Chapter 18: Cosets

|4 =

Find the right cosets and a set of representatives.

$$(com 7)$$

 $K = \langle (123) \rangle = \{ \epsilon, (123), (132) \} \leq S_3$
Left cosets of K:
 $K =$

(2)
$$\mathbb{Z}_{16} = \{0, 1, 2, 3, ..., 13, 14, 15\}$$
 under +, addition modulo 16.
 $H = \langle 4 \rangle = \{0, 4, 8, 12\}$
Left Cosets of H in \mathbb{Z}_{16} :

Lemma 18.1.2 — Properties of Cosets. Let *H* be a subgroup of *G* and $a \in G$. (a) $a \in aH$ (b) $aH = H \iff a \in H$ (c) For $a, b \in G$, either aH = bH or $aH \cap bH = \emptyset$. (d) $aH = bH \iff a^{-1}b \in H \iff b^{-1}a \in H$ (e) If *H* is finite then |aH| = |H|(f) $aH = Ha \iff a^{-1}Ha = H$. (Note that by $a^{-1}Ha$ we mean the set $\{a^{-1}ha \mid h \in H\}$.)

Proof: ~+ is an equivalence relation and [a] = att are the equivalence classes. Therefore, Lemma 17,1 implies (a),(d),(c). Part (b) is a special case of (d). All that remains to prove is (e) and (f).

(e)

Theorem 18.2.1 — Lagrange's Theorem. If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Proof:

It follows that, [# of dishinct left cosets] = $\frac{161}{141}$ (= # dishinct right cosets) This number is called the <u>index</u> of H in G: [G:H] = $\frac{161}{141}$

Corollary 18.2.2 — ord(a) divides |G|. Let G be a finite group and a ∈ G. Then
(a) ord(a) divides |G|.
(b) a^{|G|} = e.