Chapter 12 - Puzzle Groups

A permutation puzzle is a one person game (solitaire) with a finite set $T=\{1,2, \ldots, n\}$ of puzzle pieces satisfying the following four properties:

1. For some $n>1$ depending only on the puzzle's construction, each move of the puzzle corresponds to a unique permutation of the numbers in T,
2. If the permutation of $T$ in (1) corresponds to more than one puzzle move then the two positions reached by those two respective moves must be indistinguishable,
3. Each move, say $M$, must be "invertible" in the sense that there must exist another move, say $M^{-1}$, which restores the puzzle to the position it was at before $M$ was performed, In this sense, we must be able to "undo" moves.
4. If $M_{1}$ is a move corresponding to a permutation $\tau_{1}$ of $T$ and if $M_{2}$ is a move corresponding to a permutation $\tau_{2}$ of $T$ then $M_{1} \cdot M_{2}$ (the move $M_{1}$ followed by the move $M_{2}$ ) is either

- notalegatmove, or
- corresponds to the permutation $\tau_{1} \tau_{2}$.
won't consider this here

Let Puz be a permutation puzzle (without gaps) i.e. Rubik's cube, Oval track, Hongarain rings, etc

Let $M(P u z)$ be the set of all inequivalent move-sequences.
(Two moves are considered equivalent if the two positions reached by these moves are indistinguishable.)

Theorem: $M(P u z)$ is a group under move composition. It is called the puzzle group.

Rubik's Cube:
Let $R C_{3}$ denote the Rubik's cube group

$$
R C_{3}=\langle R, L, U, D, F, B\rangle
$$

We can view $R C_{3}$ as a subgroup of $S_{48}$ :


$$
\begin{aligned}
& \mathrm{R}=(25273230)(26293128)(3384319)(5364521)(8334824) \\
& \mathrm{L}=(9111614)(10131512)(1174140)(4204437)(6224635) \\
& \mathrm{U}=(1386)(2574)(9332517)(10342618)(11352719) \\
& \mathrm{D}=(41434846)(42454744)(14223038)(15233139)(16243240) \\
& \mathrm{F}=(17192422)(18212320)(6254316)(7284213)(8304111) \\
& \mathrm{B}=(33354038)(34373936)(394632)(2124729)(1144827)
\end{aligned}
$$

In [1]: $\quad \mathrm{S} 48=$ Symmetric Group (48)

$$
\begin{aligned}
& \mathrm{R}=\mathrm{S} 48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24) ") \\
& \mathrm{L}=\mathrm{S} 48\left("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)^{\prime \prime}\right) \\
& \mathrm{U}=\mathrm{S} 48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19) ") \\
& \mathrm{D}=\mathrm{S} 48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40) ") \\
& \mathrm{F}=\mathrm{S} 48\left("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)^{\prime \prime}\right) \\
& \mathrm{B}=\mathrm{S} 48\left("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)^{\prime \prime}\right) \\
& \mathrm{RC}=\mathrm{S} 48 . \text { subgroup }([\mathrm{R}, \mathrm{~L}, \mathrm{U}, \mathrm{D}, \mathrm{~F}, \mathrm{~B}]) \quad \text { ( define Rubik's cube group to be RC3 }
\end{aligned}
$$

Determine order of the
In [2]: RC3. order ()
Out [2]: 43252003274489856000
In [3]: factor (RC3. order ())

Out [3]: $\quad 2 \sim 27 * 3 \sim 14 * 5 \sim 3 * 7 ~ 2 * 11$

$$
\left|R C_{3}\right|=2^{27} 3^{14} 5^{3} 7^{2} \cdot 11 \approx 4.3 \times 10^{19}
$$

Possible to flip an edge?
In [4]: $\quad \mathrm{S} 48("(7,18) ")$ in RC3
Out [4]: False
Possible to flip two edges?
In [5]: $\quad$ SH (" $\left.(7,18)(5,26){ }^{\prime \prime}\right)$ in RC3

Out [5] :

Rubik's $2 \times 2 \times 2$ Cube:

$$
\begin{aligned}
R C_{2} & =[\text { group of moves of the Pocket Cube }] \\
& =\langle R, L, U, D, F, B\rangle
\end{aligned}
$$

Note: $R L^{-1}=1$ for pocket cube. Similarly, $U D^{-1}=F B^{-1}=1$.

$$
R C_{2}=\langle R, D, F\rangle
$$

These are the moves that keep the ubl corner fixed.
Viewing $R C_{2}$ as a subgroup of $S_{24}$ :


$$
\begin{aligned}
\mathrm{R} & =(13141615)(1021922)(1241724) \\
\mathrm{L} & =\left(\begin{array}{l}
5 \\
\mathrm{C}
\end{array} \mathrm{f}\right)(3112318)(192120) \\
\mathrm{U} & =(1243)(951713)(1061814) \\
\mathrm{D} & =(21222423)(1115197)(1216208) \\
\mathrm{F} & =(9101211)(313228)(415216) \\
\mathrm{B} & =(17182019)(172414)(252316) \\
\left|R C_{2}\right| & =2^{4} \cdot 3^{8} \cdot 5 \cdot 7 \\
& =3,674,160
\end{aligned}
$$

Corner swaps?


$$
\begin{aligned}
& (812)(1115)(2122) \in R C_{2} \\
& (81211152122) \notin R C_{2}
\end{aligned}
$$

Oval Track:
OT $=$ [group of moves on the oval track puzzle]

$$
\begin{gathered}
O T=\langle R, T\rangle \leq S_{20} \\
R=\left(\begin{array}{llll}
1 & 2 & 3 & \ldots
\end{array} 19\right. \\
T=\left(\begin{array}{lll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)^{19}
\end{gathered}
$$

$$
\text { (19) } 20(1) 23456^{6}, \quad R=\left(\begin{array}{llllll}
1 & 2 & 3 & \ldots & 19 & 20
\end{array}\right)
$$

Since $|O T|=20!$ then

$$
O T=S_{20} .
$$

