Chapter 20 - Fundamental Theorem of Cubology
Fisc an onentation of the cube in space, well take blue up and red front.
Standard orentation:

Each configuration (scrambling) of the cube defines a 4 -tuple:

$$
(\rho, \sigma, \vec{v}, \vec{\omega})
$$

ρ : permutation of corner cubies, ie. $p \in S_{8}$
σ : permutation of edge cubbies, ie. $\sigma \in S_{12}$
\vec{V} : encoding of orientation of corner cubies
$\vec{\omega}$: encoding of orientation of edge cobbles

Permutations of corner and edge collies :

Label every cubic and cubicle with a number: corners: 1-8
edges: 1-12

Orientation of corner and edge cubies:

1. Choose a primary facet for each cubicle, mark it with a " + ".

Imagine marking is on a thin layer of skin surrounding the puzzle and not on the pieces; i.e. markings do not move.
2. With the puzzle in the solved state, label all stickers with orentation markings (numbers $0,1,2$).

- These labels are on the stickers so they move with the pieces.
- " O " is label of sticloer in facet marked with a " + ".

(a) Marking the primary facets of a cubicle.

(b) Numbering the stickers of a cubic.

Figure 20.3: Orientation markings.

Definition 20.1.1 - Position vector of a configuration of cube pieces.. If X is any configuration of Rubik's cube the position vector is a 4-tuple (ρ, σ, v, w) where $\rho \in S_{8}, \sigma \in S_{12}$ encode the permutations of the cubies, and $v \in \mathbb{Z}_{3}^{8}$ and $w \in \mathbb{Z}_{2}^{12}$ encode the orientations of the curies.
$\rho \in S_{8}: \quad \rho(i)=j \quad$ if corner cube i is in cubicle j.
$\sigma \in S_{12}: \quad \sigma(i)=j \quad$ if edge cube i is in cubicle j.
$v=\left(v_{1}, v_{2}, \ldots, v_{8}\right) \in \mathbb{Z}_{3}^{8}=\{0,1,2\}^{8}: \quad v_{i}$ is the number on the $i^{\text {th }}$ corner cube beneath the " + " mark of the cubicle $\rho(i)$ it occupies.
$w=\left(w_{1}, w_{2}, \ldots, w_{12}\right) \in \mathbb{Z}_{2}^{12}=\{0,1\}^{12}: \quad w_{i}$ is the number on the $i^{\text {th }}$ edge cube beneath the " + " marking of the cubicle $\sigma(i)$ it occupies.

Examples: Determine the position vectors for each of the following configurations.
1.

2.

3.

4.

Additional Examples:
4.

5.

Not every 4 -tuple $(p, \sigma, \vec{v}, \vec{\omega})$ corresponds to a solvable configuration of Rubik's cube. For example, a single edge flip (say the ur edge) corresponds to

$$
(\varepsilon, \varepsilon, \overrightarrow{0},(0,1,0,0,0,0,0,0,0,0,0,0))
$$

and this configuration is not solvable.
The set

$$
R C_{3}^{*}=S_{8} \times S_{12} \times \mathbb{Z}_{3}^{8} \times \mathbb{Z}_{2}^{12}=\left\{(p, \sigma, \vec{v}, \vec{\omega}): p \in S_{8}, \sigma \in S_{12}, \vec{v} \in \mathbb{Z}_{3}^{8}, \vec{\omega} \in \mathbb{Z}_{2}^{12}\right\}
$$

is bigger than $R C_{3}$. This set is called the Illegal Cube group
$R C_{3}^{*}$ is the set of ways to reassemble the cube ($\omega / \%$ taking apart the internal mechanism or peeling stickers).

The Fundamental Theorem of Cubology:

Theorem 20.2.1 - Fundamental Theorem of Cubology. A position vector $(\rho, \sigma, v, w) \in$ $S_{8} \times S_{12} \times \mathbb{Z}_{3}^{8} \times \mathbb{Z}_{2}^{12}$ corresponds to a legal configuration of Rubik's cube if and only if the following three conditions are satisfied.
(a) $\operatorname{sign}(\rho)=\operatorname{sign}(\sigma)$
(b) $v_{1}+v_{2}+\cdots+v_{8}=0(\bmod 3)$
(c) $w_{1}+w_{2}+\cdots+w_{12}=0(\bmod 2)$

In words,

- permutation of edges \& permutation of corners have the same parity
- number of cw corner twists is equal to number of ccw corner twists modulo 3
- edge flips occur in pairs.

Corollary 20.2.2 - Impossible Configurations. Each of the following configurations cannot be obtained from the solved state cube through legal cube moves.
(a) Exactly two edge cubies are swapped.
(b) Exactly two corner cubies are swapped.
(c) Exactly one edge cubie is flipped.
(d) Exactly one corner cube is twisted.
(e) Exactly two corner cubies are twisted in the same direction.

Corollary 20.2.3 - The Size of the Cube Group. The number of legal and illegal configurations of Rubik's cube are:

$$
\begin{aligned}
& \left|R C_{3}\right|=|\mathscr{C}|=\frac{\left|R C_{3}^{*}\right|}{12}=2^{27} \cdot 3^{14} \cdot 5^{3} \cdot 7^{2} \cdot 11=43,252,003,274,489,856,000 \approx 4.3 \cdot 10^{19} . \\
& \left|R C_{3}^{*}\right|=|\mathscr{A}|=8!\cdot 12!\cdot 3^{8} \cdot 2^{12} .
\end{aligned}
$$

Proof:

Recall some basic moves:
Cl^{\prime}

corner 3-cgcle

Cl

corner twist
$E l^{\prime}$

edge 3-cycle

EZ

Proof of FTC:
(\Rightarrow) First we show conditions (a) - (c) are sahshed for every legal configuration. To do this we just need to show
(1) conditions hold for the solved state

$$
(\rho, \sigma, \vec{v}, \vec{\omega})=(\varepsilon, \varepsilon, \overrightarrow{0}, \overrightarrow{0})
$$

(2) Conditions remain invariant under cube moves
(a) remains sahshed since each move simultaneously multiplies ρ \& σ by a 4-cycle.
(b) remains sahshed since

- U\&D doesn't change \vec{v}
- R, L, F, B simultaneously increases 2 component of \vec{v} by 1 and decreases 2 components by $1(\bmod 3)$.
(C) remains sahshed since
- U, D, F, B doesn't change $\vec{\omega}$
- R,L increases two components by $1(\bmod 2)$ and decreases tho components by $1(\bmod 2)$
$\therefore X$ a legal confyosation $\Rightarrow(a)-(c)$ satishid.
Let $X=(\rho, \sigma, \bar{v}, \vec{\omega}) \in R C_{3}^{*}$ sahsf (a) - (c). We want to show X can be returned to the solved state by cube moves.
(1) Assume $\operatorname{sign}(\rho)=\operatorname{sign}(\sigma)=1$ Cotherwise apply R). Since both $\rho \& \sigma$ are even then all corner, and edge cubbies can be returned home using 3-cydes, Let $X^{\prime}=\left(\varepsilon, \varepsilon, \vec{v}^{\prime}, \vec{\omega}^{\prime}\right)$ be the resulting configuration. By above $\vec{v}^{\prime} \& \vec{\omega}^{\prime}$ still salsify (a) - (c).
(2) Since \vec{v}^{\prime} sahshes (b) then the nombles of $c \omega$ twists equals the number of caw twists $(\bmod 3)$. First untwist pairs, then what is left is triple cones twisted in the same direchain. These can be solved usiy corner twists as well.
(3) Since $\vec{\omega}^{\prime}$ sahshis (c) there are an even numbers of edges flipped. Flip them in pairs to solve.
$\therefore \quad X \in R C_{3}$.

When are two assembled coles equivalent? (requires Chapters. 17 \& 18)
Consider the equivalence relation $\sim_{R_{3}}$ on $R_{3}{ }^{*}$:

$$
X \sim_{R C_{3}} y \Leftrightarrow X^{-1} y \in R C_{3}
$$

$\Leftrightarrow X$ can be taken to Y via cube moves
$\sim{ }_{R C_{3}}$ partitions $R C_{3}^{*}$ into equivalence classes : the left cosets of $R C_{3}$ in $R C_{3}^{*}$.

$$
\begin{aligned}
{[\# \text { equivalence classes }] } & =\left[R C_{3}^{*}: R C_{3}\right]=\left|R C_{3}^{*}\right| /\left|R C_{3}\right| \\
& =12
\end{aligned}
$$

Let $c_{i, j, k}$ denote the conditions on elements in $\mathrm{RC}_{3}{ }^{*}$:
(a) $\operatorname{sign}(\rho)=\operatorname{sign}(\sigma)=i \quad$ (where $i=1$ or -1$)$
(b) $v_{1}+\cdots+v_{8} \equiv j(\bmod 3) \quad($ where $j=0,1$ or 2$)$
(c) $\omega_{1}+\cdots+\omega_{12}=k(\bmod 2) \quad($ where $k=0$ or 1)

For each i, j, k, let $X_{i, j, k} \in R C_{3}^{*}$
be a configuration which
satisfies $C_{i, j, k}$. Then

$$
x_{i, j, k} R C_{3}, i \in\{-1,1\}, j \in\{0,1,2\}, k \in\{0,1
$$

is the collechon of all corsets of RC_{3} in RC_{3}^{+}.

(a) $X_{(1,0,0)}$: solved

(e) $X_{(1,1,0)}$: counterclockwise corner twist

(i) $X_{(1,2,0)}$: clockwise

(b) $X_{(-1,0,0)}$: edge swap

(f) $X_{(-1,1,0)}$: cow corner
twist \& edge swap

(j) $X_{(-1,2,0)}$: cw corner twist \& edge swap

(c) $X_{(1,0,1)}$: edge flip

(g) $X_{(1,1,1)}$: cow corner twist \& edge flip

(k) $X_{(1,2,1)}$: cw corner twist \& edge flip

(d) $X_{(-1,0,1)}$: edge swap
\& edge flip

(h) $X_{(-1,1,1)}$: caw corner twist \& edge swap
\& edge flip

(l) $X_{(-1,2,1)}$: cw corner twist \& edge swap \&
edge flip

Example: Which equivalence class does this configuration belong to?

$$
\begin{aligned}
& p= \\
& \sigma= \\
& \vec{v}= \\
& \vec{\omega}=
\end{aligned}
$$

