Angular momentum equation

e For angular momentum equation, B =H, the angular momentum vector
about point O which moments are desired.

Hy = f (7 x V) dm

Svetem

* WhereBis ﬁ-%--?x?

 The Reynolds transport equation can be written as follows:

dHQ ZMQ Zr’*x?) -—I C?X?)F’ﬂ’r‘ fﬁ'?x‘_})ﬁ'ﬁﬁﬁ}‘m

o

* For one-dimensional inlets and outlets, the flux terms become:

[ (FxP)o(P.1) dm 3 (FXT), e = D (F % ), it

¢8

Integral Relations for CV M. Bahrami  ENSC 283 Spring 2009

14



Conservation of energy

e The conservation of energy principle or the first law of thermodynamics:
during an interaction, energy can change from one form to another but the
total amount of energy remains constant.

(-)

(+)
System

(+)
()

A system can exchange energy with its surroundings through heat and work
transfer. In other words, work and heat are the forms that energy can be
transferred across the system boundary.

* Sign convention: work done by a system is positive, and the work done on a
system is negative. Heat transfer to the system is positive and from a system

will be neﬁative.
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First law of thermodynamics

e If 6Q heat is added to a system and 8W work is done by the system, the
system energy dE must change based on the first law of thermodynamics:
0@ — W = dF
* Inarate form:

. W_dE
W=

* Applying the Reynolds transport theorem to the first law of thermodynamics,
the dummy variable B=E (energy) and B=dE/(dm)= e. The Reynolds transport
equation for a fixed control volume becomes:

d¢ dw dF _d f f
dr-dr_dr_m(wgﬁw)+wﬁﬂﬁnﬁﬁ

 Energy per unit mass: can include: internal, potential, and kinetic:

1
g = u-i-EVz-l-gz

|
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Work rate

e Work rate can be divided into three parts:

W= H‘}mﬂ -+ w?;'rﬁan + Wotacous stresses = We + 1‘% + W

e Shaft work: is the work done by a machine (e.g. pump impeller, fan blade,
piston, etc) and it involves a shaft that crosses the control surface.

 Pressure work: is done by pressure forces and occurs at the surface only; all
work on internal portions of the material in the control volume is by equal
and opposite forces and is self-canceling:

AW, = = (pdd)Vym = —p(-V.n)d4

* To find the total pressure work:

W, = f (V. 1) dA

cs

|
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Work rate cont’d.

e Shear work: is due to viscous stresses occurs at the control surface and
consists of the product of each viscous stress (one normal and two
tangential) and the respective velocity component:

AW, = —n.Vd4d or W, = - f?.l"dﬁl
3
e Shear work is rarely important and may vanish or be negligible according to
the particular type of surface.
* Note 1: that for all parts of control surface that are solid containing walls,
V=0 (no-slip condition) thus W =0 .

* Note 2: for surface of a machine, the viscous work is contributed to the
machine and we absorb it in the shaft work W..

* Note 3: the viscous work at inlet or outlets can be neglected due to negligible
amount of t,, V, dA.

W= I’E -+ f p(V.n)d4 - f (7. V) stream Eﬁrfﬂ'ﬂﬁdﬁ
Cs C5

|
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Energy equation

 The control volume energy equation becomes:

- -, = %(5{ Eﬂdv}

* From definition of enthalpy h=u+p/p, the final general form of the energy
equation for a fixed control volume becomes:

+ f (e + g)f&(v‘. n)da
cs

@ =W, = W, - ;—T( [ (m - %V’ < gz) Pd?’) + [ (ﬁ + %V’ + @z) eV n)da

¥ 3

o

* For one-dimensional inlets and outlets, the flux terms become:
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A steady flow machine, shown in figure below, takes in air at section 1 and
discharges it at section 2 and 3. the properties at each section are as follows:

Example

section A, ft? Q, ft*/s T,F p, Ibf/in® abs z, ft
1 0.4 100 70 20 1.0
2 1.0 40 100 30 4.0
3 0.25 50 200 ? 1.5

e Work is provided to the machine at the rate of 150 hp. Find the
pressure p3 in Ibf/in? absolute and heat transfer in Btu/s. Assume air
is a perfect gas with R=1716 and c, = 6003 ft. Ibf/(slug.R).

Integral Relations for CV
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Steady flow energy equation

e For steady flow with one inlet and one outlet, both assumed one-
dimensional, reduces to a celebrated relation used in many engineering
analyses:

1 1
Q-W, =W, = (h-i-EVz +gz} rhwn—(h +EV2+92} -
gt in

* From conservation of mass i, = M, = 1l we can re-arrange it:

1 1
(h+EV2+gz} =(h+EV2+gz} — g+ W+ Wy

in it

 The following term is called stagnation enthalpy:

Hﬂ. = (h'l‘ 1{2 V2'|‘ QZ)l

* If we divide the steady energy equation by g, the dimension of each term
becomes a length, called head in fluid mechanics and shown by symbol h

P U Vf Py Uy VZ?

s =t s — R R+ Ry

y g 2g Tty g 2g troaTiETm
(.
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Friction and shaft work

e The energy equation for steady, low speed, incompressible flows through a
pipe or a duct with a pump or a turbine which has one inlet and one outlet

becomes:

& ) (Fz )
o -l- -+ —-1- Z |+ Reriopten — 1 -+ Fig
( ZQ ¥ ZQ < frietion Pump turbing

Kinetic energy correction factor: The inlet and outlet to control volume often
do not have one-dimensional flow, i.e., flow varies across the cross-section.
To use the average velocity in KE calculation, we should introduce:

& T‘I‘ T; 1 ¥
f —;:}(V n)dd = a— > -~ where I, -3 f ue4

pers
r (2 +m)¥(1 -+ m)?

F,E m
i — Uy (1 - R_f) with tigmina — 2.0 w = Uy (‘1 - E} with Weurbulent — 4.(1 + 3?‘?}}(2 + 31‘?1}

* Introducing the kinetic correction factor, the steady energy equation for
incompressible flows becomes:

o alg p  aVy
( =t 2'1) ( + E + Zz | -+ Rerggeion — Ppump + Reurbime

Y 2¢ ¥
]
22
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Bernoulli equation

e |f flow is assumed frictionless, the steady energy equation reduced to
the Bernoulli equation.

dF, = 3dp dA

(a) (h)

1 1
%4_ —VE+ gz, = %4--1@2 + gz, = const.

2 2

e The Bernoulli for steady frictionless incompressible flow along a streamline.

|
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Application of Bernoulli equation

Ambient

Valid —= [

J
Model Valid : Valid,
— | —_— new
| | constant
Valid = [ |
N |

Invalid
Invalid

(ex) (b)

Valid, new
constant

* It should be noted that different streamlines may have different flow
conditions and different Bernoulli constants.

1
Bernoulli constant = §+ EVZ + gz

|
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Bernoulli vs. energy equation

e A comparison between the steady flow energy and Bernoulli equation
reveals that the energy equation is much more general than Bernoulli and
allows for i) friction, ii) heat transfer, iii)shaft work, and iv) various work.

M al Py @b
(57w om) (5 e 0n) a0 mm

F;}l'*'zvl +951—£;2+2V2 + G2z

 Note that the Bernoulli equation is a momentum-based force relation and is
derived assuming:

e i Steady flow

e i) Incompressible flow (applicable for Mach numbers less than 0.3)
e jii) Frictionless flow (restrictive- where solid walls or mixing exist)

e jv) Flow along asingle streamline.

|
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Hydraulic and energy line

e The energy grade line (EGL) shows the height of the total Bernoulli constant,
h,=z+p/Yy + V21(2g)

e The hydraulic grade line (HGL) shows the height corresponding to elevation
and pressure head z + p/y which is EGL minus the velocity head V212g).

Energy grade line

q| =~

ﬁi-J

LY
jus}
b
g
=
=3
i
2
[=9
T
@

Is" J

Constant

@ Bernoulli

head

Arbitrary datum (z = 0)
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Example: Venturi tube

A constriction in a pipe will cause the velocity to rise and the pressure to fall
at section 2 in the throat. The pressure difference is a measure of the flow

rate through the pipe. The smoothly necked-down system shown in figure
below is called venturi tube.

e Find an expression for the mass flux in the tube as a function of the pressure
change.

pl

W ~< HoL -p2
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