Chapter 17 : Relations

Definition 17.1.1 A partition of a set A is a finite collection of nonempty subsets $A_{1}, A_{2}, \ldots, A_{n}$ satisfying the following properties.
(a) A is the union of all the A_{i} 's: $A=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$,
(b) the A_{i} 's are disjoint: $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j, 1 \leq i, j \leq n$.

Example: (1) ${ }^{9} P=$ set of all movable pieces on Rubik's cube. ${ }^{P}$ can be parhtioned into three sets:
$E=$ set of edge cubbies
$V=$ set of corner (vertex) cubies
$C=$ set of centre cobias

$$
P=E \cup V \cup C
$$

(2) \mathbb{Z} can be partitioned into odd \& even integers:

$$
\mathbb{Z}=E \cup O
$$

where $E=$ set of even integers, and $\theta=$ set of odd integers.

Definition 17.2.1 Let A be a set. A subset $\mathscr{R} \subset A \times A$ is called a relation on A. If $(x, y) \in \mathscr{R}$ then we say x is related to y (and we sometimes write $x \mathscr{R} y$ for simplicity).

Example: $\zeta=$ set of all configurations of Rubik's cube. Define R on ζ by
$X R Y \Leftrightarrow Y$ can be obtained from X by a quarter turn of one face (either $c \omega$ or $c c \omega$).

Definition 17.3.1 Let \mathscr{R} be a relation on a set A. We call \mathscr{R} an equivalence relation on A if it satisfies the following properties:
(a) Each element is related to itself: $(a, a) \in \mathscr{R}$ for all $a \in A \quad$ (reflexive property)
(b) If a is related to b then b is related to $a:(a, b) \in \mathscr{R}$ implies $(b, a) \in \mathscr{R} \quad$ (symmetric property)
(c) If a is related to b, and b is related to c then a is related to $c:(a, b) \in \mathscr{R}$ and $(b, c) \in \mathscr{R}$ implies $(a, c) \in \mathscr{R} \quad$ (transitive property).

Notation: If R is an equivalence relation we offer write $x \sim y$ or $x \equiv y$ in place of $(x, y) \in R$.

Example: Let 9 be the set of all people alive today. Consider the following relations:
$x^{2}, y \Longleftrightarrow x$ is a sister of y
$x R_{2} y \Longleftrightarrow x$ is a sibling of y
$x R_{3} y \Leftrightarrow x$ is a child of y
$x R_{4} y \Leftrightarrow x$ lives in the same city as y
\mid reflexive symmemi transitive \mid equivalence

Definition 17.3.2 Let \sim be an equivalence relation on a set A. For each $a \in A$ the set

$$
[a]=\{x \in A \mid x \sim a\}
$$

is called the equivalence class of A containing a. We call a a representative of the equivalence class [a].

Lemma 17.3.1 If \sim is an equivalence relation on a set A and $x, y \in A$, then
(a) $x \in[x] \quad$ (an equivalence class contains its representative)
(b) $x \sim y$ if and only if $[x]=[y] \quad$ (if two elements are related then their equivalence classes are equal)
(c) $[x]=[y]$ or $[x] \cap[y]=\emptyset \quad$ (equivalence classes are either equal or disjoint).

Proof:

Theorem 17.3.2 (a) If A is a set and \mathscr{R} is an equivalence relation on A then the set of equivalence classes form a partition of A.
(b) If A_{1}, \ldots, A_{n} is a partition of a set A then the relation \mathscr{R} defined by

$$
a \mathscr{R} b \quad \text { if } \quad a, b \in A_{i} \text { for some } i,
$$

is an equivalence relation on A. This relation can written as

$$
\mathscr{R}=\bigcup_{i=1}^{n} A_{i} \times A_{i} .
$$

The sets A_{i} are the equivalence classes of relation \mathscr{R}.

Definition 17.3.3 If \sim is an equivalence relation on a set A, then a set of class representatives is a subset of A which contains exactly one element from each equivalence class. We denote the set of class representative by A / \sim.

Example: Define a relation \equiv on \mathbb{Z} by
$a \equiv b(\bmod 2) \Leftrightarrow b-a$ is divisible by 2
reflexive \checkmark
symmemi \checkmark transitive $\sqrt{ }$

In general, for $n \in \mathbb{Z}^{+}$define an equivalence relation on \mathbb{Z} by

$$
a \equiv b(\bmod n) \Leftrightarrow n \mid b-a
$$

We say a is congruent to b modulo n.
Equivalence class of a:

$$
\begin{aligned}
{[a] } & =\{b \in \mathbb{Z} \mid a \equiv b(\bmod n)\} \\
& =\{b \in \mathbb{Z} \mid b-a=k n, k \in \mathbb{Z}\} \\
& =\{b \in \mathbb{Z} \mid b=a+k n, k \in \mathbb{Z}\} \\
& =\{a+k n \mid k \in \mathbb{Z}\}
\end{aligned}
$$

Equoulence class representatives: $\mathbb{Z} / \equiv=\{0,1,2, \ldots, n-1\}$.

