. Let $G=\langle g\rangle$ be a cyclic group of order n. Then $G=\left\langle g^{k}\right\rangle$ if and only if $\operatorname{gcd}(k, n)=1$.

So there are $\varphi(n)$ different possible generators
Euler φ function: $\varphi(n)=[$ of integers between 1 and n that are relatively prime to n]

Theorem 11.5.4 - Generators, Subgroups, and Orders in \mathbb{Z}_{n}. Consider the group of integers modulo n, \mathbb{Z}_{n}.
(a) An integer k is a generator of \mathbb{Z}_{n} if and only if $\operatorname{gcd}(k, n)=1$.
(b) For each divisor k of n, the set $\langle n / k\rangle$ is the unique subgroup of \mathbb{Z}_{n} of order k, moreover, these are the only subgroups of \mathbb{Z}_{n}.
(c) For each $k \mid n$ the elements of order k are of the form $\ell \cdot(n / k)$ where $\operatorname{gcd}(\ell, k)=1$. The number of such element is $\phi(k)$, and each of these is a generator of the unique subgroup of order k.

Example: Determine all subgroups of \mathbb{Z}_{24}

Solggraup	order	generators

