Chapter 17 : Relations

Definition 17.1.1 A partition of a set A is a finite collection of non-empty subsets A_1, A_2, \ldots, A_n satisfying the following properties.

- (a) A is the union of all the A_i 's: $A = A_1 \cup A_2 \cup \cdots \cup A_n$,
- (b) the A_i 's are disjoint: $A_i \cap A_j = \emptyset$ for all $i \neq j, 1 \leq i, j \leq n$.

Definition 17.2.1 Let A be a set. A subset $\mathscr{R} \subset A \times A$ is called a **relation on** A. If $(x, y) \in \mathscr{R}$ then we say x is related to y (and we sometimes write $x\mathscr{R}y$ for simplicity).

Example:
$$\zeta = \text{set of all configurations of Rubik's cube}. Define \mathcal{R} on ζ by $X\mathcal{R}\mathcal{Y} \iff \mathcal{Y}$ can be obtained from X by a quarter turn of one face (either cw or ccw).$$

Definition 17.3.1 Let \mathscr{R} be a relation on a set *A*. We call \mathscr{R} an **equivalence relation** on *A* if it satisfies the following properties:

- (a) Each element is related to itself: $(a, a) \in \mathscr{R}$ for all $a \in A$ (reflexive property)
- (b) If a is related to b then b is related to a: $(a,b) \in \mathscr{R}$ implies $(b,a) \in \mathscr{R}$ (symmetric property)
- (c) If a is related to b, and b is related to c then a is related to c: $(a,b) \in \mathscr{R}$ and $(b,c) \in \mathscr{R}$ implies $(a,c) \in \mathscr{R}$ (transitive property).

Notation : If \mathcal{R} is an equivalence relation we ofter write $x \sim y$ or $x \equiv y$ in place of $(x,y) \in \mathcal{R}$. Example: Let \mathcal{P} be the set of all people alive today. Consider the following relations: $x\mathcal{R}_{i}y \iff x$ is a sister of y $x\mathcal{R}_{2}y \iff x$ is a sister of y $x\mathcal{R}_{3}y \iff x$ is a sibling of y $x\mathcal{R}_{3}y \iff x$ is a child of y $x\mathcal{R}_{4}y \iff x$ lives in the same city as y **Definition 17.3.2** Let \sim be an equivalence relation on a set *A*. For each *a* \in *A* the set

$$[a] = \{x \in A \mid x \sim a\}$$

is called the **equivalence class of** *A* **containing** *a*. We call *a* a **representative** of the equivalence class [a].

Lemma 17.3.1 If \sim is an equivalence relation on a set A and $x, y \in A$, then

(a) $x \in [x]$ (an equivalence class contains its representative)

- (b) $x \sim y$ if and only if [x] = [y] (if two elements are related then their equivalence classes are equal)
- (c) [x] = [y] or $[x] \cap [y] = \emptyset$ (equivalence classes are either equal or disjoint).

Proof:

Theorem 17.3.2 (a) If A is a set and \mathscr{R} is an equivalence relation on A then the set of equivalence classes form a partition of A.

(b) If A_1, \ldots, A_n is a partition of a set A then the relation \mathscr{R} defined by

 $a\mathscr{R}b$ if $a, b \in A_i$ for some i,

is an equivalence relation on A. This relation can written as

$$\mathscr{R} = \bigcup_{i=1}^{n} A_i \times A_i.$$

The sets A_i are the equivalence classes of relation \mathcal{R} .

Definition 17.3.3 If \sim is an equivalence relation on a set *A*, then a **set of class representatives** is a subset of *A* which contains exactly one element from each equivalence class. We denote the set of class representative by A/\sim .

Example: Define a relation = on Z by

a = b (mod 2) \iff b-a is divisible by 2

reflexive √ symmetrie ✓ transitive ✓

In general, for $n \in \mathbb{Z}^+$ define an equivalence relation on \mathbb{Z} by $a \equiv b \pmod{n} \iff n \mid b-a$ We say <u>a is congruent to b modulo n</u>. Equivalence class of a: $[a] = \{ b \in \mathbb{Z} \mid a \equiv b \pmod{n} \}$ $= \{ b \in \mathbb{Z} \mid b-a \equiv kn, k \in \mathbb{Z} \}$ $= \{ b \in \mathbb{Z} \mid b-a \equiv kn, k \in \mathbb{Z} \}$ $= \{ b \in \mathbb{Z} \mid b = a + kn, k \in \mathbb{Z} \}$ $= \{ a + kn \mid k \in \mathbb{Z} \}$ Equivalence class representatives: $\mathbb{Z}/_{\Xi} = \{0, 1, 2, ..., n-1\}$.