Chapter 13 - Commutators

Definition 13.1.1 If g, h are two elements of a group G, then we call the element

$$
[g, h]=g h g^{-1} h^{-1}
$$

the commutator of g and h.

Note: If g and h commute then

$$
[g, h]=
$$

[g, h] provides a measure for how much g and h fail to commute.

If α, β are permutations, and α, β fail to commute by "just a little bit" then $[\alpha, \beta]$ will be "close" to ε i.e. it will only permute a few numbers.

Example: In S_{3} let $\alpha=\left(\begin{array}{ll}1 & 3\end{array}\right), \quad \beta=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$

Creating Puzzle Moves with commutators:
We will concentrate on permutations in S_{n}.
Definitions: For $\alpha \in S_{n}$, define the fixed set of α by

$$
f i \dot{x}(\alpha)=\left\{\begin{array}{l|l}
m \in[n] & \alpha(m)=m
\end{array}\right\}
$$

(This is just the set of numbers that would appear as 1 -cycles in the disjoint cycle form of α.)
The moved set of α is the complement of $f i \dot{x}(\alpha)$:

$$
\operatorname{mov}(\alpha)=\overline{f_{i}(\alpha)}=\{m \in[n] \mid \alpha(m) \neq m\}
$$

(This is the set of all numbers which appear in cycles of length $\geqslant 2$ in the disjoint cycle form of α.)

For $A \subset[n]$, and $\alpha \in S_{n}$ we define

$$
\alpha A=\{\alpha(a) \mid a \in A\}
$$

called the image of A under α.
Note: $|\alpha A|=|A|$ since α is injective.

Example: Let $\alpha=\left(\begin{array}{lll}1 & 5 & 3\end{array}\right)\left(\begin{array}{ll}4 & 11\end{array}\right) \in S_{13}$

When is $[\alpha, \beta]$ close to the identity:
We'll look at conditions for which $\operatorname{mov}([\alpha, \beta])$ is small. First, consider the diagram:

$$
\operatorname{mov}([\alpha, \beta]) \subset \operatorname{mov}(\alpha, \beta) \cup \alpha^{-1} \operatorname{mov}(\alpha, \beta) \cup \beta^{-1} \operatorname{mov}(\alpha, \beta)
$$

If $m \in[n]$ is moved by $[\alpha, \beta]$, i.e. $m \in \operatorname{mou}([\alpha, \beta])$ then both:
(a) $m \in \operatorname{mov}(\alpha)$ or $\beta(m) \in \operatorname{mov}(\alpha) ;$ and
(b) $m \in \operatorname{mov}(\beta)$ or $\alpha(m) \in \operatorname{mov}(\beta)$.

In other words,
(*) $\operatorname{mov}([\alpha, \beta])=\left(\operatorname{mov}(\beta) \cup \alpha^{-1} \operatorname{mov}(\beta)\right) \cap\left(\operatorname{mov}(\alpha) \cup \beta^{-1} \operatorname{mov}(\alpha)\right)$

Proof of (a), (b):
(a)
(b) Proof similar to part (a).

Another way to write (*) is $\underbrace{\operatorname{mov}([\alpha, \beta]) \subset}_{\begin{array}{c}\text { pieces moved } \\ \text { by both } \alpha \\ \text { and } \beta \\ \text { (common } \\ \text { intersection) }\end{array}} \begin{aligned} & \begin{array}{l}\text { pieces moved } \\ \text { by } \alpha \text { to common } \\ \text { intersection }\end{array}\end{aligned} \underbrace{\operatorname{mov}(\alpha, \beta) \cup \alpha^{-1} \operatorname{mov}(\alpha, \beta) \cup \beta^{-1} \operatorname{mov}(\alpha, \beta)}_{\begin{array}{l}\text { pieces moved } \\ \text { by } \beta \text { to } \\ \text { common intersection }\end{array}}$.

This says:
If α, β are puzzle moves then $[\alpha, \beta]$ only affects pieces that are in, or moved to, locations that are moved by both α and β.
To create a move which only affects a few pieces choose α and β to have very little overlap.

Creating Moves on Rubik's Cube:
Puzzle moves $[x, y]$:

$$
\begin{aligned}
& x=u \\
& y=R
\end{aligned}
$$

(a) Possible cubies moved by $U R U^{-1} R^{-1}$.

$$
\begin{aligned}
& x=F \\
& y=R
\end{aligned}
$$

(b) Z-commutator: Shading indicates locations changed by $F R F^{-1} R^{-1}$

$$
\begin{aligned}
& x=F \\
& y=R^{-1}
\end{aligned}
$$

(c) Y-commutator: Shading indicates locations changed by $F R^{-1} F^{-1} R$

Figure 13.1: Y- and Z- commutators

Consider

$$
\begin{aligned}
& x=L D^{2} L^{-1} \quad \text { (swaps } r d b \text { and } l f u \text {) } \\
& y=u
\end{aligned}
$$

Figure 13.2: cubes moved by $\left[L D^{2} L^{-1}, U\right]$.

$$
\begin{aligned}
& \left.x=L D^{2} L^{-1} F^{-1} D^{2} F \quad \text { (twists ufl }\right) \\
& y=U
\end{aligned}
$$

Figure 13.3: cubes moved by $\left[L D^{2} L^{-1} F^{-1} D^{2} F, U\right]$.

Oval Track Puzzle:

$$
\begin{aligned}
& {\left[R^{-3}, T\right]=(147)(23)(56)} \\
& {\left[R^{-3}, T\right]^{2}=(174)}
\end{aligned}
$$

(a) $R^{-3} T R^{3} T^{-1}=(147)(23)(56)$

(b) $\left(R^{-3} T R^{3} T^{-1}\right)^{2}=(174)$

Figure 13.8: Basic commutators on the Oval Track puzzle

