Chapter 13 - Commutators

Definition 13.1.1 If g, h are two elements of a group G, then we call the element

$$[g,h] = ghg^{-1}h^{-1}$$

the **commutator** of g and h.

Note: If g and h commute then [g,h] =

Eg, h] provides a measure for how much g and h fail to commute.

If α , β are permutations, and α , β fail to commute by "sust a little bit" then $[\alpha, \beta]$ will be "close" to ϵ i.e. it will only permute a few numbers.

Example: In S₃ let $\alpha = (13)$, $\beta = (123)$

Creating Puzzle Moves with commutators:
We will concentrate on permutations in
$$S_n$$
.
Definitions: For $\alpha \in S_n$, define the fixed set of α by
fixe(α) = { $m \in [n] \mid \alpha(m) = m$ }
(This is just the set of numbers that would appear
as 1-cycles in the disjoint cycle form of α .)
The moved set of α is the complement of fixe(α):
 $mov(\alpha) = \overline{fix}(\alpha) = {m \in [n] \mid \alpha(m) \neq m}$
(This is the set of all numbers which appear in cycles
of length ≥ 2 in the disjoint cycle form of α .)

For
$$A \in [n]$$
, and $\alpha \in Sn$ we define
 $\alpha A = \{\alpha(\alpha) \mid \alpha \in A\}$
called the image of A inder α .
Note: $|\alpha A| = |A|$ since α is injective.

Example: Let $\alpha = (1539)(411) \in S_{13}$

 $\mathrm{mov}([\alpha,\beta]) \subset \mathrm{mov}(\alpha,\beta) \cup \alpha^{-1} \mathrm{mov}(\alpha,\beta) \cup \beta^{-1} \mathrm{mov}(\alpha,\beta)$

(a)

Another way to write (*) is $\operatorname{mov}([\alpha,\beta]) \subset \operatorname{mov}(\alpha,\beta) \cup \alpha^{-1} \operatorname{mov}(\alpha,\beta) \cup \beta^{-1} \operatorname{mov}(\alpha,\beta).$ (13.2)pièces moved pieces moved pièces moveel by both a by a to common by B to intersection common intersection. and B (common intersection) This says : If a, B are puzzle moves then [a, B] only affects preces that are in, or moved to, locations that are moved by both or and B. To create a move which only affects a few pièces choose & and & to have very little overlap.

Π

Creating Moves on Rubik's Cube:

Puzzle moves [x,y] :

$$x = u$$

 $y = R$

(b) **Z-commutator**: Shading indicates locations changed by $FRF^{-1}R^{-1}$

Figure 13.1: Y- and Z- commutators

(c) **Y-commutator**: Shading indicates locations changed by $FR^{-1}F^{-1}R$

Consider $x = LD^2L^{-1}$ (swaps rdb and lfu) y = U

Figure 13.2: cubies moved by $[LD^2L^{-1}, U]$.

 $x = L D^2 L^{-1} F^{-1} D^2 F \quad (twists ufl)$ y = U

Figure 13.3: cubies moved by $[LD^2L^{-1}F^{-1}D^2F, U]$.

Figure 13.8: Basic commutators on the Oval Track puzzle