Chapter 15 - Oval Track

Creating 3-cycles:
Fundamental 3-cycle: $\quad \gamma=\left[R^{-3}, T\right]^{2}=\left(\begin{array}{ll}1 & 7\end{array}\right)$

Lets create the 3-cycle (1223):
(1) Move $1,2,3$ to $1,4,7$ in any way, call this β^{-1} (note: "I chases 2")

$$
\varepsilon_{x}: \beta^{-1}=
$$

(2) Apply $\gamma^{-1}=(147)$
(3) Apply β

Result: $\quad \beta^{-1} \gamma \beta=(\beta(1) \beta(4) \beta(7))=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$.

Create 3-cycle ($a b c$):
Step (1) Move tiles from a, b, c to $1,4,7$ in any way. Call this β^{-1}. (note "a chases b")

* there is enough flexibility in the puzzle to do this

Step (2) Apply $\gamma=\left(\begin{array}{ll}1 & 47\end{array}\right)$ or $\gamma^{-1}=(174)$ depending on where a, b, c are and recalling a chases b.
Step (8) Apply β.
Result: $\beta^{-1} \gamma \beta$ or $\beta^{-1} \gamma^{-1} \beta$ is $(a b c)$.

Theorem 15.1.1 - Solvability Criteria for Oval Track puzzle. For the Oval Track puzzle with 20 disks and $T=(14)(23)$, every permutation $\alpha \in S_{20}$ is solvable. In other words, $O T=S_{20}$.

Proof:

Creating a 2-cgcle on the Oval Track:
Since $O T=S_{20}$ we know it is possible to create a 2 -cycle. Lets try to find ore.
Note $T R^{-1}$ is a product of a 17-cycle and a 2-cycle:

$$
T R^{-1}=(17-\text { cycle })(2-\text { cycle })
$$

Therefore,

$$
\left(T R^{-1}\right)^{17}=\left(\begin{array}{ll}
1 & 3
\end{array}\right)
$$

This takes 34 moves to produce! Con we do better?
Theorem: If α is a 2-cycle ($a b$) corresponding to a sequence of moves, then during the move segrence every piece (except possibly a, b) would have to be flipped in the turntable at least once.

In other words, a move sequence to produce α has to involve every piece on the track.

Proof: If α can be performed by not putting every piece $(\neq a, b)$ in the turntable, thus there is a piece, say the $i^{\text {th }}$ disk that never gets put in the turntable. This diag just rocks back and forth, and eventually gets returned to its home location

Add a new disk to the puzzle next to i, then α would just rock this new disk back and forth before sending it home. In other words α would produce a 2-cycle on the new 21-disk version of the puzzle.

This is impossible since on this 21-disk version both R and T are even, hence only even permutations are possible
Therefore, if it is possible to produce a 2 -cycle on the 20-disk puzzle all 18 pieces which get returned home would have been flipped in the turntable.
$\left(T R^{-1}\right)^{17}$ does precisely this.

Oval Track - Strategy for Solution
(1) Put disks 20 through 5 in numerical order.
(2) The permutation α of the final 4 disks is odd or even. This is the endgame phase.
[keep in mind the fundamental cycles:

$$
\left.\sigma_{3}=\left[R^{-3}, T\right]^{2}=(174) \text { \& } \quad \sigma_{2}=\left(T R^{-1}\right)^{17}=(13) .\right]
$$

(a) α is even:
(i) α is a 3 -cycle \rightarrow use a conjugate of σ_{z} or σ_{z}^{-1}
(ii) $\alpha=(\ldots)(\ldots) \rightarrow$ if $\alpha=(14)(23)$ then apply T else write it as two 3-cycles and use conjugates of σ_{3} or σ_{3}^{-1}
(b) α is odd:
(i) α is a 2 -cycle \rightarrow use a conjugate of σ_{2}
(ii) α is a 4 -cycle \rightarrow cheek if T reduces it to a 2 -cycle. otherwise, there is a 3 -cycle that does; then use a conjugate of σ_{2}.
start with a scrambling

Put disks 20 through 5 in order. Determine permutation of 1,2,3,4.

Examples:
1.

$$
\alpha=(143)
$$

2.

3.

