Chapter 15 - Oval Track

Creating 3-cycles:
Fundamental 3-cycle:
$$\mathcal{X} = [\mathbb{R}^{-3}, T]^2 = (174)$$

Lets create the 3-cycle (123):
() Move 1,2,3 to 1,4,7 in any way, call this β^{-1} (nde: "I chases 2")
 $\mathcal{E}_{\mathcal{X}}: \beta^{-1} =$
(2) Apply $\beta^{-1} = (147)$
(3) Apply β
Result: $\beta^{-1} \mathcal{S}\beta = (\beta(1) \beta(4) \beta(7)) = (123)$.
Create 3-cycle (a b c):
Step (D) Move tiles from a,b,c to 1,4,7 in any way. Call this β^{-1} .
(node " a chases b")
* there is enough Plexibility in the puzzle to do this
Step (D) Apply $\mathcal{Y} = (147)$ or $\mathcal{Y}^{-1} = (174)$ depending on where
 a,b,c are and recalling a chases b.
Step (D) Apply β .
Result: $\beta^{-1}\mathcal{S}\beta$ or $\beta^{-1}\mathcal{S}^{-1}\beta$ is (a b c).

Theorem 15.1.1 — Solvability Criteria for Oval Track puzzle. For the Oval Track puzzle with 20 disks and T = (1 4)(2 3), every permutation $\alpha \in S_{20}$ is solvable. In other words, $OT = S_{20}$.

Proof:

Creating a 2-cycle on the Oval Track:

Since $OT = S_{20}$ we know it is possible to create a 2-cycle. Lets try to find one. Note TR^{-1} is a product of a 17-cycle and a 2-cycle : $TR^{-1} = (17-cycle)(2-cycle)$ Therefore, $(TR^{-1})^{17} = (13)$

This takes 34 moves to produce! Can we do better?

Theorem: If X is a 2-cycle (ab) corresponding to a sequence of moves, then during the move sequence every piece (except possibly a,b) would have to be flipped in the turntable at least once.

> In other words, a move sequence to produce & has to involve every pièce on the track.

Proof: If a can be performed by not putting every piece (= a,b) in the turntable, thus there is a piece, say the it disk that never gets put in the turntable. This disk just rocks back and forth, and eventually gets returned to its home location

Add a new disk to the puzzle next to i, then a would just rock this new disk back and forth before sending it home. In other words a would produce a 2-cycle on the new 21-disk version of the puzzle.

Π

This is impossible since on this 21-disk version both R and T are even, hence only even permutations are possible Therefore if it is availed to article a 2 science of

Therefore, if it is possible to produce a 2-cycle on the 20-disk puezle all 18 pièces which get returned home would have been flipped in the turntable.

(TR-1)¹⁷ does precisely this.

Examples :

