Integral relations for CV

e Control volume approach is accurate for any flow distribution but is often
based on the “one-dimensional” property values at the boundaries.

e |t gives useful engineering estimates.
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System and control volume

e A system is defined as a fixed quantity of matter or a region in space

chosen for study. The mass or region outside the system is called the
surroundings.

BOUNDARY \ SURROUNDINGS

SYSTEM

e System boundary: the real or imaginary surface that separates the system
from its surroundings. The boundaries of a system can be fixed or movable.

e Open system or control volume is a properly selected region in space. It
usually encloses a device that involves mass flow such as a compressor.
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Control volume

e control volume is an abstract concept and does not hinder the flow in any

way.
Control Control
surface surface
R W —— A y
: : ; Il—"" Control
0D | r | surface
| \ | { | \
| = | ; i [ r':" -
—_— ! = - V | V I |
: T e l : |
| f 1 F = : OQ=—=| |l
—— 3 e . L
(a) {h} (¢ )

Integral Relations for CV M. Bahrami ENSC283  Spring 2009



Volume and mass flow rate

Unit normal n

\/ l"!dr/j\

(a) (b)

Q=!W.n}dﬁ =Sj%dﬁ rﬁ=!pw.n}dﬂ =3f oV, da
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338 Reynolds transport theorem
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One-dimensional approximation

* In many situations, the flow crosses the boundaries of the control surface at
simplified inlets and exits that are approximately one-dimensional (the
velocity can be considered uniform across each control surface).
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Example

* Afixed control volume has three one-dimensional boundary sections, as
shown in the figure below. The flow within the control volume is steady. The
flow properties at each section are tabulated below. Find the rate of change
of energy that occupies the control volume at this instant.

e

| |
— CV :
| |

~ff—
Control surface | type p, kg/m? V, m/s A, m? e, J/kg
1 inlet 800 5.0 2.0 300
2 inlet 800 8.0 3.0 100
3 outlet 800 17.0 2.0 150
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Conservation of mass, B=m

e For conservation of mass, B=m and B=dm /dm=1. The Reynolds transport
equation becomes:

o " o
s{: il 5£ o(7.7) dA = (Q—T)ﬂ__m

e |f the control volume only has a number of one-dimensional inlets and
outlets, we can write:

[ z—fﬂf +Z<F’:-‘H’rf>mt$ _z(ﬁ:ﬁfﬁ)m =0

cr

e for steady-state flow, dp/0t=0, and the conservation of mass becomes:

D @ATdew = D @A
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Average velocity

e In cases that fluid velocity varies across a control surface, it is often
convenient to define an average velocity.

1
Hm=§=gf(7-ﬁ)fm

e |f the density varies across the cross-section, we similarly can define an
average density:

1
Fae —Ef edA
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Example 2

 Inagrinding and polishing operation, water at 300 K is supplied at a flow rate
of 4.264x1073 kg/s through a long, straight tube having an inside diameter of
D=2R=6.35 mm. Assuming the flow within the tube is laminar and exhibits a
parabolic velocity profile:

UCr) = Uyggy [1 - ﬁ}i]

—

u(r)

e whereu, . isthe maximum fluid velocity at the center of the tube. Using the

max

definition of the mass flow rate and the concept of average velocity, show
that
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Linear momentum equation

For Newton’s second law, the property being differentiated is the linear
momentum, mV. Thus B =mV and B=dB/dm=V. The Reynolds transport
theorem becomes:

d d
E(mmﬁyﬁ = Z ﬁ = E (J ?p{fV) -1-{1; ?ﬁ.}(?‘. ﬁ] d4

Momentum flux term

(74}
If cross-section is one-dimensional, V and p are uniform and over the area,
momentum flux simplifies

My =Vi(edV) =V,

For one-dimensional inlets and outlets, we have
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Net pressure on CV

(a) (bh)

Foress = f pl-n)dA
3

e Ifthe pressure has a uniform value p, all around the surface, the net
pressure force is zero.

Foress = J (p—pgl(—nldd = J Pgaga (—nld4
CE s
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Momentum flux correction

To consider the effects of non-uniform velocity, we introduce a correction
factor B.

o

0 J u? dd = GV, = fodV3

=3 () e

Values of B can be calculated using the duct velocity profile and the above
definition for .2

!
 Laminar flow: w= U*I*(l ‘ﬁ) with = 4/3

_ N (2 +=m)2(1+m)?
Turbulent flow: u =¥, (1 - R] with £ = (1 2m) (2 = 2m)
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