Flow in viscous ducts

e We want to study the viscous flow in ducts with various velocities, fluids
and duct shapes.

e The basic problem is this: Given the pipe geometry and its added
components (e.g. fittings, valves, bends, and diffusers) plus the desired
flow rate and fluid properties, what pressure drop is needed to drive the
flow?
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Reynolds number

The most important parameter in fluid mechanics is the Reynolds number:

o= UL
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The Reynolds number can be interpreted as the ratio of momentum (or
inertia) to viscous forces.
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Laminar and turbulent regimes

A profound change in fluid behavior occurs at moderate Reynolds number. The
flow ceases being smooth and steady (laminar) and becomes fluctuating
(turbulent). The changeover is called transition.




SFU Reynolds number regimes

e 0<Re<1:highly viscous laminar “creeping” motion
e 1< Re<100: laminar strong Re dependence

100 < Re < 103: laminar, boundary layer theory useful
e 103 < Re < 10% transition to turbulence

e 10%*< Re < 10°: turbulent, moderate Re dependence

e 10°< Re <oe: Turbulent, slight Re dependence
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Reynolds experiment

 |n 1883 Osborne Reynolds, a British engineering professor, observed
the transition to turbulence in a pipe flow by introducing a dye
streak in the flow.

* Reynolds experimentally showed that the transition occurs in a pipe
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Internal viscous flow

e Both laminar and turbulent flows can be internal and external

 Aninternal flow is contained (or bounded) by walls and the viscous flow
will grow and meet and permeate the entire flow. As a result, there is an
entrance region where nearly inviscid upstream flow converges and enters

the duct.
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External viscous flow

e External flow has no restraining walls and is free to expand no matter how
thick the viscous layers on the immersed body may become. As a result, far
from the body the flow is nearly inviscid and there is no external equivalent
of fully developed internal flow.
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Entrance region

 Beyond the entrance region, which is a finite distance from the entrance x =
L., the velocity profile becomes constant, i.e. it no longer changes with x
and is said to be fully developed, u=u(r).
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Entrance region cont’d.

* For laminar flow, the entrance region can be found form the following
empirical correlation:
L

== 0.06Re; (Laminar)

* Assuming the maximum Re for the laminar flow in a duct is Re,, .,;; =2300
the longest laminar developing region becomes: L, = 138d, i.e. 138 times of
the tube diameter.

e Turbulent flow boundary layers grow faster, and the entrance region (L,) is
relatively shorter:

L .
E‘? = 4.4&‘9? “ (Turbulent)

e the entrance region length can vary from 40d to 100d for turbulent and
laminar regimes, respectively. However, for typical pipe flow application,
the pipe length is 1000 of its diameter in which case the entrance effect
may be neglected.




Laminar friction factor

* Continuity equation:
Qu=Q,=const or V=V, =V

 The energy equation:
VE VE
(E+—+z) =(E+—+z) + hr
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e Since V,; =V,, the friction head lost is:
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e Momentum along the x-direction:

Z F.m Ap(rR?) + pg(rR*)L sing — ©,.(2nR)L = il =1, ) = Q

e Rearranging this, we find that the head loss is related to wall shear stress:
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Darcy friction factor

A German professor, Julius Weisbach 1850, argued that the friction factor is
proportional to L/d and V? (observed experimentally in turbulent regime).
He then proposed to represent the frictionless head loss with a
dimensionless parameter f (called the Darcy friction factor), that is defined
as:

LV*®

he = Ffo—
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By equating the above equations, we find:
BTy

= E

f=f(Re, duct roughness, duct shape)



Laminar fully developed pipe flow

The analytical solution for velocity in a round duct of diameter d is:
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The pressure drop in inversely proportional to the pipe diameter to the power

4. So, if the size of the pipe is doubled, the pressure drop will decrease by a
factor of 16 for a given Q.

h.f

Knowing the shear stress, the Poiseuille friction factor is easily determined:

f - HTW,#ﬂm- - od
taminar QVE

Rf.?,j



Turbulent modeling

* For turbulent flow, every velocity and pressure term in momentum and
energy equations is a rapidly varying random function of time and space.
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e We are interested in the average or mean values in turbulent flow. Reynolds
proposed to rewrite the governing equat|ons in terms of average or mean
values, defined as:
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* The fluctuation u’ is defined as the deviation of u from its average value:
=u—1i



Turbulent modeling cont’d.

e Using the concept of mean values, the momentum equation in x-direction
(as an example) becomes:

o = o0~ e o) g5 gy ) g5 g~

—ou'?, —puv, —pu'w’ are called turbulent stresses because they have the
same dimensions and occur right alongside the newtonian (laminar) stress

terms.
Actually, they are convective acceleration terms (that is why the density

appears), not stresses but they have the mathematical effect of stress.




Turbulent flow in pipes

There are three regions in turbulent flow, inner layer (or viscous sub-layer)
where viscous effects are dominant (near the wall), overlap layer (transition to
turbulent occurs) and outer region (the flow is completely turbulent)
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u* is called the frictional velocity, because it has velocity dimensibrE, although
it is not actually a flow velocity.




Friction factor for turbulent flow
The friction factor for the turbulent pipe flow can be calculated from the

following correlations: | Parabolic

4000 = Reg = 103
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For a horizontal pipe, we have:
Ap = 0.15BLod dytlag-BlayTia

ﬂ;’.? = 0.24*1»93 ;'QH 1;'4‘:1?—4.?5 QI.FE

The pressure drop for the turbulent flow decreases with diameter even more

sharply than the laminar flow. Doubling the pipe size decreases the pressure
drop by a factor of 27 for a given Q.
.|



Effect of wall roughness

The surface roughness has an effect on friction resistance; for laminar flow,
however, this effect is negligible. The turbulent flow is strongly affected by
roughness. Nikuradse (1933) simulated roughness by gluing uniform sand
grains onto the inner walls of the pipes.
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Flow in rough pipes

The logarithm law modified for roughness becomes:

ut = ui =%En(§] + 8.5

Integrating this equation, we can find the average velocity in the pipe:

V d
— = 2.44n (—} + 3.2
" €

For fully rough flow, we have:

1
}Trz = —2.U§0Q (ﬁ}

Notice that there is no Reynolds number effect; hence the head loss varies
exactly as the square of the velocity in this case.




The Moody chart

Colebrook (1939) combined the smooth wall and fully rough relations into a
clever combined interpolation formula (with 15% accuracy):
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Hydraulic diameter

In general, for complex geometries, it is very challenging to perform the flow
analysis directly. Therefore, the concept of the hydraulic diameter is introduced
4 X area _ 44

for convenience.
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We use the hydraulic diameter, as a length scale for non-circular ducts, and
use the analyses derived for the circular pipes.




Minor losses in pipe systems

For any pipe systems, in addition to the Moody-type friction loss, computed for
the length of pipe, there are additional minor losses, including: pipe entrance
or exit, sudden expansion or contraction, bends, elbows, tees, other fittings,
valves (open or partially closed), and gradual expansions or contractions.




Minor losses

The losses commonly measured experimentally and correlated with the pipe
flow parameters, usually given as a ratio of the head loss through the device to
the velocity head of the associated piping system:

Loss coef ficient K = — =7

A single pipe system may have many minor losses. Since all are correlated with
V</(2g) they can be summed into a single total system loss if the pipe has

constant diameter:
vif L
Lhpg = hf + th = E(fE+ZH)
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K factor for butterfly valve
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Bends K factor
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SFU Entrance and exit K factor
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Sudden expansion &contraction

Sudden expansion
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Sudden contraction:
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Gradual conical expansion K
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Flow meters




