Fluid Statics

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the
weight of the fluid.

Consider a small wedge of fluid at rest of size Ax, Az, As and depth b into the paper. There is no shear
stress by definition, and pressure is assumed to be identical on each face (small element).

z (up)
J
g
Element weight:
Az dW=pg(% b Ax Az)
P, ——i
= X
0
Width b into paper

P,
Fig. 1: Equilibrium of a small Fluid element at rest.

Since the element is at rest, summation of all forces must equal zero.
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From geometry, As sin@ = Az  As cosO = Ax. After substitution in above equations, one finds:

1
Px = Pn pz=pn+§pgAZ
This means:

1) There is no pressure change in the horizontal direction.
2) There is a vertical change in pressure proportional to the density, gravity and depth change in
the fluid (i.e. the weight of the column of the fluid above the point).

Note: in the limit as the fluid wedge shrinks to a point, Az goes to zero, we have: p, = p, = p, = p.
Thus, pressure in a static fluid is a point property.

Pressure force on a fluid element
Assume the pressure vary arbitrarily in a fluid, p=p(x,y,zt). Consider a fluid element of size Ax, Ay, Az as
shown in Fig. 2. The net force in the x-direction is given by:
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Fig. 2: Net force in the x-direction due to pressure variation.

In a similar manner, net forces acting in y- and z-directions can be calculated. The total net force vector,
due to pressure, is:

dp. . Op. Op
AFyyess = —(al o +£k> dx dy dz

Notice that the term in the parentheses is the negative vector gradient of pressure and the term dx dy
dz =dV, is the volume of the element. Therefore, one can write:

f press — —Vp

where fy.ss is the net force per volume. Notice that the pressure gradient (not pressure) causing a net
force that must be balanced by gravity or acceleration and/or other effects in the fluid.

Note: the pressure gradient is a surface force that acts on the sides of the element. That must be
balanced by gravity force, or weight of the element, in the fluid at rest.

In addition to gravity, a fluid in motion will have surface forces due to viscous stresses. Viscous forces,
however, for a fluid at rest are zero.

The gravity force is a body force, acting on the entire mass of the element:

ngravity = pgdx dy dz fgravity =Py

Gage pressure and vacuum pressure
The actual pressure at a given position is called the absolute pressure, and it is measured relative to

absolute vacuum.

The measure pressure may be either lower (called vacuum pressure) or higher (gage pressure) than the
local atmosphere.

p > p, Gage pressure Pgage =P — Pa

P < Daq Vacuum pressure Pvacuum = Pa — P

M. Bahrami Fluid Mechanics (S 09) Fluid statics 2



P 7'y 7y
Pgage
L e e e S GEREETETEP -
Pvac
Pabs

I:’atm
Absolute
(vacuum) =0

Fig. 3: Absolute, gage, and vacuum pressures.

Hydrostatic pressure distribution
For a fluid at rest, the summation of forces acting on the element must be balanced by the gravity force.

Vp = pg
This is a hydrostatic distribution and is correct for all fluids at rest, regardless of viscosity.

Recall that the vector operator V expresses the magnitude and direction of the maximum spatial rate of
increase of the scalar property (in this case pressure).

Note: Vp is perpendicular everywhere to surface of constant pressure p. In other words, in a fluid at rest
will align its constant-pressure surfaces everywhere normal to the local-gravity vector. Or, the pressure
increase will be in the direction of gravity (downward). However, in our customary coordinate z is
“upward” and the gravity vector is:

g =—gk
where g=9.807 m/s°. For this coordinate, the pressure gradient vector becomes:
d d d
W_, o_, op

ox c')y_ E=—pg=—y

Since pressure is only a function of z (independent of x and y), we can write:

dp_

2
i pz—p1=—flydz

As a result, we can conclude: pressure in a continuously distributed uniform static fluid varies only with
vertical distance and is independent of the shape of the container. The pressure is the same at all points
on a given horizontal plane in a fluid.
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Fig. 4: Hydrostatic pressure is only a function of the depth of the fluid, p, = pp, = p.. However,
Pa = Pg = Pc * Pp. Because point D, although at the same level, lies beneath a different fluid,
mercury. The free surface of the container is atmospheric and forms a horizontal line.

Note: In most engineering applications, the variation in acceleration of gravity (g) due to different
heights is less than 0.6% and can be neglected.

For liquids, which are incompressible, we have:

P2 —p1=—Y(z; —2) or Zl—zzzﬁ_p_l
y v

The quantity, p/vy is a length called the pressure head of the fluid.

The mercury barometer
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Mercury has an extremely small vapor pressure at room temperature (almost vacuum), thus p; = 0. One
can write:

Pa

Ymercury

Pa — 0 = —Vmercury(0 —h) or h =
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At the sea-level, the atmospheric pressure reads, 761 mmHg.

Hydrostatic pressure in gases
Gases are compressible with density nearly proportional to pressure, thus the variation in density must
be considered in hydrostatic calculations. Using the ideal gas equation of state, p = pRT:

dp p

E——P9=—ﬁg

After integration between points 1 and 2 and also assuming a constant temperature at both points T,
=T,=T, (isothermal atmosphere), we find:

9(z; — z1)
RT,

b2 = p1€xp [—

The isothermal assumption is a fair assumption for earth. However, for higher altitudes the atmospheric
temperature drops off nearly linearly with z, i.e. T = Ty — Bz, where T, is the sea-level temperature (in
Kelvin) and B=0.00650 K/m, we find:

Bz)g/RB

p=pa(1——

T, for air }% = 5.26

Note that the atmospheric pressure is nearly zero (vacuum condition) at z =30 km.

Manometry

It is shown that a change in elevation of a liquid is equivalent to a change in pressure, Ah = Ap/y. Thus
a static column of one or multiple fluids can be used to measure pressure difference between 2 points.
Such a device is called manometer.
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Fig. 5: Simple open manometer.
Pa+v1l2a — 21| — v2l21 — 23| = D2 = Parm
Two roles for manometer analysis:

1) Adding/ subtracting yAz as moving down/up in a fluid column.
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2) Jumping across U-tubes: any two points at the same elevation in a continuous mass of the same

static fluid will be at the same pressure, thus we can jump across U-tubes filled with the same fluid.

Hydrostatic forces on plane surface
Consider a plane panel of arbitrary shape completely submerged in a liquid.
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Fig. 6: hydrostatic force and center of pressure on a plane submerged in a liquid at an angle 6.

If his the depth to any element area dA, the local pressure is:

P =pat+vh

The total hydrostatic force on one side of the plane is given by:

F = fpdA = f(pa+yh)dA :paA+yfhdA
We also have: h = &sinf. After substitution, we get:

F =p A +ysinf f §dA =p A+ ysinf écA

Since, heg = sind éq¢,
F = pgA+vheeA = (g + vYhee)A = pecA

It means, the force on one side of any plane submerged surface in a uniform fluid equals the pressure at
the plate centroid times the plate area, independent of the shape of the plate or angle 6.

To balance the bending-moment portion of the stress, the resultant force F acts not through the
centroid but below it toward the high pressure side. Its line of action passes through the centre of
pressure CP of the plate (xcp, Ycp).
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To find the center of pressure, we sum moments of the elemental force pdA about the centroid and
equate to the moment of the resultant force, F:

Fycp = fypdA = fy(pa + yésinf) dA = ysin@fyfdA

The term [ ydA = 0, by definition of centroidal axes. Using the definition of the area moment of inertia
about centroidal x axis, I, = [ y?dA, after some simplifications:

IXX

PccA

Ycp = —Ysind

The negative sign shows that ycp is below the centroid at a deeper level and depends on angle 6 and the
shape of the plate (/).

Following the same procedure, we find:

P
PccA

Xcp = —YSsinf

Note: for symmetrical plates, I, = 0 and thus xc = 0. As a result, the center of pressure lies directly
below the centroid on the y axis.
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Fig. 7: Centroidal moments of inertia for various cross-sections.
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Hydrostatic forces on curved surfaces
The easiest way to calculate the pressure forces on a curved surface is to compute the horizontal and

vertical forces separately.

Curved surface
projection onto
Fy vertical plane

(a)
Fig. 8: Calculating horizontal and vertical pressure forces on an immersed curved surface.
Using the free-body diagram shown in Fig. 8b, one can find:

The horizontal force, F;; equals the force on the plane area formed by the projection of the curved

surface onto a vertical plane normal to the component.

The vertical component equals to the weight of the entire column of fluid, both liquid and atmospheric

above the curved surface. For the surface shown in Fig. 8:

Fv=W,+ W; + Wq;
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